Skip to main content

Numerical Integration

  • Chapter
  • First Online:
Error Estimates for Advanced Galerkin Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 88))

  • 470 Accesses

Abstract

This chapter provides a brief account of numerical integration schemes used to approximately evaluate definite integrals of arbitrary functions. Numerical integration schemes are required to evaluate the integrals that appear in the Galerkin weak forms presented in the preceding chapter for both mesh-based and meshfree methods. First, the classical Gauss quadrature scheme is explained before the more modern stabilized conforming nodal integration (SCNI) scheme is derived. Stabilized conforming nodal integration is a more advanced domain integration scheme that relies on a modification of the Galerkin weak form. A firm theoretical foundation for the modification of the Galerkin weak form used in stabilized conforming nodal integration is provided by the enhanced assumed strain (EAS) method. This method was originally introduced to alleviate volumetric locking in the finite element method. In this chapter, it is demonstrated how the enhanced assumed strain method can be used as a basis for a nodal integration scheme that can be applied to both Galerkin mesh-based and meshfree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Braess, D.: Enhanced assumed strain elements and locking in membrane problems. Comput. Methods Appl. Mech. Engrg. 165, 155–174 (1998)

    Article  MathSciNet  Google Scholar 

  • Chen, J.S., Wang, D.: A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int. J. Numer. Meth. Engng. 68, 151–172 (2006)

    Article  Google Scholar 

  • Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Engng. 50, 435–466 (2001)

    Article  Google Scholar 

  • Chen, J.S., Yoon, S., Wu, C.T.: Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Engng. 53, 2587–2615 (2002)

    Article  Google Scholar 

  • Chen, J.S., Hu, W., Puso, M.A., Wu, Y., Zhang, X.: Strain smoothing for stabilization and regularization of Galerkin meshfree methods. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III, pp. 57–75. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Chen, J.S., Hillman, M., RĂ¼ter, M.: An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Meth. Engng. 95, 387–418 (2013a)

    Article  MathSciNet  Google Scholar 

  • Chen, J.S., Hillman, M., RĂ¼ter, M., Hu, H.Y., Chi, S.W.: The role of quadrature in meshfree methods: Variational consistency in Galerkin weak form and collocation in strong form. IACM Expr. 34, 11–16 (2013b)

    Google Scholar 

  • Duan, Q., Li, X., Zhang, H., Belytschko, T.: Second-order accurate derivatives and integration schemes for meshfree methods. Int. J. Numer. Meth. Engng. 92, 399–424 (2012)

    Article  MathSciNet  Google Scholar 

  • Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R., Roth, M.J.: Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int. J. Impact Eng. 38, 1033–1047 (2011)

    Article  Google Scholar 

  • Hu, H.-C.: On some variational principles on the theory of elasticity and the theory of plasticity. Sci. Sinica 4, 33–54 (1955)

    MATH  Google Scholar 

  • Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39, 859–877 (2007)

    Article  Google Scholar 

  • Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K.Y.: A node-based smoothed finite element method for solid problems (NS-FEM). Comput. & Struct. 87, 14–26 (2009)

    Article  Google Scholar 

  • Puso, M.A., Zywicz, E., Chen, J.S.: A new stabilized nodal integration approach. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III, pp. 207–217. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Reese, S., Wriggers, P.: A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Meth. Engng. 48, 79–109 (2000)

    Article  Google Scholar 

  • RĂ¼ter, M.O., Chen, J.S.: An enhanced-strain error estimator for Galerkin meshfree methods based on stabilized conforming nodal integration. Comput. Math. Appl. 74, 2144–2171 (2017)

    Article  MathSciNet  Google Scholar 

  • Simo, J.C., Rifai, M.S.: A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Engng. 29, 1595–1638 (1990)

    Article  MathSciNet  Google Scholar 

  • Wang, D., Chen, J.S.: Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput. Methods Appl. Mech. Engrg. 193, 1065–1083 (2004)

    Article  Google Scholar 

  • Washizu, K.: On the variational principles of elasticity and plasticity. Technical Report 25-18, Aeroelastic and Structures Research Laboratory, MIT, Cambridge, Massachusetts (1955)

    Google Scholar 

  • Wriggers, P., Reese, S.: A note on enhanced strain methods for large deformations. Comput. Methods Appl. Mech. Engrg. 235, 201–209 (1996)

    Article  Google Scholar 

  • Xuan, Z.C., Lassila, T., Rozza, G., Quarteroni, A.: On computing upper and lower bounds on the outputs of linear elasticity problems approximated by the smoothed finite element method. Int. J. Numer. Meth. Engng. 83, 174–195 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Olavi RĂ¼ter .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

RĂ¼ter, M.O. (2019). Numerical Integration. In: Error Estimates for Advanced Galerkin Methods. Lecture Notes in Applied and Computational Mechanics, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-06173-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06173-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06172-2

  • Online ISBN: 978-3-030-06173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics