Skip to main content

Trends in Physical Techniques of Boriding

  • Chapter
  • First Online:
Current Trends in Boriding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

All the specified physical techniques of boriding, i.e. carried out under glow discharge conditions, boron ion implantation and high-energy techniques were characterized and compared in this chapter based on the available literature data. The technological aspects of boriding processes were analyzed, taking into consideration the advantages and disadvantages of each method. The effects of the boriding methods on the microstructure of borided materials were shown. The mechanism of formation of active boron atoms or ions and the phenomena during re-melting of alloying material together with the substrate were described. The three main groups of physical techniques of boriding were specified: boriding under glow discharge conditions, boriding by ion implantation and the high-energy methods of boriding. The most intensively developed physical techniques were put in the boxes drawn in a broken line in Fig. 2.1. They were described in more detail, taking into account the current trends in boronizing. Hence, the most attention was devoted to the boriding under glow discharge conditions, especially plasma gas (or paste) boriding, and surface alloying with boron, especially, laser (or plasma) surface alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aich S, Ravi Chandran KS (2002) TiB whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall Mater Trans A 33A:3489–3498

    CAS  Google Scholar 

  • Aksenov AF, Fedorenko VK, Klimenko VS, Ivashchenko RK (1991) Structure, mechanical properties, and special features of failure of nickel-based detonation coatings. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 30(7):576–583

    Google Scholar 

  • Aliev MKH, Sabour A (2007) Pulsed nanocrystalline plasma electrolytic boriding as a novel method for corrosion protection of CP–Ti (part 1: different frequency and duty cycle). Bull Mater Sci 30(6):601–605

    Article  CAS  Google Scholar 

  • Aliofkhazraei M, Hassanzadeh-Tabrizi SA, Sabour Rouhaghdam A, Heydarzadeh A (2009) Nanocrystalline ceramic coating on γ-TiAl by bipolar plasma electrolysis (effect of frequency, time and cathodic/anodic duty cycle). Ceram Int 35:2053–2059

    Article  CAS  Google Scholar 

  • Alleg S, Ibrir M, Fenineche NE, Bensalem R, Suñol JJ (2010) Microstructure and magnetic properties of HVOF thermally sprayed Fe75Si15B10 coatings. Surf Coat Technol 205:281–286

    Article  CAS  Google Scholar 

  • Alleg S, Hamza L, Ibrir M, Souilah S, Tebib W, Fenineche NE, Greneche JM (2015) Microstructural, hyperfine, and magnetic properties of FeSiBCuNb deposits. J Supercond Novel Magn 28:2431–2439

    Article  CAS  Google Scholar 

  • Amushahi MH, Ashrafizadeh F, Shamanian M (2010) Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surf Coat Technol 204:2723–2728

    Article  CAS  Google Scholar 

  • Anand A, Das M, Kundu B, Balla VK, Bodhak S, Gangadharan S (2017) Plasma-sprayed Ti6Al4V alloy composite coatings reinforced with in situ formed TiB–TiN. J Therm Spray Technol 26:2013–2019

    Article  CAS  Google Scholar 

  • Ataibis V, Taktak S (2015) Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4V alloy. Surf Coating Technol 279:65–71

    Article  CAS  Google Scholar 

  • Avril L, Courant B, Hantzpergue JJ (2006) Tribological performance of α–Fe(Cr)–Fe2B–FeB and –Fe(Cr)–h–BN coatings obtained by laser melting. Wear 260:351–360

    Article  CAS  Google Scholar 

  • Babul T (1994) Urządzenie do detonacyjnego nakładania powłok ochronnych i regeneracyjnych/Device for detonation spraying protective and regenerative coatings. Patent No. 176390, Poland

    Google Scholar 

  • Babul T (2011) Podstawy procesu natryskiwania detonacyjnego powłok NiCrBSi i WC/Co (Fundamentals of detonation spraying of NiCrBSi and WC/Co coatings). In Polish, Publishing House of Institute of Precision Mechanics, Warsaw

    Google Scholar 

  • Ballhause P, Wolf GK (1989) The Influence of temperature on the performance of ion-implanted metal-forming tools. Mater Sci Eng A 115:273–277

    Article  Google Scholar 

  • Ballinger J, Catledge SA (2015) Metal-boride interlayers for chemical vapor deposited nanostructured NSD films on 316 and 440C stainless steel. Surf Coat Technol 261:244–252

    Article  CAS  Google Scholar 

  • Bartkowska A, Pertek A (2014) Laser production of B–Ni complex layers. Surf Coat Technol 248:23–29

    Article  CAS  Google Scholar 

  • Bartkowska A, Pertek A, Jankowiak M, Jóźwiak K (2012) Laser surface modification of borochromizing C45 steel. Arch Metall Mater 57(1):211–214

    Article  CAS  Google Scholar 

  • Bartkowska A, Pertek A, Kulka M, Klimek L (2015) Laser surface modification of boronickelized medium carbon steel. Opt Laser Technol 74:145–157

    Article  CAS  Google Scholar 

  • Bartsch K, Leonhardt A (1999) Formation of iron boride layers on steel by d.c.—plasma boriding and deposition processes. Surf Coat Technol 116–119:386–390

    Article  Google Scholar 

  • Basturk S, Senbabaoglu F, Islam C, Erten M, Lazoglu I, Gulmez T (2010) Titanium machining with new plasma boronized cutting tools. CIRP Ann Manuf Technol 59:101–104

    Article  Google Scholar 

  • Bataev IA, Bataev AA, Golkovsky MG, Yu Teplykh A, Burov VG, Veselov SV (2012) Non-vacuum electron-beam boriding of low-carbon steel. Surf Coat Technol 207:245–253

    Article  CAS  Google Scholar 

  • Bataev IA, Bataev AA, Golkovski MG, Krivizhenko DS, Losinskaya AA, Lenivtseva OG (2013) Structure of surface layers produced by non-vacuum electron beam boriding. Appl Surf Sci 284:472–481

    Article  CAS  Google Scholar 

  • Béjar MA, Henríquez R (2009) Surface hardening of steel by plasma-electrolysis boronizing. Mater Des 30:1726–1728

    Article  CAS  Google Scholar 

  • Belkin PN, Borisov AM, Kusmanov SA (2016) Plasma electrolytic saturation of titanium and its alloys with light elements. J Surf Invest 10(3):516–535

    Article  CAS  Google Scholar 

  • Berger JE, Schulz R, Savoie S, Gallego J, Kiminami CS, Bolfarini C, Botta WJ (2017) Wear and corrosion properties of HVOF coatings from superduplex alloy modified with addition of boron. Surf Coat Technol 309:911–919

    Article  CAS  Google Scholar 

  • Berjeza NA, Velikevitch SP, Mazhukin VI, Smurov I, Flamant G (1995) Influence of temperature gradient to solidification velocity ratio on the structure transformation in pulsed- and CW-laser surface treatment. Appl Surf Sci 86:303–309

    Article  CAS  Google Scholar 

  • Bojar Z, Senderowski C (2006) Powłoki otrzymywane metodą detonacyjną (Coatings produced by detonation technique). In: Bojar Z, Przetakiewicz W (eds) Materiały metalowe z udziałem faz międzymetalicznych (Metallic materials with participation of intermetallic phases). In Polish, BEL Studio Sp. z o.o., Warsaw, pp 278–303

    Google Scholar 

  • Booth M, Farrell T, Johnson RH (1983) Theory and practice of plasma carburizing. Heat Treat Met 10(2):45–52

    CAS  Google Scholar 

  • Bourithis L, Papadimitriou GD (2003) Boriding a plain carbon steel with the plasma transferred arc process using boron and chromium diboride powders: microstructure and wear properties. Mater Lett 57:1835–1839

    Article  CAS  Google Scholar 

  • Bourithis L, Papadimitriou GD (2005) Three body abrasion wear of low carbon steel modified surfaces. Wear 258:1775–1786

    Article  CAS  Google Scholar 

  • Bourithis L, Papadimitriou GD (2009) The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear 266:1155–1164

    Article  CAS  Google Scholar 

  • Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218

    Article  CAS  Google Scholar 

  • Brahma S, Liu CW, Lo KY (2016) The evolution of structure and defects in the implanted Si surface: inspecting by reflective second harmonic generation. Appl Surf Sci 388:517–523

    Article  CAS  Google Scholar 

  • Brown SC (1994) Basic data of plasma physics. Woodbury, NY, American Institute of Physics

    Google Scholar 

  • Burakowski T (1988) Possibilities of application of ion implantation in metal surface engineering. In Polish, Przegląd Mechaniczny (Mechanical Rev) 16:5–11, 15–32

