Skip to main content

Genetic and Genomic Analyses of Vegetative Budbreak in Response to Chilling Units in European Pear (Pyrus Communis L.)

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Dormancy is critical for the normal yearly cycle of fruit trees in temperate zones due to their requirements of exposure to certain numbers of chilling hours. Once the chilling requirement is fulfilled, vegetative budbreak can occur when climatic conditions are favorable. Exposure to insufficient chilling units can lead to delayed vegetative budbreak. Bud dormancy has been studied in perennial fruit trees within the context of the effects of climate change. The recent rise in temperatures worldwide has led to a reduction in chilling units accumulation. Pear cultivars are highly influenced by the number of chilling units accumulated during the winter. However, fruit of most low-chilling cultivars is considered to be of low quality. Study of the genetic mechanism underlying chilling requirements would greatly accelerate adaptation of new pear cultivars to warm climates. As vegetative budbreak date shows high heritability, the potential for breeding a low-chilling requirement pear cultivar is high. However, chilling requirements are subject to a complex genetic mechanism which is probably determined by, or partially derived from, multiple genes. Genetic factors affecting dormancy have been identified for the first time in peach, wherein MADS-box genes associated with dormancy regulation have been reported. Six DORMANCY-ASSOCIATED MADS-BOX (DAM) genes, and a genomic region, designated as the evergrowing (evg) locus, have been identified. To date, three DAM genes, including PpDAM1, PpDAM2, and PpDAM3, have been identified in Asian pear (Pyrus spp.). In previous genetic studies in apple, which has a high level of synteny with pear, quantitative trait loci (QTLs) for chilling requirements have been identified. A QTL common to all families has been located on linkage group 9, suggesting stability of this QTL over different families, climate regions, and years. However, in European pear, a major QTL has been detected on linkage group 8, and an additional QTL on linkage group 9 has also been confirmed. Differentially expressed genes in these regions include PcDAM1 and PcDAM2, putative orthologs of PpDAM1 and PpDAM2. Due to a significant genotype × environment (G × E) effect, QTLs associated with G × E vegetative budbreak date have been detected. It has long been known that content levels of metabolites are highly correlated with dormancy phase transitions. Metabolites, such as phospholipids, sugars, and fatty acids, including alpha-linolenic acid, play major roles in dormancy regulation in pear. Several pear genes, such as 12-oxophytodienoate reductase 2-like (alpha-linolenic acid pathway), have been found to be linked to dormancy regulation. A proposed model for pear selection of traits under a changing climate will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allard A, Bink MCAM, Martinez S, Kelner JJ, Legave JM, Di Guardo M, Di Pierro EA, Laurens F, Van De Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67:2875–2888. https://doi.org/10.1093/jxb/erw130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JL, Richardson EA, Kesner CD (1986) Validation of chill unit and flower bud phenology models for “Montmorency” sour cherry. Acta Hortic 184:71–78

    Article  Google Scholar 

  • Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T (2013) Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. Plant Cell Physiol 54:1132–1151. https://doi.org/10.1093/pcp/pct067

    Article  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch.] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507. https://doi.org/10.1007/s11295-007-0126-9

    Article  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Tellier M, Guérif P, Denancé C, Durel CE, Lespinasse Y (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar “Navara” maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8:53–60. https://doi.org/10.1007/s11295-011-0419-x

    Article  Google Scholar 

  • Busov V, Carneros E, Yakovlev I (2016) EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant Signal Behav 11:e1073873. https://doi.org/10.1080/15592324.2015.1073873

    Article  CAS  PubMed  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130:357–372

    Article  Google Scholar 

  • Celton J-M, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182. https://doi.org/10.1186/1756-0500-2-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392. https://doi.org/10.1111/j.1469-8137.2011.03823.x

    Article  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9:1–12. https://doi.org/10.1371/journal.pone.0092644

    Article  CAS  Google Scholar 

  • Costa F, Van De Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586. https://doi.org/10.1007/s11295-008-0133-5

    Article  Google Scholar 

  • da Falavigna VS, Porto DD, Miotto YE, dos Santos HP, de Oliveira PRD, Margis-Pinheiro M, Pasquali G, Revers LF (2018) Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. J Exp Bot 69:1247–1259. https://doi.org/10.1093/jxb/erx451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359. https://doi.org/10.1007/BF00222881

    Article  CAS  PubMed  Google Scholar 

  • de Souza VAB, Byrne DH, Taylor JF, De S V (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J Am Soc Hortic Sci 123:598–603

