Skip to main content

Stone Cell Development in Pear

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Pear (Pyrus spp.) is one of the most important deciduous fruit trees grown in the world. The genus Pyrus belongs to the subfamily Pomoideae of the family Rosaceae. Stone cells (sclereids), heavily lignified cells present in fruit flesh, serve as a distinctive trait of pear fruits. Stone cells are characterized by thickening and lignified cell walls, and their development is closely associated with lignin metabolism. The content and size of stone cell clusters are among the key factors in determining the internal quality of pear fruits. Not only are stone cells critically involved in fruit texture, but they are also closely associated with the overall flavor of pear fruits. Therefore, regulation of the size and content of stone cell clusters is key for improving fruit quality, and in promoting expansion of the pear industry. In this review, effects of stone cells on fruit quality, including texture, flavor, and response to disease, as well as the mechanism of stone cell development in pear fruits, including morphological characteristics, distribution, development, components, formation, and regulation mechanism, will be presented. Moreover, molecular mechanisms of pear lignin metabolism, including pear lignin monomers type, biosynthesis pathway, and identification of key gene families will be also summarized. Finally, we will share some ideas relevant to future research directions pertaining to stone cells in pear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson NA, Tobimatsu Y, Ciesielski PN, Ximenes E, Ralph J, Donohoe BS, Ladisch M, Chapple C (2015) Manipulation of guaiacyl and syringyl monomer biosynthesis in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modified cell wall structure. Plant Cell 27(8):2195–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakate A, Stephens J, Goldie A, Hunter WN, Marshall D, Hancock RD, Lapierre C, Morreel K, Boerjan W, Halpin C (2011) Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. Plant Cell 23(12):4492–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahem M, Renard CM, Gouble B, Bureau S, Le BC (2017) Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit. Carbohydr Polym 156:152–164

    Article  CAS  PubMed  Google Scholar 

  • Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57(6):883–897

    Article  CAS  PubMed  Google Scholar 

  • Cai YP, Li GQ, Nie JQ, Lin Y, Nie F, Zhang JY, Xu YL (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379

    Article  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YF, Tian LM, Li LL, Gao Y (2010) Comparison studies on the stone cell content in flesh of pear cultivars. Acta Hortic Sinica 22(3):417–433

    Google Scholar 

  • Cao YP, Fang Z, Li SS, Yan CC, Ding QQ, Cheng X, Lin Y, Guo N, Cai YP (2015) Genome-wide identification and analyses of 4CL gene families in Pyrus bretschneideri Rehd. Hereditas 37(7):711–719

    CAS  PubMed  Google Scholar 

  • Cao YP, Han YH, Li DH, Lin Y, Cai YP (2016a) Systematic analysis of the 4-coumarate: coenzyme A ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear. Genes 7(10):89

    Article  PubMed Central  CAS  Google Scholar 

  • Cao YP, Han YH, Meng DD, Li DH, Jin Q, Lin Y, Cai YP (2016b) Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (Pyrus bretschneideri). Front Plant Sci 7:1874

    PubMed  PubMed Central  Google Scholar 

  • Chen F, Tobimatsu Y, Jackson L, Nakashima J, Ralph J, Dixon RA (2013) Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity. Plant J 73(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xiong Y, Li DH, Cheng J, Cao YP, Yan CC, Jin Q, Sun N, Cai YP, Lin Y (2016) Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038664

  • Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Cai YP, Lin Y (2017a) Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. Biol Open 6(11):1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y (2019a) Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLOS ONE 14(2):e0210892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Li G, Muhammad A, Zhang J, Jiang T, Jin Q, Zhao H, Cai Y, Lin Y (2019b) Molecular identification, phylogenomic characterization and expression patterns analysis of the LIM (LIN-11, Isl1 and MEC-3 domains) gene family in pear (Pyrus bretschneideri) reveal its potential role in lignin metabolism. Gene 686:237–249

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Muhammad A, Li G, Zhang J, Cheng J, Qiu J, Jiang T, Jin Q, Cai Y, Lin Y (2019c) Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri): Molecular identification, phylogenomic characterization and expression profiling during stone cell formation. Mol Biol Rep 46(2):2153–2175

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Yan CC, Zhang J, Jin Q, Lin Y, Cai YP (2017b) The effect of different pollination on the expression of Dangshan Su pear microRNA. Biomed Res Int 2:2794040