    Google Scholar 

  • Burakowski T (1989) Ion implantation and possibilities of its implementation for modification of metal superficial layer properties. In Polish Tribologia 5:4–12

    Google Scholar 

  • Burakowski T, Wierzchoń T (1998) Surface engineering of metals: principles, equipment, technologies. CRC Press, Washington D.C., Boca Raton, London, New York. ISBN 9780849382253

    Google Scholar 

  • Burenkov A, Pichler P, Lorenz J, Spiegel Y, Duchaine J, Torregrosa F (2011) Simulation of plasma immersion ion implantation. In: Conference proceedings: international conference on simulation of semiconductor processes and devices, SISPAD2011, Article number 6034962, pp 231–234

    Google Scholar 

  • Cabeo ER, Laudien G, Biemer S, Rie KT, Hoppe S (1999) Plasma-assisted boriding of industrial components in a pulsed d.c. glow discharge. Surf Coat Technol 116–119:229–233

    Article  Google Scholar 

  • Casadesus P, Frantz C, Gantois M (1979) Boriding with a thermally unstable gas (diborane). Metall Trans A 10A:1739–1743

    Article  CAS  Google Scholar 

  • Chang FM, Wu ZZ, Lin YF, Ch Kao L, Wu CT, JangJian SK, Chen YN, Lo KY (2018) Damage and annealing recovery of boron-implanted ultra-shallow junction: the correlation between beam current and surface configuration. Appl Surf Sci 433:160–165

    Article  CAS  Google Scholar 

  • Chen H, Xu C, Chen J, Zhao H, Zhang L, Wang Z (2008a) Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear. Wear 264:487–493

    Article  CAS  Google Scholar 

  • Chen XJ, Yu LG, Khor KA, Sundararajan G (2008b) The effect of boron-pack refreshment on the boriding of mild steel by the spark plasma sintering (SPS) process. Surf Coat Technol 202:2830–2836

    Article  CAS  Google Scholar 

  • Coig M, Milési F, Lerat J-F, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2016) New processes for homojunction silicon solar cells doping: from beam line to plasma immersion ion implantation. In: Conference proceedings: 16th international workshop on junction technology, IWJT 2016, 7 June 2016, Article number 7486671, pp 44–50

    Google Scholar 

  • Conrad JR (1987) Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes. J Appl Phys 62(3):777–779

    Article  CAS  Google Scholar 

  • Conrad JR, Radtke JL, Dodd RA, Worzala FJ, Tran NC (1987) Plasma source ion-implantation technique for surface modification of materials. J Appl Phys 62(11):4591–4596

    Article  CAS  Google Scholar 

  • Culha O, Sahin S, Ozdemir I, Toparli M (2014) Heat treatment effects on mechanical properties of atmospheric plasma sprayed FexB coatings on Al substrate. Exp Techniq 38:67–75

    Article  Google Scholar 

  • Cunningham FE (1964) The use of lasers for the production of surface alloys. M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Da Silva LJ, D’Oliveira ASCM (2016) NiCrSiBC coatings: effect of dilution on microstructure and high temperature tribological behavior. Wear 350–351:130–140

    Article  CAS  Google Scholar 

  • Da Silva LJ, D’Oliveira ASCM (2017) NiCrSiBC alloy: microstructure and hardness of coatings processed by arc and laser. Weld Int 31(1):1–8

    Article  Google Scholar 

  • Dallaire S (1992) Thermal spraying of reactive materials to form wear-resistant composite coatings. J Therm Spray Technol 1(1):41–47

    Article  Google Scholar 

  • Dallaire S, Champagne B (1984) Plasma spray synthesis of TiB2–Fe coatings. Thin Solid Films 118(477):483

    Google Scholar 

  • Dallaire S, Levert H (1992) Synthesis and deposition of TiB2-containing materials by arc spraying. Surf Coat Technol 50:241–248

    Article  CAS  Google Scholar 

  • Dallaire S, Legoux JG, Levert H (1995) Abrasion wear resistance of arc-sprayed stainless steel and composite stainless steel coatings. J Therm Spray Technol 4(2):163–168

    Article  CAS  Google Scholar 

  • Darabara M, Papadimitriou GD, Bourithis L (2007) Tribological evaluation of Fe–B–TiB2 metal matrix composites. Surf Coat Technol 202:246–253

    Article  CAS  Google Scholar 

  • Darabara M, Bourithis L, Diplas S, Papadimitriou GD (2008) A TiB2 metal matrix composite coating enriched with nitrogen: microstructure and wear properties. Appl Surf Sci 254:4144–4149

    Article  CAS  Google Scholar 

  • Dasheev DE, Smirnyagina NN (2017) Modeling of the electron-beam boriding in the system Fe–B–CO2. IOP Conf Series J Phys Conf Ser 830, Article number 0012070

    Google Scholar 

  • Dasheev DE, Smirnyagina NN, Khaltanova VM, Semenov AP (2015) Boriding of carbon steels by the electron beam treatment in vacuum. IOP Conf Ser J Phys Conf Ser 652, Article number 012002

    Google Scholar 

  • Davis JA, Wilbur PJ, Williamson DL, Wei R, Vajo JJ (1998) Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source. Surf Coat Technol 103–104:52–57

    Article  Google Scholar 

  • Dearnaley G (1982) Practical applications of ion implantation. J Metals 34(9):18–28

    Google Scholar 

  • Dearnaley G (1990) Ion beam modification of metals. Nucl Instrum Methods Phys Res B 50:358–367

    Article  Google Scholar 

  • Dearnley PA, Farrell T, Bell T (1986) Developments in plasma boronizing. J Mater Energy Syst 8(2):128–131

    Article  CAS  Google Scholar 

  • Deschuyteneer D, Petit F, Gonon M, Cambier F (2015) Processing and characterization of laser clad NiCrBSi/WC composite coatings—influence of microstructure on hardness and wear. Surf Coat Technol 283:162–171

    Article  CAS  Google Scholar 

  • Dikici B, Ozdemir I (2012) FeB and FeB/h–BN based anti-corrosive composite coatings for aluminium alloys. Anti-Corros Methods Mater 59(5):246–254

    Article  CAS  Google Scholar 

  • Dimitrova VI (1995) Surface modification in nitrogen and boron-ion implanted P18 high-speed steel with TIN coating. Thin Solid Films 261:209–218

    Article  CAS  Google Scholar 

  • Dobrzański LA, Dobrzańska-Danikiewicz AD (2011) Obróbka powierzchni materiałów inżynierskich (Engineering materials surface treatment). In Polish, Sci Int J World Acad Mater Manuf Eng 5. ISBN 83-89728-93-1

    Google Scholar 

  • Engel A (1965) Ionized Gases. Woodbury, NY, American Institute of Physics. Reprinted by arrangement with Oxford University Press (1994)

    Google Scholar 

  • Ensinger W (1996) Plasma immersion ion implantation for metallurgical and semiconductor research and development. Nucl Instrum Methods Phys Res B 120:270–281

    Article  CAS  Google Scholar 

  • Ensinger W, Volz K, Enders B (1999) An apparatus for in-situ or sequential plasma immersion ion beam treatment in combination with r.f. sputter deposition or triode d.c. sputter deposition. Surf Coat Technol 120–121:343–346

    Article  Google Scholar 

  • Ensinger W, Kraft G, Sittner F, Volz K, Baba K, Hatada R (2007) Silicon carbide and boron carbide thin films formed by plasma immersion ion implantation of hydrocarbon gases. Surf Coat Technol 201:8366–8369

    Article  CAS  Google Scholar 

  • Essa Z, Cristiano F, Spiegel Y, Qiu Y, Boulenc P, Quillec M, Taleb N, Zographos N, Bedel-Pereira E, Mortet V, Burenkov A, Hackenberg M, Torregrosa F, Tavernier C (2014) Large boron-interstitial cluster modelling in BF3 plasma implanted silicon. Physica Status Solidi (C) 11(1):117–120

    Article  CAS  Google Scholar 

  • Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Microstructural modification and hardness improvement in boride/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron beam irradiation. Scripta Mater 45:1–6

    Article  CAS  Google Scholar 

  • Fauchais PL, Heberlein JVR, Boulos M (2014) Thermal spray fundamentals: from powder to part. Springer, New York, Heidelberg, Dordrecht, London. ISBN 978-0-387-28319-7

    Book  Google Scholar 

  • Fedorishcheva MV, Sergeev VP, Voronov AV, Sergeev OV, Popova NA, Kozlov EV (2007) Structure and phase composition of grade 38KhN3MFA steel implanted with Cr and B ions. Bull Russian Acad Sci Phys 71(2):221–223