    Google Scholar 

  • Del Cueto J, Ionescu IA, Pičmanová M, Gericke O, Motawia MS, Olsen CE, Campoy JA, Dicenta F, Møller BL, Sánchez-Pérez R (2017) Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.00800

    Article  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292. https://doi.org/10.1038/hdy.2012.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810. https://doi.org/10.1007/s00018-015-2089-6

    Article  CAS  PubMed  Google Scholar 

  • Erez A, Lavee S (1971) Effect of climatic conditions on dormancy development of peach buds. I. Temperature. J Am Soc Hortic Sci J 96:711–714

    Google Scholar 

  • Erez A, Fishman S, Gat Z, Couvillon GA (1988) Evaluation of winter climate for breaking bud rest using the dynamic model. Acta Hortic 232:76–89

    Article  Google Scholar 

  • Erez A, Wang SY, Faust M (1997) Lipids in peach buds during dormancy, a possible involvement in dormancy control. Adv Hortic Sci 11:128–132

    Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930. https://doi.org/10.1111/j.1469-8137.2009.03119.x

    Article  PubMed  Google Scholar 

  • Flaishman M, Amihai Shargal AS, Raphael S (2001) The synthetic cytokinin CPPU increases fruit size and yield of ‘Spadona’ and ‘Costia’ pear (Pyrus communis L.). J Hortic Sci Biotechnol 76:145–149. https://doi.org/10.1080/14620316.2001.11511341

    Article  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van Der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB (2000) fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  Google Scholar 

  • Gabay G, Dahan Y, Izhaki Y, Isaacson T, Elkind Y, Ben-Ari G, Flaishman MA (2017) Identification of QTLs associated with spring vegetative budbreak time after dormancy release in pear (Pyrus communis L.). Plant Breed 136(5):749–758 https://doi.org/10.1111/pbr.12499

    Article  CAS  Google Scholar 

  • Gabay G, Dahan Y, Izhaki Y, Faigenboim A, Ben-Ari G, Elkind Y, Flaishman MA (2018) High-resolution genetic linkage map of European pear (Pyrus communis) and QTL fine-mapping of vegetative budbreak time. BMC Plant Biol 18(1):175. https://doi.org/10.1186/s12870-018-1386-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay G, Faigenboim A, Dahan Y, Izhaki Y, Itkin M, Malitsky S, Elkind Y, Flaishman MA (2019) Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. J Exp Bot 70(3):1017–1031.  https://doi.org/10.1093/jxb/ery405

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114. https://doi.org/10.1093/treephys/25.1.109

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642. https://doi.org/10.1007/s001220051525

    Article  Google Scholar 

  • Ionescu IA, López-Ortega G, Burow M, Bayo-Canha A, Junge A, Gericke O, Møller BL, Sánchez-Pérez R (2017) Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Front Plant Sci 8:1–17. https://doi.org/10.3389/fpls.2017.01233

    Article  CAS  Google Scholar 

  • Izadyar AB, Wang SY (1999) Changes of lipid components during dormancy in “Hull Thornless” and “Triple Crown Thornless” blackberry cultivars. Sci Hortic 82:243–254. https://doi.org/10.1016/S0304-4238(99)00051-5

    Article  CAS  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167. https://doi.org/10.1007/s11103-010-9608-5

    Article  CAS  PubMed  Google Scholar 

  • Khalil-Ur-Rehman M, Wang W, Xu Y-S, Haider MS, Li C-X, Tao J-M (2017) Comparative study on reagents involved in grape bud break and their effects on different metabolites and related gene expression during winter. Front Plant Sci 8:1–10. https://doi.org/10.3389/fpls.2017.01340

    Article  Google Scholar 

  • Labuschagné IF, Louw JH, Schmidt K, Sadie A (2002) Genetic Variation in chilling requirement in apple progeny. J Am Soc Hortic Sci 127:663–672

    Article  Google Scholar 

  • Lang GA, Early JD, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hortic Sci 22:371–377

    Google Scholar 

  • Le Roux PMF, Christen D, Duffy B, Tartarini S, Dondini L, Yamamoto T, Nishitani C, Terakami S, Lespinasse Y, Kellerhals M, Patocchi A (2012) Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar “Harrow Sweet” (Pyrus communis L.). Plant Breed 131:656–664. https://doi.org/10.1111/j.1439-0523.2012.02000.x

    Article  CAS  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666. https://doi.org/10.1093/treephys/tpq008