    Google Scholar 

  • Cheng X, Su XQ, Muhammad A, Li ML, Zhang JY, Sun YM, Li GH, Jin Q, Cai YP, Lin Y (2018) Molecular characterization, evolution, and expression profiling of the dirigent (DIR) family genes in Chinese white pear (Pyrus bretschneideri). Front Genet 9:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JH, Choi JJ, Hong KH, Kim WS, Lee SH (2007) Cultivar differences of stone cells in pear flesh and their effects on fruit quality. Hortic Environ Biotechnol 48(1):27–31

    Google Scholar 

  • Choi JH, Lee SH (2013) Distribution of stone cell in Asian, Chinese, and European pear fruit and its morphological changes. J Appl Bot Food Qual 86:185–189

    Google Scholar 

  • Doblin MS, Pettolino F, Bacic A (2010) Evans review: plant cell walls: the skeleton of the plant world. Funct Plant Biol 37(5):357–381

    Article  CAS  Google Scholar 

  • Eudes A, Liang Y, Mitra P, Loqué D (2014) Lignin bioengineering. Curr Opin Biotechnol 26(4):189–198

    Article  CAS  PubMed  Google Scholar 

  • Foster TM, Aranzana MJ (2018) Attention sports fans! The far-reaching contributions of bud sport mutants to horticulture and plant biology. Hortic Res 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Z, Zhang C, Luo M, Wu Y, Duan S, Li J, Wang L, Song S, Xu W, Wang S, Zhang C, Mac C (2016) Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics 16(23):3025–3041

    Article  CAS  PubMed  Google Scholar 

  • Han WY, Meng YH, Hu CY, Dong GR, Qu YL, Deng H, Guo YR (2017) Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food Hydrocolloids 66:37–48

    Article  CAS  Google Scholar 

  • Jin Q, Yan CC, Qiu JX, Zhang N, Lin Y, Cai YP (2013) Structural characterization and deposition of stone cell lignin in Dangshan Su pear. Sci Hortic 155(155):123–130

    Article  CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154(2):483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WS, Choi JH (2004a) Morphological characteristics of stone cells in fruit of pears. HortScience 39(4):829–830

    Article  Google Scholar 

  • Kim WS, Choi JH (2004b) Stone cells in fruit of pears influenced by water stress and calcium. HortScience 39(4):761

    Article  Google Scholar 

  • Kim WS, Choi JH (2004c) Morphological characteristics of stone cells in fruit of Asian, European, and Chinese pears. HortScience 39(4):815–816

    Google Scholar 

  • Konarska A (2013) The relationship between the morphology and structure and the quality of fruits of two pear cultivars (Pyrus communis L.) during their development and maturation. Sci World J 2013:846796

    Article  Google Scholar 

  • Lee SH, Choi JH, Kim WS, Han TH, Park YS, Gemma H (2006) Effect of soil water stress on the development of stone cells in pear (Pyrus pyrifolia cv. ‘Niitaka’) flesh. Sci Hortic 110(3):247–253

    Article  Google Scholar 

  • Lee SH, Choi JH, Kim WS, Park YS, Gemma H (2007) Effects of calcium chloride spray on peroxidase activity and stone cell development in pear fruit (Pyrus pyrifolia ‘Niitaka’). J Jpn Soc Hortic Sci 76(3):191–196

    Article  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13(7):1567–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XG, Jin L, Jiang ZC, Teng NJ, Sheng BL (2004) The relationship between the content of pear’s stone cells and pulp quality. HortScience 39(4):850

    Article  Google Scholar 

  • Li JM, Huang XS, Li LT, Zheng DM, Xue C, Zhang SL, Wu J (2015) Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 241(6):1363–1379

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu L, Ming M, Hu H, Zhang M, Fan J, Song B, Zhang SL, Wu J (2019) Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit. Plant Physiol 180:435–452. https://doi.org/10.1104/pp.18.01322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, Ma Y, Song Y, Tian C, Zhang L, Li L (2017) Anatomical studies of stone cells in fruits of four different pear cultivars. Int J Agric Biol 19(4):610–614

    Article  Google Scholar 

  • Li SM, Su XQ, Abdullah M, Sun YM, Li GH, Cheng X, Lin Y, Cai YP, Jin Q (2108a) Effects of different pollens on primary metabolism and lignin biosynthesis in pear. Int J Mol Sci 19(8):2273

    Article  PubMed Central  CAS  Google Scholar 

  • Li SM, Su XQ, Jin Q, Li GH, Sun Y, Abdullah M, Cai YP, Lin Y (2018b) iTRAQ-based identification of proteins related to lignin synthesis in the pear pollinated with pollen from different varieties. Molecules 23(3):548

    Article  PubMed Central  CAS  Google Scholar 

  • Liu CJ (2012) Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant 5(2):304–317