    Article  Google Scholar 

  • Filep E, Farkas S (2005) Kinetics of plasma-assisted boriding. Surf Coat Technol 199:1–6

    Article  CAS  Google Scholar 

  • Filip R (2008) Kształtowanie mikrostruktury i właściwości warstwy wierzchniej stopów tytanu w procesie przetapiania laserowego (The structure formation and the properties of surface layer of titanium alloys in laser remelting process). In Polish, Publishing House of Rzeszow University of Technology, Rzeszów. ISBN 978-83-7199-491-3

    Google Scholar 

  • Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surf Eng 22(1):53–57

    Article  CAS  Google Scholar 

  • Fillit R, Mizera J, Bieliński P, Wierzchoń T (1995) Determining the stress state in iron and iron-nickel boride layers produced under glow discharge conditions. J Mater Sci Letters 14:1633–1634

    Article  CAS  Google Scholar 

  • Frey H, Kienel G (1987) Dünschicht Technologie. VDI Verlag, Düsseldorf

    Google Scholar 

  • Galvanetto E, Borgioli F, Bacci T, Pradelli G (2006) Wear behaviour of iron boride coatings produced by VPS technique on carbon steels. Wear 260:825–831

    Article  CAS  Google Scholar 

  • Gan JA, Berndt CC (2011) Design and manufacture of Nd–Fe–B thick coatings by the thermal spray process. Surf Coat Technol 205:4697–4704

    Article  CAS  Google Scholar 

  • Gan JA, Berndt CC, Wong YC, Wang J (2013) Void formation and spatial distribution in plasma sprayed Nd–Fe–B coatings. J Therm Spray Technol 22(2–3):337–344

    Article  Google Scholar 

  • Gao L, Wang HZ, Hong JS, Miyamoto H, Miyamoto K, Nishikawa Y, Torre SDDL (1999) Mechanical properties and microstructure of nano-SiC–Al2O3 composites densified by spark plasma sintering. J Eur Ceram Soc 19:609–613

    Article  CAS  Google Scholar 

  • Gladush GG, Smurov I (2011) Physics of laser materials processing. Springer Ser Mater Sci 146(1). ISBN: 978-364219242-5

    Google Scholar 

  • Gopalakrishnan P, Shankar P, Subba Rao RV, Sundar M, Ramakrishnan SS (2001) Laser surface modification of low carbon borided steels. Scripta Mater 44:707–712

    Article  CAS  Google Scholar 

  • Gromov VE, Ivanov YuF, Glezer AM, Kormyshev VE, Konovalov SV (2017) Electron-beam modification of a surface layer deposited on low-carbon steel by means of arc spraying. Bull Russian Acad Sci Phys 81(11):1353–1359

    Article  CAS  Google Scholar 

  • Gunes I (2014) Tribological properties and characterization of plasma paste borided 5120 steel. J Balkan Tribol Assoc 20(3):351–361

    CAS  Google Scholar 

  • Gunes I, Ulker S, Taktak S (2011) Plasma paste boronizing of AISI 8620, 52100 and 440C steels. Mater Des 32:2380–2386

    Article  CAS  Google Scholar 

  • Gunes I, Taktak S, Bindal C, Yalcin Y, Ulker S, Kayali Y (2013a) Investigation of diffusion kinetics of plasma paste borided AISI 8620 steel using a mixture of B2O3 paste and B4C/SiC. Sadhana-Acad Proc Eng Sci 38(3):513–526

    CAS  Google Scholar 

  • Gunes I, Ulker S, Taktak S (2013b) Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures. Protect Metals Phys Chem Surf 49(5):567–573

    Article  CAS  Google Scholar 

  • Guo C, Zhou J, Zhao J, Guo B, Yu Y, Zhou H, Chen J (2011) Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Appl Surf Sci 257:4398–4405

    Article  CAS  Google Scholar 

  • Guo Y, Koga GY, Moreira Jorge A Jr, Savoie S, Schulz R, Kiminami CS, Bolfarini C, Botta WJ (2016) Microstructural investigation of Fe–Cr–Nb–B amorphous/nanocrystalline coating produced by HVOF. Mater Des 111:608–615

    Article  CAS  Google Scholar 

  • Gurumoorthy K, Kamaraj M, Prasad Rao K, Sambasiva Rao A, Venugopal S (2007) Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Mater Sci Eng A 456:11–19

    Article  CAS  Google Scholar 

  • Hebda M (2012) Spark plasma sintering—a new technology of consolidation of powder materials. Mechanics (Mechanika) 11(11):47–55

    Google Scholar 

  • Hemmati I, Ocelík V, De Hosson JThM (2013) Toughening mechanism for Ni–Cr–B–Si–C laser deposited coatings. Mater Sci Eng A 582:305–315

    Article  CAS  Google Scholar 

  • Hermanek FJ (2001) Thermal spray terminology and company origins. ASM International, Materials Park, OH

    Google Scholar 

  • Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng A 336:88–98

    Article  Google Scholar 

  • Huang C, Zhang B, Lan H, Du L, Zhang W (2014) Friction properties of high temperature boride coating under dry air and water vapor ambiences. Ceram Int 40:12403–12411

    Article  CAS  Google Scholar 

  • Hunger HJ, Löbig G (1997) Generation of boride layers on steel and nickel alloys by plasma activation of boron trifluoride. Thin Solid Films 310:244–250

    Article  CAS  Google Scholar 

  • Iakovou R, Bourithis L, Papadimitriou G (2002) Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252:1007–1015

    Article  CAS  Google Scholar 

  • Iwaki M (1987) Tribological properties of ion-implanted steels. Mater Sci Eng 90:263–271

    Article  CAS  Google Scholar 

  • Jain A, Shrivastava S (1995) Effect of martensite content on the sliding behavior of boron-ion-implanted 304 stainless steel. Thin Solid Films 259:167–173

    Article  CAS  Google Scholar 

  • Jang CW, Kim JH, Lee DH, Shin DH, Kim S, Choi S-H, Hwang E, Elliman RG (2017) Effect of stopping-layer-assisted boron-ion implantation on the electrical properties of graphene: interplay between strain and charge doping. Carbon 118:343–347

    Article  CAS  Google Scholar 

  • Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112

    Article  CAS  Google Scholar 

  • Johnson DL (1991) Microwave and plasma sintering of ceramics. Ceram Int 17(5):295–300

    Article  CAS  Google Scholar 

  • Johnston JM, Catledge SA (2016) Metal-boride phase formation on tungsten carbide (WC–Co) during microwave plasma chemical vapor deposition. Appl Surf Sci 364:315–321

    Article  CAS  Google Scholar 

  • Johnston JM, Jubinsky M, Catledge SA (2015) Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth. Appl Surf Sci 328:133–139

    Article  CAS  Google Scholar 

  • Johnston JM, Baker P, Catledge SA (2016) Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diam Relat Mater 69:114–120

    Article  CAS  Google Scholar 

  • Jones M, Horlock AJ, Shipway PH, McCartney DG, Wood JV (2001) A comparison of the abrasive wear behaviour of HVOF sprayed titanium carbide- and titanium boride-based cermet coatings. Wear 251:1009–1016

    Article  Google Scholar 

  • Kaczmarek M, Jurczyk MU, Miklaszewski A, Paszel-Jaworska A, Romaniuk A, Lipińska N, Żurawski J, Urbaniak P, Jurczyk K (2016) In vitro biocompatibility of titanium after plasma surface alloying with boron. Mater Sci Eng C 69:1240–1247

    Article  CAS  Google Scholar 

  • Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286

    Article  CAS  Google Scholar 

  • Kadyrov KV, Polishchuk IE, Khairutdinov AM (1985) Protective properties of detonation-deposited coatings from powders alloyed with aluminum and boron. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 24(8):628–631

    Article  Google Scholar 

  • Kaeppelin V, Carrère M, Torregrosa F, Mathieu G (2002) Characterisation of an industrial plasma immersion ion implantation reactor with a Langmuir probe and an energy-selective mass spectrometer. Surf Coat Technol 156:119–124

    Article  CAS  Google Scholar 

  • Kaestner P, Olfe J, Rie KT (2001) Plasma-assisted boriding of pure titanium and TiAl6V4. Surface Coating Technol 142–144:248–252

    Article  Google Scholar 

  • Kawasumi H (1981) Metal surface hardening CO2 laser. In: Metzbower EA (ed) Source book on applications of the laser in metalworking. ASM, Metals Park, Ohio, pp 185–195

    Google Scholar 

  • Keddam M, Taktak S (2017) Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding. Appl Surf Sci 399:229–236

    Article  CAS  Google Scholar 

  • Keddam M, Taktak S, Tasgeriten S (2016) A diffusion model for the titanium borides on pure titanium. Surf Eng 32(11):802–808