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xu Y, Niu Q, He L, Teng Y, Bai S (2018) Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia white pear group) flower bud endodormancy. Int J Mol Sci 19(1):310. https://doi.org/10.3390/ijms19010310

    Article  Google Scholar 

  • Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genom 13:700. https://doi.org/10.1186/1471-2164-13-700

    Article  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980. https://doi.org/10.1104/pp.109.135327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimida N, Saito T, Moriguchi T, Suzuki A, Komori S, Wada M (2015) Expression of DORMANCY-ASSOCIATED MADS-BOX (DAM)-like genes in apple. Biol Plant 59:237–244. https://doi.org/10.1007/s10535-015-0503-4

    Article  CAS  Google Scholar 

  • Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828. https://doi.org/10.1139/G09-050

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613. https://doi.org/10.1016/j.tplants.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Env Exp Bot 61:254–263. https://doi.org/10.1016/j.envexpbot.2007.06.008

    Article  Google Scholar 

  • Saito T, Bai S, Ito A, Sakamoto D, Saito T, Ubi BE, Imai T, Moriguchi T (2013) Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33:654–667. https://doi.org/10.1093/treephys/tpt037

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant Cell Env 38:1157–1166. https://doi.org/10.1111/pce.12469

    Article  CAS  Google Scholar 

  • Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquière A, Notteghem J-L (2003) Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet 106:794–803

    Article  CAS  Google Scholar 

  • Takemura Y, Kuroki K, Jiang M, Matsumoto K, Tamura F (2015) Identification of the expressed protein and the impact of change in ascorbate peroxidase activity related to endodormancy breaking in Pyrus pyrifolia. Plant Physiol Biochem 86:121–129. https://doi.org/10.1016/j.plaphy.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  • Tixier A, Sperling O, Orozco J, Lampinen B, Roxas AA, Saa S, Earles JM, Zwieniecki MA (2017) Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Münch flow in Juglans regia. Planta 246(3):495–508. https://doi.org/10.1007/s00425-017-2707-7

    Article  CAS  PubMed  Google Scholar 

  • Trainin T, Bar-Ya’akov I, Holland D (2013) ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9:753–766. https://doi.org/10.1007/s11295-012-0590-8

    Article  Google Scholar 

  • Trainin T, Zohar M, Shimoni-Shor E, Doron-Faigenboim A, Bar-Ya’akov I, Hatib K, Sela N, Holland D, Isaacson T (2016) A Unique haplotype found in apple accessions exhibiting early bud-break could serve as a marker for breeding apples with low chilling requirements. Mol Breed 36:158

    Article  Google Scholar 

  • Tuan PA, Bai S, Saito T, Ito A, Moriguchi T (2017) Dormancy-Associated MADS-Box (DAM) and the abscisic acid pathway regulate pear endodormancy through a feedback mechanism. Plant Cell Physiol 58:1378–1390. https://doi.org/10.1093/pcp/pcx074

    Article  CAS  PubMed  Google Scholar 

  • Ubi BE, Sakamoto D, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T (2010) Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hortic Sci 135:174–182

    Article  Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502. https://doi.org/10.1007/s11295-009-0266-1

    Article  Google Scholar 

  • Villalta ON, Washington WS, McGregor GR, Richards SM, Liu SM (2005) Resistance to pear scab in European and Asian pear cultivars in Australia. Acta Hortic 694:129–132

    Article  Google Scholar 

  • Wang SY, Faust M (1990) Changes of membrane lipids in apple buds during dormancy and budbreak. J Am Soc Hortic Sci 115:803–808

    Article  CAS  Google Scholar 

  • Wigge PA (2013) Ambient temperature signalling in plants. Curr Opin Plant Biol 16:661–666

    Article  CAS  Google Scholar 

  • Xiao Y, Ji Q, Gao S, Tan H, Chen R, Li Q, Chen J, Yang Y, Zhang L, Wang Z, Chen W, Hu Z (2015) Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J Exp Bot 66:6259–6271. https://doi.org/10.1093/jxb/erv333

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66:148–159. https://doi.org/10.1270/jsbbs.66.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome J 1:5. https://doi.org/10.3835/plantgenome2008.02.0089

    Article  CAS  Google Scholar 

  • Zohary D (1997) Wild apples and wild pears. Bocconea 7:409–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe A. Flaishman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabay, G., Flaishman, M.A. (2019). Genetic and Genomic Analyses of Vegetative Budbreak in Response to Chilling Units in European Pear (Pyrus Communis L.). In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_12

Download citation

Publish with us

Policies and ethics