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Chen KS, Dong Z, Cao YF, Toshiya Y, Teng YW (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54(5):959–971

    Article  CAS  Google Scholar 

  • Lu XP, Liu YZ, An JC, Hu HJ, Peng SA (2011) Isolation of a cinnamoyl CoA reductase gene involved in formation of stone cells in pear (Pyrus pyrifolia). Acta Physiol Plant 33(2):585–591

    Article  CAS  Google Scholar 

  • Lu GL, Li ZJ, Zhang XF, Wang R, Yang SL (2015) Expression analysis of lignin-associated genes in hard end pear (Pyrus pyrifolia Whangkeumbae) and its response to calcium chloride treatment conditions. J Plant Growth Regul 34(2):251–262

    Article  CAS  Google Scholar 

  • Ma C, Zhang HP, Li JM, Tao ST, Qiao X, Korban SS, Wu J (2017) Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Syst Evol 303(1):71–90

    Article  CAS  Google Scholar 

  • Nie JQ, Cai YP, Zhang SH, Lin Y, Xu YL, Zhang JY (2009) The anatomic study on relationship of stone cells and parenchyma cells during fruit development of Pyrus bretschneideri. Acta Hortic Sinica 36(8):1209–1214

    Google Scholar 

  • Nii N, Kawahara T, Nakao Y (2008) The development of stone cells in Japanese pear fruit. J Hortic Sci Biotech 83(2):148–153

    Article  Google Scholar 

  • Pan HY, Zhou R, Louie GV, Mühlemann JK, Bomati EK, Bowman ME, Dudareva N, Dixon RA, Noel JP, Wang XQ (2014) Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell 26(9):3709–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J (2017) Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68(13):3287–3301

    Article  CAS  PubMed  Google Scholar 

  • Pascual MB, El-Azaz J, Torre FNDL, Cañas RA, Avila C, Cánovas FM (2016) Biosynthesis and metabolic fate of phenylalanine in conifers. Front Plant Sci 7:1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54(4):559–568

    Article  CAS  PubMed  Google Scholar 

  • Tao ST, Khanizadeh S, Zhang H, Zhang SL (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176(3):413–419

    Article  CAS  Google Scholar 

  • Tao ST, Wang DY, Jin C, Sun W, Liu X, Zhang SL, Gao FY, Khanizadeh S (2015) Cinnamate-4-hydroxylase gene is involved in the step of lignin biosynthesis in Chinese white pear. J Am Soc Hortic Sci 140(6):573–579

    Article  CAS  Google Scholar 

  • Tian LM, Cao YF, Gao Y, Dong XG (2011) Effect of stone cells size and flesh texture in pear cultivars. Acta Hortic Sinica 38(7):1225–1234

    Google Scholar 

  • Tian LM, Dong XG, Cao YF, Zang Y, Qi D (2017) Correlation of flesh in Pyrus fruit with its stone cells lignin. Southwest China J Agric Sci 30(9):2091–2096

    Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, Xiao YG, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341(6150):1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Voxeur A, Wang Y, Sibout R (2015) Lignification: different mechanisms for a versatile polymer. Curr Opin Plant Biol 23:83–90

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Dai MS, Zhang SJ, Shi ZB (2012) A review on pear bud sport breeding and research progress in mutant mechanisms. J Fruit Sci 29(4):676–682

    Google Scholar 

  • Wang B, Zhang N, Yan CC, Jin Q, Lin Y, Cai YP, Zhang JY (2013) Bagging for the development of stone cell and metabolism of lignin in Pyrus bretschneideri ‘Dangshansuli’. Acta Hortic Sinica 40(3):531–539

    CAS  Google Scholar 

  • Wang Y, Zhang X, Yang S, Wang C, Lu G, Wang R, Yang Y, Li D (2017a) Heterogenous expression of Pyrus pyrifolia PpCAD2 and PpEXP2 in tobacco impacts lignin accumulation in transgenic plants. Gene 637:181–189

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Zhang XF, Wang R, Bai YX, Liu CL, Yuan YB, Yang YJ, Yang SL (2017b) Differential gene expression analysis of ‘chili’ (Pyrus bretschneideri) fruit pericarp with two types of bagging treatments. Hortic Res 4:17005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhang X, Wang Y, Yang S, Qu H (2018) The changes of intracellular calcium concentration and distribution in the hard end pear (Pyrus pyrifolia cv. ‘Whangkeumbae’) fruit. Cell Calcium 71:15–23

    Article  CAS  PubMed  Google Scholar 

  • Whitehill JG, Henderson H, Schuetz M, Skyba O, Yuen MMS, King J, Samuels AL, Mansfield SD, Bohlmann J (2016a) Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant Cell Environ 39(8):1646–1661

    Article  CAS  PubMed  Google Scholar 

  • Whitehill JG, Henderson H, Strong W, Jaquish B, Bohlmann J (2016b) Function of sitka spruce stone cells as a physical defense against white pine weevil. Plant Cell Environ 39(11):2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344(6179):90–93

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, Zhu SL, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi KJ, Huang XS, Wang YT, Zhao X, Wu JY, Deng C, Gou CY, Zhou WL, Yin H, Qin GH, Sha YH, Tao Y, Chen H, Yang YA, Song Y, Zhan DL, Wang J, Li LT, Dai MS, Gu C, Wang YZ, Shi DH, Wang XW, Zhang HP, Zeng L, Zheng DM, Wang CL, Chen MS, Wang GB, Xie L, Sovero V, Sha SF, Huang WJ, Zhang SJ, Zhang MY, Sun JM, Xu LL, Li Y, Liu X, Li QS, Shen JH, Wang JY, Paull RE, Bennetzen JL, Wang J, Zhang SL (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wang DF, Liu YF, Wang L, Qiao X, Zhang SL (2014) Identification of miRNAs involved in pear fruit development and quality. BMC Genom 15(1):953

    Article  CAS  Google Scholar 

  • Wu J, Wang YT, Xu JB, Korban SS, Fei ZJ, Tao ST, Ming R, Tai SS, Khan AM, Postman JD, Gu C, Yin H, Zheng DM, Qi KJ, Li, Wang RZ, Deng CH, Kumar S, Chagné D, Li XL, Wu JY, Huang XS, Zhang HP, Xie ZH, Li X, Zhang MY, Li YH, Yue Z, Fang XD, Li JM, Li LT, Jin C, Qin MF, Zhang JY, Wu X, Ke YQ, Wang J, Yang HM, Zhang SL (2018) Diversification and independent domestication of Asian and European pears. Genome Biol 19:1–16

    Article  Google Scholar 

  • Xu YL, Pan HF, Gao ZH, Yi XK, Qin GH, Qi YJ, Zhang JY (2016) Research on germplasm of ‘Dangshansuli’ pear. J Fruit Sci 33:34–42

    Google Scholar 

  • Xue C, Yao JL, Qin MF, Zhang MY, Allan AC, Wang DF, Wu J (2018) PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J 2018:1–15

    Google Scholar 

  • Xue C, Yao JL, Xue Y-S, Su G-Q, Wang L, Lin L-K, Allan A, Zhang S-L, Wu J (2019) PbrMYB169 positively regulates lignification of stone cells in pear fruit. J Exp Bot 70(6):1801–1814

    Article  PubMed  Google Scholar 

  • Yan CC, Yin M, Zhang N, Jin Q, Fang Z, Lin Y, Cai YP (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic 174(1):142–150

    Article  CAS  Google Scholar 

  • Yang SL, Zhang XN, Lu GL, Wang CR, Wang R (2014) Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai) fruit. Plant Growth Regul 76(2):1–8

    Google Scholar 

  • Zhang YX, Tian ZX, Xi RT, Gao HM (2002) Effect of SA on phemolics metabolization of Ya pear growing fruits. J Agric Univ Hebei 25(3):33–36

    Google Scholar 

  • Zhang MY, Xue C, Xu L, Sun H, Qin MF, Zhang, S, Wu J (2016) Distinct transcriptome profiles reveal gene expression patterns during fruit development and maturation in five main cultivated species of pear (Pyrus L.). Sci Rep 6:28130

    Google Scholar 

  • Zhang J, Cheng X, Jin Q, Su XQ, Li ML, Yan CC, Jiao XY, Li DH, Lin Y, Cai YP (2017) Comparison of the transcriptomic analysis between two chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. Plos One 12(10):e0187114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Zhu HM (2014) Development and morphology of stone cells in phloem of Toxicodendron vernicifluum. Trees 28(5):1553–1558

    Article  Google Scholar 

  • Zhao SG, Zhang JG, Zhao YP, Zhang YX (2013) New discoveries of stone cell differentiation in fruitlets of ‘Yali’ pears (Pyrus bretschneideri Rehd.). Int J Food Agric Environ 11(3):937–942

    Google Scholar 

  • Zhong R, Ye ZH (2015) Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56(2):195–214

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, X., Cai, Y., Zhang, J. (2019). Stone Cell Development in Pear. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_11

Download citation

Publish with us

Policies and ethics