    Article  CAS  Google Scholar 

  • Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: Effect of boride incubation times. Appl Surf Sci 298:155–163

    Article  CAS  Google Scholar 

  • Keddam M, Chegroune R, Kulka M, Panfil D, Ulker S, Taktak S (2017) Characterization and diffusion kinetics of the plasma paste borided AISI 440C steel. Trans Indian Inst Met 70(5):1377–1385

    Article  CAS  Google Scholar 

  • Keddam M, Chegroune R, Kulka M, Makuch N, Panfil D, Siwak P, Taktak S (2018) Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Trans Indian Inst Met 71(1):79–90

    Article  CAS  Google Scholar 

  • Kern KT, Walter KC, Griffin AJ Jr, Lu Y, Nastasi M, Scarborough WK, Tesmer JR, Fayeulle S (1997) Boron and nitrogen implantation of steels. Nucl Instrum Methods Phys Res B 127(128):972–976

    Article  Google Scholar 

  • Khan FF, Bae G, Kang K, Na H, Kim J, Jeong T, Lee C (2011) Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings. J Therm Spray Technol 20:1022–1034

    Article  CAS  Google Scholar 

  • Kharlamov Y, Kharlamov M (2013) Design concepts of gaseous detonation guns for thermal spraying. Archiv Comm Motorization Power Ind Agric 13(4):82–91

    Google Scholar 

  • Kholmetskii AL, Anischik VM, Uglov VV, Rusalsky DP, Kuleshov AK, Fedotova JA (2003) CEMS investigations of AISI M2 steel after ion implantation by nitrogen, boron and carbon. Vacuum 69:521–527

    Article  CAS  Google Scholar 

  • Khor KA, Yu LG, Sundararajan G (2005) Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 478:232–237

    Article  CAS  Google Scholar 

  • Kim H-J, Grossi S, Kweon Y-G (1999a) Characterization of Fe–Cr–B based coatings produced by HVOF and PTA processes. Met Mater 5(1):63–72

    Article  CAS  Google Scholar 

  • Kim H-J, Grossi S, Kweon Y-G (1999b) Wear performance of metamorphic alloy coatings. Wear 232:51–60

    Article  CAS  Google Scholar 

  • Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852

    Article  CAS  Google Scholar 

  • Kluge A, Langguth K, Ochsner R, Kobs K, Ryssel H (1989) Examination of wear, hardness and friction of nitrogen-, boron-, carbon-, silver-, lead- and tin-implanted steels with different chromium contents. Mater Sci Eng A 115:261–265

    Article  Google Scholar 

  • Koga GY, Schulz R, Savoie S, Nascimento ARC, Drolet Y, Bolfarini C, Kiminami CS, Botta WJ (2017) Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf Coatings Technol 309:938–944

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Piasecki A (2012) Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel. Opt Laser Technol 44:872–881

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Małdziński L (2013a) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere. J Solid State Chem 199:196–203

    Article  CAS  Google Scholar 

  • Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013b) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A (2013c) Microstructure and properties of laser-borided 41Cr4 steel. Opt Laser Technol 45:308–318

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014a) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Piasecki A (2014b) A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding. Ceram Int 40:6083–6094

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Mikołajczak D, Przestacki D (2015) Gradient boride layers formed by diffusion carburizing and laser boriding. Opt Lasers Eng 67:163–175

    Article  Google Scholar 

  • Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313

    Article  CAS  Google Scholar 

  • Küper A, Qiao X, Stock HR, Mayr P (2000) A novel approach to gas boronizing. Surf Coat Technol 130:87–94

    Article  Google Scholar 

  • Kusiński J (2000) Lasery i ich zastosowanie w inżynierii materiałowej (Lasers and their application in materials science and engineering). In Polish, Scientific Publishing House Akapit, Krakow. ISBN 83-7108-071-9

    Google Scholar 

  • Kusmanov SA, Shadrin YS, Belkin PN (2014) Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburising. Surf Coat Technol 258:727–733

    Article  CAS  Google Scholar 

  • Kusmanov SA, Naumov AR, Tambovskiy IV, Belkin PN (2015a) Anode plasma electrolytic saturation of low-carbon steel with carbon, nitrogen, boron, and sulfur. Lett Mater 5(1):35–38

    Article  Google Scholar 

  • Kusmanov SA, Kusmanova YuV, Naumov AR, Belkin PN (2015b) Features of anode plasma electrolytic nitrocarburising of low carbon steel. Surf Coat Technol 272:149–157

    Article  CAS  Google Scholar 

  • Kusmanov SA, Tambovskiy IV, Sevostyanova VS, Savushkina SV, Belkin PN (2016) Anode plasma electrolytic boriding of medium carbon steel. Surf Coat Technol 291:334–341

    Article  CAS  Google Scholar 

  • Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA, Belkin PN (2017a) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Protect Metals Phys Chem Surf 53(3):488–494

    Article  CAS  Google Scholar 

  • Kusmanov SA, Silkin SA, Smirnov AA, Belkin PN (2017b) Possibilities of increasing wear resistance of steel surface by plasma electrolytic treatment. Wear 386–387:239–246

    Article  CAS  Google Scholar 

  • Lakhtin YM, Kogan YD, Buryakin AV (1985) Surface saturation of steel with boron by laser radiation. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:9–11

    Google Scholar 

  • Lanterne A, Le Perchec J, Coig M, Milési F, Boucher J, Veschetti Y (2016) Solar-grade boron emitters by BF3 plasma doping and role of the co-implanted fluorine. Prog Photovoltaics Res Appl 24:348–356

    Article  CAS  Google Scholar 

  • Lebrun JP (2014) Plasma-assisted processes for surface hadening of stainless steel. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering: Number 62, pp 615–632

    Google Scholar 

  • Lee Y, Lee EH, Mansur LK (1992) Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide. Surf Coat Technol 51:267–272

    Article  CAS  Google Scholar 

  • Lerat J-F, Desrues T, Le Perchec J, Coig M, Milési F, Mazen F, Michel T, Roux L, Veschetti Y, Dubois S (2016) Boron emitter formation by plasma immersion ion implantation in n-type PERT silicon solar cells. Energy Procedia 92:697–701

    Article  CAS  Google Scholar 

  • Li M, Christofides PD (2004) Feedback control of HVOF thermal spray process accounting for powder size distribution. J Therm Spray Technol 13(1):108–120

    Article  Google Scholar 

  • Li XM, Han Y (2006) Porous nanocrystalline Ti (CxN1−x) thick films by plasma electrolytic carbonitriding. Electrochem Commun 8:267–272

    Article  CAS  Google Scholar 

  • Li M, Shi D, Christofides PD (2005) Modeling and control of HVOF thermal spray processing of WC–Co coatings. Powder Technol 156:177–194

    Article  CAS  Google Scholar 

  • Lin C-M (2012) Parameter optimisation of a vacuum plasma spraying process using boron carbide. J Therm Spray Technol 21(5):873–881

    Article  CAS  Google Scholar 

  • Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2014a) Microstructure and cavitation erosion behavior of FeNiCrBSiNbWcoating prepared by twin wires arc spraying process. Surf Coat Technol 240:432–436

    Article  CAS  Google Scholar 

  • Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2014b) Effect of crystallisation on electrochemical properties of arc sprayed FeNiCrBSiNbW coatings. Surf Eng 30(9):683–687

    Article  CAS  Google Scholar 

  • Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2015) Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings. Mater Des 65:1035–1040

    Article  CAS  Google Scholar 

  • Lin C-M, Kai W-Y, Su C-Y, Tsai C-N, Chen Y-C (2017) Microstructure and mechanical properties of Ti–6Al–4V alloy diffused with molybdenum and nickel by double glow plasma surface alloying technique. J Alloy Compd 717:197–204

    Article  CAS  Google Scholar 

  • Liu J (1990) The solidification characteristic and the nucleation mechanism of the laser dynamic solidification structure. Trans Metal Heat Treat (Jinshu Rechuli Xuebao) 3:13–23

    Google Scholar 

  • Liu R, Wang B, Wu J, Xue W, Jin X, Du J, Hua M (2014) Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel. Appl Surf Sci 321:348–352

    Article  CAS  Google Scholar 

  • Liyanage T, Fisher G, Gerlich AP (2010) Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW). Surf Coat Technol 205:759–765

    Article  CAS  Google Scholar 

  • Lotfi B, Shipway PH, McCartney DG, Edris H (2003) Abrasive wear behaviour of Ni(Cr)–TiB2 coatings deposited by HVOF spraying of SHS-derived cermet powders. Wear 254:340–349

    Article  CAS  Google Scholar 

  • Lu W, Wu Y, Zhang J, Hong S, Zhang J, Li G (2011) Microstructure and corrosion resistance of plasma sprayed Fe-based alloy coating as an alternative to hard chromium. J Therm Spray Technol 20(5):1063–1070

    Article  CAS  Google Scholar 

  • Lu X, Li K, Xie Y, Huang L, Zheng X (2016) Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. J Mater Sci Mater Med 27:166

    Article  CAS  Google Scholar 

  • Lü W-Q, Cao Y-Z, Wang L-P, Wang X-F, Gu Z-W, Yan Y-D, Yu F-L (2017) Effect of cathode composition on microstructure and tribological properties of TiBN nanocomposite multilayer coating synthesized by plasma immersion ion implantation and deposition. J Central South Univ 24(10):2238–2244

    Article  CAS  Google Scholar 

  • Lv H, Nie P, Yan Y, Wang J, Sun B (2010) Characterization and adhesion strength study of detonation-sprayed MoB–CoCr alloy coatings on 2Cr13 stainless steel substrate. J Coat Technol Res 7(6):801–807

    Article  CAS  Google Scholar 

  • Lyakhovich LS, Isakov SA, Kartoshkin VM, Pakhadnya VP (1985) Determination of the conditions of boronizing steel with heating by laser radiation. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:12–14

    Google Scholar 

  • Lyakhovich LS, Isakov SA, Kartoshkin VM, Pakhadnya VP (1987) Laser alloying. (Metal Sci Heat Treat Metallovedenie i Termicheskaya Obrabotka Metallov) 3:14–19

    Google Scholar 

  • Lysenko AB, Kozina NN, Gulyaeva TV, Shibaev VV, Glushkov AG (1991) Structure and properties of steels after boronizing with the use of laser heating. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 3:2–4

    Google Scholar 

  • Lysenko AB, Kozina NN, Miroshnichenko IS, Borisova GV (1995) Special features of structure formation in steels subjected to surface alloying. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 12:10–12

    Google Scholar 

  • Ma Z, Wang W, Zou J, Dong S, Zhang L, Li Z (2011) Preparation and properties of flame-sprayed Mo–FeB–Fe cermet coatings. Trans Nonferrous Metals Soc Chin 21:1314–1321

    Article  CAS  Google Scholar 

  • Madakson PB (1985) Friction, wear and the hardness of boron-implanted 18W–4Cr–IV steel. Mater Sci Eng 69:167–172

    Article  CAS  Google Scholar 

  • Major B (1996) Laserowa modyfikacja stali poprzez wprowadzanie węglików i borków (Laser modification of steel by introducing carbides and borides). In Polish, Conference proceedings: III Nationwide conference „Surface treatment” Częstochowa-Kule, pp 263–268

    Google Scholar 

  • Majumdar JD, Li L (2010) Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Mater Lett 64:1010–1012

    Article  CAS  Google Scholar 

  • Makarov AV, Soboleva NN, Yu Malygina I (2017) Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings. J Frict Wear (Trenie i Iznos) 38(4):272–278

    Article  Google Scholar 

  • Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81

    Article  Google Scholar 

  • Makuch N, Piasecki A, Dziarski P, Kulka M (2015) Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy. Opt Laser Technol 75:229–239

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37

    Article  CAS  Google Scholar 

  • Mann BS, Arya V, Pant BK (2011) Enhanced erosion protection of TWAS coated Ti6Al4V alloy using boride bond coat and subsequent laser treatment. J Mater Eng Perform 20(6):932–940

    Article  CAS  Google Scholar 

  • Marest G (1998) Surface treatment by ion implantation. Hyperfine Interact 111:121–127

    Article  CAS  Google Scholar 

  • Masanta M, Ganesh P, Kaul R, Natha AK, Roy Choudhury A (2009) Development of a hard nano-structured multi-component ceramic coating by laser cladding. Mater Sci Eng A 508:134–140

    Article  CAS  Google Scholar 

  • Miklaszewski A, Jurczyk M (2011) Wear improvement of pure titanium surface by TiB precipitation after plasma alloying process. Mater Sci Forum 674:147–152

    Article  Google Scholar 

  • Miklaszewski A, Jurczyk MU, Jurczyk K, Jurczyk M (2011) Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surf Coat Technol 206:330–337

    Article  CAS  Google Scholar 

  • Miklaszewski A, Jurczyk MU, Jurczyk M (2012) Surface modification of pure titanium by TiB precipitation. Solid State Phenom 183:131–136

    Article  CAS  Google Scholar 

  • Miklaszewski A, Jurczyk MU, Jurczyk M (2013) Microstructural development of Ti–B alloyed layer for hard tissue applications. J Mater Sci Technol 29(6):565–572

    Article  CAS  Google Scholar 

  • Milési F, Coig M, Lerat JF, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2017) Homojunction silicon solar cells doping by ion implantation. Nucl Instrum Methods Phys Res B 409:53–59

    Article  CAS  Google Scholar 

  • Milonov AS, Danzheev BA, Smirnyagina NN, Dasheev DE, Kim TB, Semenov AP (2015) Synthesis of transition metal borides layers under pulsed electron-beams treatment in a vacuum for surface hardening of instrumental steels. IOP Conf Ser J Phys Conf Ser 652, Article number 012010

    Google Scholar 

  • Miyashita F, Yokota K (1996) Plasma-assisted low temperature boridation of pure iron and steels. Surf Coat Technol 84:334–337

    Article  CAS  Google Scholar 

  • Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al–Zn alloy. J Therm Spray Technol 16(3):404–413

    Article  CAS  Google Scholar 

  • Mizuno B, Nakayama I, Aoi N, Kubota M, Komeda T (1988) New doping method for subhalf micron trench sidewalls by using an electron cyclotron resonance plasma. Appl Phys Lett 53(21):2059–2061

    Article  CAS  Google Scholar 

  • Molian PA, Rajasekhara HS (1986) Laser glazing of boronized iron and tool steels. Surf Eng 2(4):269–274

    Article  Google Scholar 

  • Morimoto J, Ozaki T, Kubohori T, Morimoto S, Abe N, Tsukamoto M (2009) Some properties of boronized layers on steels with direct diode laser. Vacuum 83:185–189

    Article  CAS  Google Scholar 

  • Mukherjee S, Ranjan M, Rane R, Vaghela N, Phukan A, Suraj KS (2007) Pulsed plasma production for applications in plasma immersion ion implantation and its implications. Surf Coat Technol 201:6502–6507

    Article  CAS  Google Scholar 

  • Nam KS, Lee KH, Lee SR, Kwon SC (1998) A study on plasma-assisted boriding of steels. Surf Coatings Technol 98:886–890

    Google Scholar 

  • Nastasi M, He X-M, Walter KC, Hakovirta M, Trkula M (2001) The use of plasma immersion ion processing in the synthesis of protective coatings for Al die casting. Surf Coat Technol 136:162–167

    Article  CAS  Google Scholar 

  • Nie X, Tsotsos C, Wilson A, Yerokhin AL, Leyland A, Matthews A (2001) Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels. Surf Coat Technol 139:135–142

    Article  CAS  Google Scholar 

  • Niziev VG, Nesterov AV (1999) Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461

    Article  CAS  Google Scholar 

  • Novakova AA, Sizov IG, Golubok DS, Yu Kiseleva T, Revokatov PO (2004) Electron-beam boriding of low-carbon steel. J Alloy Compd 383:108–112

    Article  CAS  Google Scholar 

  • Oczoś K (1988) Kształtowanie materiałów skoncentrowanymi strumieniami energii (The shaping of materials by concentrated fluxes of energy). In Polish, Publishing House of Rzeszow University of Technology, Rzeszów

    Google Scholar 

  • Ohtani S, Mizutani Y, Takagi T (1993) Characteristics of tool steel implanted with multi-energy B+ and single-energy N2+ ions. Nucl Instrum Methods Phys Res B 80(81):336–339

    Article  Google Scholar 

  • Oliker VE, Sirovatka VL, Ya Gridasova T, Timofeeva II, Grechishkin EF, Yakovleva MS, Eliseeva EN (2009) Effect of gas media on the structure evolution and phase composition of detonation coatings sprayed from mechanically alloyed Ti–Al–B powders. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 48(11–12):620–626

    Article  CAS  Google Scholar 

  • Ozdemir I, Ogawa K, Sato K (2014) Iron boron based powders sprayed by high velocity spray processes. Surf Coat Technol 240:373–379

    Article  CAS  Google Scholar 

  • Paczkowska M, Ratuszek W, Waligóra W (2010) Microstructure of laser boronized nodular iron. Surf Coat Technol 205:2542–2545

    Article  CAS  Google Scholar 

  • Pertek A (1994) Gas boriding condition for the iron borides layers formation. Mater Sci Forum 163–165:323–328

    Article  Google Scholar 

  • Pertek A, Kulka M (2003) Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl Surf Sci 205:137–142

    Article  CAS  Google Scholar 

  • Piasecki A, Kulka M, Kotkowiak M (2016) Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition. Tribol Int 97:73–191

    Article  CAS  Google Scholar 

  • Piasecki A, Kotkowiak M, Kulka M (2017) Self-lubricating surface layers produced using laser alloying of bearing steel. Wear 376–377:993–1008

    Article  CAS  Google Scholar 

  • Piñero JC, Villar MP, Araujo D, Montserrat J, Antúnez B, Godignon P (2017) Impact of thermal treatments in crystalline reconstruction and electrical properties of diamond Ohmic contacts created by boron ion implantation. Physica Status Solidi A 214, Article number 1700230

    Article  CAS  Google Scholar 

  • Podchernyaeva IA (1997) Formation and properties of a surface layer during comprehensive laser boriding of carbon steels. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 1–2:74–78

    Google Scholar 

  • Podchernyaeva IA, Astakhov EA, Umanskii AP, Panasyuk AD, Konoval VP, Panashenko VM (2010) Structure and phase composition of composite detonation coatings based on TiCrB2 and ZrB2. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 49(5–6):295–303

    Article  CAS  Google Scholar 

  • Postnikov VS, Tagirov MN (1994) Laser boriding of titanium alloys. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:14–15

    Google Scholar 

  • Pougoum F, Martinu L, Klemberg-Sapieha JE, Savoie S, Schulz R (2016a) Wear properties of Fe3Al-based HVOF coatings strengthened with in-situ precipitated nitride and boride particles. Surf Coat Technol 307:109–117

    Article  CAS  Google Scholar 

  • Pougoum F, Martinu L, Desjardins P, Klemberg-Sapieha JE, Gaudet S, Savoie S, Schulz R (2016b) Effect of high-energy ball-milling on the characteristics of Fe3Al-based HVOF coatings containing boride and nitride phases. Wear 358–359:97–108

    Article  CAS  Google Scholar 

  • Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). In Polish, Publishing House of Kielce University of Technology, Kielce PL ISSN 0239-4979

    Google Scholar 

  • Qiao X, Stock HR, Küper A, Jarms C (2000) Effects of B(CH3O)3 content on a PACVD plasma-boriding process. Surf Coat Technol 131:291–293

    Article  CAS  Google Scholar 

  • Qin S, McTeer A (2007) Characterization and optimization of a plasma doping process using a pulsed RF-excited B2H6 plasma system. Surf Coat Technol 201:6759–6767

    Article  CAS  Google Scholar 

  • Qin L, Qu JZ, Lin NM, Fan AL, Chang DQ, Tang B (2006) Plasma boronizing of Ti6Al4V using solid precursors by double glow plasma alloying technique. Trans Nonferrous Metals Soc Chin 16(3):S2082–S2085

    Google Scholar 

  • Qin L, Tian L, Fan A, Tang B, Xu Z (2007) Fatigue behavior of surface modified Ti–6Al–4V alloy by double glow discharge plasma alloying. Surf Coat Technol 201:5282–5285

    Article  CAS  Google Scholar 

  • Qin L, Yang K, Liu C, Tang B (2012) Enhanced plasma boriding with molybdenum using double glow plasma surface alloying technique. Mater Lett 82:127–129

    Article  CAS  Google Scholar 

  • Qin L, Liu C, Yang K, Tang B (2013) Characteristics and wear performance of borided Ti6Al4V alloy prepared by double glow plasma surface alloying. Surf Coat Technol 225:92–96

    Article  CAS  Google Scholar 

  • Rachidi R, El Kihel B, Delaunois F, Vitry V, Deschuyteneer D (2017) Wear performance of thermally sprayed NiCrBSi and NiCrBSi–WC coatings under two different wear modes. J Mater Environ Sci 8(12):4550–4559

    CAS  Google Scholar 

  • Rao GR, Lee EH, Chin BA, Mansur LK (1994) Effects of simultaneous boron and nitrogen implantation on microhardness and fatigue properties of Fe–13Cr–15Ni alloys. Metall Mater Trans A 25A:193–202

    Article  CAS  Google Scholar 

  • Reuther H, Rauschenbach B, Richter E (1988) Ion implantation in metals-structure, investigations and applications. Vacuum 38(11):971–987

    Article  Google Scholar 

  • Riabkina-Fishman M, Zahavi J (1996) Laser alloying and cladding for improving surface properties. Appl Surf Sci 106:263–267

    Article  CAS  Google Scholar 

  • Rie KT (1999) Recent advances in plasma diffusion processes. Surf Coat Technol 112:56–62

    Article  CAS  Google Scholar 

  • Risbud SH, Shan CH (1995) Fast consolidation of ceramic powders. Mater Sci Eng A 204:146–151

    Article  Google Scholar 

  • Roliński E (2014) Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering, Number 62, pp 413–457

    Chapter  Google Scholar 

  • Rykalin NN, Uglov AA, Zuev IV, Kokora AN (1985) Laser and electron beam treatment of materials. In Russian, Handbook Publication Masinostroenye, Moscow

    Google Scholar 

  • Safonov AN (1998) Special features of boronizing iron and steels using a continuous-wave CO2 laser. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:5–9

    Google Scholar 

  • Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-Based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997

    Article  CAS  Google Scholar 

  • Senthil Selvan J, Subramanian K, Nath AK, Kumar H, Ramachandra C, Ravindranathan SP (1999) Laser boronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN. Mater Sci Eng A 260:178–187

    Article  Google Scholar 

  • Shadrin YS, Belkin PN (2012) Analysis of models for calculation of temperature of anode plasma electrolytic heating. Int J Heat Mass Transf 55:179–186

    Article  CAS  Google Scholar 

  • Shankar P, Karthikeyan NR, Kamaraj M, Angelo PC (2010) Laser modification of detonation-gun sprayed ferro-boron coatings on AISI 304L SS. Trans Indian Inst Met 63(4):751–756

    Article  CAS  Google Scholar 

  • Shao J, Jones EC, Cheung NW (1997) Shallow junction formation by plasma immersion ion implantation. Surf Coat Technol 93:254–257

    Article  CAS  Google Scholar 

  • Sharma P, Majumdar JD (2012) Surface characterization and mechanical properties’ evaluation of boride-dispersed nickel-based coatings deposited on copper through thermal spray routes. J Therm Spray Technol 21(5):800–809

    Article  CAS  Google Scholar 

  • Sharma P, Majumdar JD (2013) Microstructural characterization and properties evaluation of Ni-based hardfaced coating on AISI 304 stainless steel by high velocity oxyfuel coating technique. Metall Mater Trans A 44A:372–380

    Article  CAS  Google Scholar 

  • Sharma P, Majumdar JD (2014) Nano-borides and silicide dispersed composite coating on AISI 304 stainless steel by laser-assisted HVOF spray deposition. J Therm Spray Technol 23(7):1105–1115

    Article  CAS  Google Scholar 

  • Sharma P, Majumdar JD (2015) Microstructural characterization and wear behavior of nano-boride dispersed coating on AISI 304 stainless steel by hybrid high velocity oxy-fuel spraying laser surface melting. Metall Mater Trans A 46A:3157–3165

    Article  CAS  Google Scholar 

  • Shrestha S, Neville A, Hodgkiess T (2001) The effect of post-treatment of a high-velocity oxy-fuel Ni–Cr–Mo–Si–B coating part I: microstructure/corrosion behavior relationships. J Therm Spray Technol 10(3):470–479

    Article  CAS  Google Scholar 

  • Shrivastava S, Jain A, Singh C (1995) Sliding behaviour of boron ion-implanted 304 stainless steel. Acta Metall Mater 43(1):59–63

    Article  CAS  Google Scholar 

  • Shrivastava S, Jain A, Tarey RD, Avasthi DK, Kabiraj D, Senapati L, Mehta GK (1996) Hardening of steel by boron ion implantation—dependence on phase composition. Vacuum 47(3):247–249

    Article  CAS  Google Scholar 

  • Shu FY, Liu S, Zhao HY, He WX, Sui SH, Zhang J, He P, Xu BS (2018) Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J Alloy Compd 731:662–666

    Article  CAS  Google Scholar 

  • Shulov VA (1994) Effect of ion implantation on the chemical composition and structure of surface layers of heat-resistant alloys. Russ Phys J 37(5):462–477

    Article  Google Scholar 

  • Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Acta Mater 54:773–784

    Article  CAS  Google Scholar 

  • Sigolo E, Soyama J, Zepon G, Shyinti Kiminami C, Botta WJ, Bolfarini C (2016) Wear resistant coatings of boron-modified stainless steels deposited by plasma transferred arc. Surf Coatings Technol 302:255–264

    Article  CAS  Google Scholar 

  • Sikorski K, Wierzchoń T, Bieliński P (1998) X-ray microanalysis and properties of multicomponent plasma-borided layers on steel. J Mater Sci 33:811–815

    Article  CAS  Google Scholar 

  • Sizov IG (2003) Mössbauer spectroscopy of boride layer after electron-beam treatment. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 9:22–25

    Google Scholar 

  • Sizov IG, Smirnyagina NN, Semenov AP (1999) Special features of electron-beam boronizing of steels. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 12:8–11

    Google Scholar 

  • Sizov IG, Smirnyagina NN, Semenov AP (2001) Structure and properties of boride layers deposited by electron-beam and chemico-thermal treatment. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:45–46

    Google Scholar 

  • Smirnyagina NN, Sizov IG, Semenov AP, Vandanov AG (2002) Thermodynamic analysis of vacuum synthesis of titanium borides on the surface of carbon steels. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:32–36

    Google Scholar 

  • Soboleva NN, Makarov AV, Malygina IY (2018) NiCrBSi coating obtained by laser cladding and subsequent deformation processing. J Phys Conf Ser 946, Article number 012004

    Google Scholar 

  • Soltani-Farshi M, Baumann H, Rück D, Richter E, Kreissig U, Bethge K (1998) Content of hydrogen in boron-, carbon-, nitrogen-, oxygen-, fluorine and neon-implanted titanium. Surf Coat Technol 103–104:299–303

    Article  Google Scholar 

  • Steen WM, Mazumder J (2010) Laser material processing. Springer, London

    Book  Google Scholar 

  • Stepanov AL, Nuzhdin VI, Galyautdinov MF, Kurbatova NV, Valeev VF, Vorobev VV, Osin YuN (2017) A diffraction grating created in diamond substrate by boron ion implantation. Tech Phys Lett 43(1):104–106

    Article  CAS  Google Scholar 

  • Storozhenko MS, Umanskii AP, Terentiev AE, Zakiev IM (2017) Effect of the structure of TiB2–(Fe–Mo) plasma coatings on mechanical and tribotechnical properties. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 56(1–2):60–69

    Google Scholar 

  • Sucharski GB, Pukasiewicz AGM, Váz RF, Paredes RSC (2015) Optimization of the deposition parameters of HVOF FeMnCrSi + Ni + B thermally sprayed coatings. Soldagem Inspeção 20(2):238–252

    Article  Google Scholar 

  • Sudha C, Shankar P, Subba Rao RV, Thirumurugesan R, Vijayalakshmi M, Raj B (2008) Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304L stainless steel. Surf Coat Technol 202:2103–2112

    Article  CAS  Google Scholar 

  • Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007a) Evaluation of nanocrystalline microstructure, abrasion, and corrosion properties of carbon steel treated by plasma electrolytic boriding. Plasma Process Polym 4:S711–S716

    Article  Google Scholar 

  • Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007b) Corrosion properties of plasma electrolytic coated samples. Anti-Corros Methods Mater 54(3):148–154

    Article  CAS  Google Scholar 

  • Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007c) Nanocrystalline structure produced by complex surface treatments: plasma electrolytic nitrocarburizing, boronitriding, borocarburizing, and borocarbonitriding. Plasma Process Polym 4:S721–S727

    Article  Google Scholar 

  • Taillon G, Pougoum F, Lavigne S, Ton-That L, Schulz R, Bousser E, Savoie S, Martinu L, Klemberg-Sapieha JE (2016) Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 364–365:201–210

    Article  CAS  Google Scholar 

  • Tarasenko YP, Romanov IG, Chmykhov AA, Tsareva IN, Krivina LA, Varenova NG (1998) Effect of preliminary treatment on the titanium surface condition before TiN coating deposition. Fiz Khim Obrab Mater 4:49–52

    Google Scholar 

  • Tavakoli H, Mousavi Khoie SM, Rasooli F, Marashi SPH, Momeni F (2015) Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing. Surf Coat Technol 276:529–533

    Article  CAS  Google Scholar 

  • Tayal M, Mukherjee K (1994) Localized boriding of low-carbon steel using a Nd:YAG laser. J Mater Sci 29:5699–5702

    Article  CAS  Google Scholar 

  • Teker T, Karataş S, Yilmaz SO (2013) The coating of FeB, FeTi, FeW powders on AISI 430 stainless steel by PTA. J Optoelectron Adv Mater 15(3–4):284–293

    CAS  Google Scholar 

  • Thiemann KG, Ebsen H, Marquering M, Vinke T, Haferkamp H (1990) Reparaturbeschichten von Turbinenschaufeln. Laser-Praxis, October, pp 101–106

    Google Scholar 

  • Tian YS (2010) Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti–6Al–4V alloy. Mater Lett 64:2483–2486

    Article  CAS  Google Scholar 

  • Tian YS, Chen CZ, Wang DY, Lei TQ (2005a) Surface modification of pure Ti by laser alloying with B and Ni mixed powders. Adv Eng Mater 7(7):629–632

    Article  CAS  Google Scholar 

  • Tian YS, Chen CZ, Wang DY, Huo QH, Lei TQ (2005b) Laser surface alloying of pure titanium with TiN–B–Si–Ni mixed powders. Appl Surf Sci 250:223–227

    Article  CAS  Google Scholar 

  • Tian YS, Chen CZ, Chen LB, Chen LX (2006a) Study on the microstructure and wear resistance of the composite coatings fabricated on Ti–6Al–4V under different processing conditions. Appl Surf Sci 253:1494–1499

    Article  CAS  Google Scholar 

  • Tian YS, Chen CZ, Chen LX, Huo QH (2006b) Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scripta Mater 54:847–852

    Article  CAS  Google Scholar 

  • Tian YS, Zhang QY, Wang DY, Chen CZ (2008) Analysis of the growth morphology of TiB and the microstructure refinement of the coatings fabricated on Ti–6Al–4V by laser boronizing. Cryst Growth Des 8(2):700–703

    Article  CAS  Google Scholar 

  • Tian YS, Zhang QY, Wang DY (2009) Study on the microstructures and properties of the boride layers laser fabricated on Ti–6Al–4V alloy. J Mater Process Technol 209:2887–2891

    Article  CAS  Google Scholar 

  • Tillmann W, Hollingsworth PS, Fischer G, Nellesen J, Beckmann F (2014) Development and characterization of B4C reinforced detonation-sprayed Al coatings. J Therm Spray Technol 23(3):289–295

    Article  CAS  Google Scholar 

  • TRUMPF Technical information (2007) Laser processing. CO2 laser. Technical documentation of TRUMPF Werkzeugmaschinen GmbH + Co. KG

    Google Scholar 

  • Trzciński M, Kavetskyy T, Telbiz G, Stepanov AL (2017) Optical characterization of nanocomposite polymer formed by ion implantation of boron. J Mater Sci Mater Electron 28:7115–7120

    Article  CAS  Google Scholar 

  • Ueda M, Silva AR, Pillaca EJDM, Mariano SFM, Oliveira RM, Rossi JO, Lepienski CM, Pichon L (2016) New method of plasma immersion ion implantation and also deposition of industrial components using tubular fixture and plasma generated inside the tube by high voltage pulses. Rev Sci Instrum 87, Article number 013902

    Article  CAS  Google Scholar 

  • Ueda M, Silva AR, Pillaca EJDM, Mariano SFM, Rossi JO, Oliveira RM, Pichon L, Reuther H (2017) New possibilities of plasma immersion ion implantation (PIII) and deposition (PIII&D) in industrial components using metal tube fixtures. Surf Coat Technol 312:37–46

    Article  CAS  Google Scholar 

  • Uglov VV, Rusalsky DP, Khodasevich VV, Kholmetskii AL, Wei R, Vajo JJ, Rumyanceva IN, Wilbur PJ (1998) Modified layer formation by means of high current density nitrogen and boron implantation. Surf Coatings Technol 103–104:317–322

    Article  CAS  Google Scholar 

  • Uglov VV, Kholmetskii AL, Kuleshov AK, Rusalsky DP, Rumyanceva IN, Wei R, Vajo JJ (2002) Phase transformation of high speed steel after sequential nitrogen and boron high current density ions implantation. Surf Coat Technol 158–159:349–355

    Article  Google Scholar 

  • Umanskii AP, Storozhenko MS, Hussainova IV, Terentiev AE, Kovalchenko AM, Antonov MM (2015) Structure, phase composition, and wear mechanism of plasma-sprayed NiCrSiB–20 wt.% TiB2 coating. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 53(11–12):663–671

    Article  CAS  Google Scholar 

  • Utu D, Marginean G, Pogan C, Brandl W, Serban VA (2007) Improvement of the wear resistance of titanium alloyed with boron nitride by electron beam irradiation. Surf Coat Technol 201:6387–6391

    Article  CAS  Google Scholar 

  • Vervisch V, Larmande Y, Delaporte P, Sarnet T, Sentis M, Etienne H, Torregrosa F, Cristiano F, Fazzini PF (2009) Laser activation of ultra shallow junctions (USJ) doped by plasma immersion ion implantation (PIII). Appl Surf Sci 255:5647–5650

    Article  CAS  Google Scholar 

  • Vilar R (1999) Laser cladding. J Laser Appl 11(2):64–79

    Article  CAS  Google Scholar 

  • Wang P, Sun X, Zhang J, Zhang G (1991) The microstructures and composition profiles of iron implanted with combinations of Ni. Mo B Ions Vacuum 42(7):477–483

    CAS  Google Scholar 

  • Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013a) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169

    Article  CAS  Google Scholar 

  • Wang B, Jin X, Xue W, Wu Z, Du J, Wu J (2013b) High temperature tribological behaviors of plasma electrolytic borocarburized Q235 low-carbon steel. Surf Coat Technol 232:142–149

    Article  CAS  Google Scholar 

  • Wang W, Jin L, Yang J, Sun F (2013c) Directional growth whisker reinforced Ti-base composites fabricated by laser cladding. Surf Coat Technol 236:45–51

    Article  CAS  Google Scholar 

  • Wang Y, Zhang P, Wu H, Wei D, Wei X, Zhou P (2014) Tribological properties of double-glow plasma surface niobizing on low-carbon steel. Tribol Trans 57:786–792

    Article  CAS  Google Scholar 

  • Wang B, Xue W, Wu Z, Jin X, Wu J, Du J (2015a) Influence of discharge time on properties of plasma electrolytic borocarburized layers on Q235 low-carbon steel. Mater Chem Phys 168:10–17

    Article  CAS  Google Scholar 

  • Wang H, Li H, Zhu H, Cheng F, Wang D, Li Z (2015b) A comparative study of plasma sprayed TiB2–NiCr and Cr3C2–NiCr composite coatings. Mater Lett 153:110–113

    Article  CAS  Google Scholar 

  • Wang Y, Sun C, Sun J, Zhao W, Dong L, Li L, Meng F (2015c) Erosion behavior of arc sprayed FeTi/CrB MMC coating at elevated temperature. Surf Coat Technol 262:141–147

    Article  CAS  Google Scholar 

  • Wei D, Zhang P, Yao Z, Zhou J, Wei X, Chen X (2015) Double glow plasma chromizing of Ti6Al4V alloys: impact of working time, substrate-target distance, argon pressure and surface temperature of substrate. Vacuum 121:81–87

    Article  CAS  Google Scholar 

  • Werner Z, Piekoszewski J, Grötzschel R, Richter E, Szymczyk W (2003) Resistance to high-temperature oxidation in B + Si implanted TiN coatings on steel. Vacuum 70:93–96

    Article  CAS  Google Scholar 

  • Wierzchoń T (1988) The role of glow discharge in the formation of a boride layer on steel in the plasma boriding process. Advances in low-temperature plasma chemistry, technology, applications, vol 2. Technomic Publishing Co. INC., Lancaster-Basel, USA

    Google Scholar 

  • Wierzchoń T, Bogacki J, Karpiński T (1980) Use of glow discharge for ion siliciding and boriding. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 3:16–17

    Google Scholar 

  • Wierzchoń T, Michalski J, Karpiński T (1982) Formation and properties of the diffusion borided layers obtained on steel by glow discharge. In: Conference materials: 2nd international congress on heat treatment of materials of IFHT and 1st national conference on metallurgical coatings of AIV, Florence, Italy, Code 4105

    Google Scholar 

  • Wierzchoń T, Pokrasen S, Karpiński T (1983) Plasmaborieren—Faktoren, die die Keimbildung der Boridschicht auf Stahl bedingen (Plasma boriding—factors causing nucleation of the boride layer on steel). Haerterei-Technische Mitteilungen 38(2):57–62

    Google Scholar 

  • Wierzchoń T, Bieliński P, Sikorski K (1995) Formation and properties of multicomponent and composite borided layers on steel. Surf Coat Technol 73:121–124

    Article  Google Scholar 

  • Winter KM, Kalucki J, Koshel D (2014) Process technologies for thermochemical surface engineering. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering, Number 62, pp 141–206

    Chapter  Google Scholar 

  • Wiśniewski K, Pertek A (2009) Influence of laser alloying with amorphous boron on microstructure and hardness of 41Cr4. Archiv Metall Mater 54(1):111–114

    Google Scholar 

  • Wu Y, Lin P, Xie G, Hua J, Cao M (2006) Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe–Cr–Si–B–Mn alloy. Mater Sci Eng A 430:34–39

    Article  CAS  Google Scholar 

  • Wu Y, Lin P, Chu C, Wang Z, Cao M, Hu J (2007) Cavitation erosion characteristics of a Fe–Cr–Si–B–Mn coating fabricated by high velocity oxy-fuel (HVOF) thermal spray. Mater Lett 61:1867–1872

    Article  CAS  Google Scholar 

  • Wu Y, Lin P, Wang Z, Li G (2009) Microstructure and microhardness characterization of a Fe-based coating deposited by high-velocity oxy-fuel thermal spraying. J Alloy Compd 481:719–724

    Article  CAS  Google Scholar 

  • Wu Q, Li W, Zhong N, Wang G (2015) Microstructure and properties of laser-clad Mo2NiB2 cermet coating on steel substrate. Steel Res Int 86(3):293–301

    Article  CAS  Google Scholar 

  • Xu Z, Gao Y, He Z, Xu Z, Su Y (2002) Plasma surface metallurgy technology. J Adv Mater 34(3):32–36

    CAS  Google Scholar 

  • Xu Z, Liu X, Zhang P, Zhang Y, Zhang G, He Z (2007) Double glow plasma surface alloying and plasma nitriding. Surf Coat Technol 201:4822–4825

    Article  CAS  Google Scholar 

  • Yang G, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460

    Article  Google Scholar 

  • Yang HP, Wu XC, Min YA, Wu TR, Gui JZ (2013) Plasma boriding of high strength alloy steel with nanostructured surface layer at low temperature assisted by air blast shot peening. Surf Coat Technol 228:229–233

    Article  CAS  Google Scholar 

  • Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93

    Article  CAS  Google Scholar 

  • Ynsa MD, Agulló-Rueda F, Gordillo N, Maira A, Moreno-Cerrada D, Ramos MA (2017) Study of the effects of focused high-energy boron ion implantation in diamond. Nucl Instrum Methods Phys Res B 404:207–210

    Article  CAS  Google Scholar 

  • Yoon JH, Jee YK, Lee SY (1999) Plasma paste boronizing treatment of the stainless steel AISI 304. Surf Coat Technol 112:71–75

    Article  CAS  Google Scholar 

  • Yu LG, Khor KA, Sundararajan G (2002) Boriding of mild steel using the spark plasma sintering (SPS) technique. Surf Coat Technol 157:226–230

    Article  CAS  Google Scholar 

  • Yu LG, Chen XJ, Khor KA, Sundararajan G (2005) FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater 53:2361–2368

    Article  CAS  Google Scholar 

  • Yu LG, Khor KA, Sundararajan G (2006) Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surf Coat Technol 201:2849–2853

    Article  CAS  Google Scholar 

  • Zhang GH, He ZY, Pan JD, Zhang PZ, Xu Z (2005) Mechanical and tribological properties of Ti6Al4V hardened by double glow plasma hydrogen-free carbonitriding. Mater Sci Forum 475–479:3951–3954

    Article  Google Scholar 

  • Zhao Z, Li H, Yang T, Zhu H (2018) Tribological properties of HVOF-sprayed TiB2–NiCr coatings with agglomerated feedstocks. J Therm Spray Technol 27(4):718–726

    Article  CAS  Google Scholar 

  • Zhu Y-C, Fujita K, Iwamoto N, Nagasaka H, Kataoka T (2002) Influence of boron ion implantation on the wear resistance of TiAlN coatings. Surf Coat Technol 158–159:664–668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kulka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulka, M. (2019). Trends in Physical Techniques of Boriding. In: Current Trends in Boriding. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-06782-3_5

Download citation

Publish with us

Policies and ethics