Skip to main content

The Application of Ion-Exchange Resins in Hydrogenation Reactions

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Chemical and Food Industries

Abstract

Reaction processes with minimal energy consumption and potentials to generate renewable energy, alongside dynamism in catalyst functionality, are the driving force behind the use of ion-exchange resins and more specifically, heterogeneous ion-exchange resins over homogeneous catalysts. For hydrogenation reactions, ion-exchange resins have mainly been employed as a catalyst support. The synthesis entails implanting/impregnating metallic ions into the ion-exchange resin matrix. The major disadvantage of the ion-exchange resin is its low thermal stability which makes the resin disadvantageous for some specific types of reactions. Research is still ongoing toward obtaining resins able to withstand extreme temperature (above 200 °C). This chapter summarizes some selected applications of hydrogenation reactions using ion-exchange resins as catalyst support material. Some of its applications include hydrodesulphurization, hydrodenitrification, and hydrodechlorination which have been reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhandari VM, Sorokhaibam LG, Ranade VV (2016) Ion exchange resin catalyzed reactions—an overview. Elsevier Inc. https://doi.org/10.1016/b978-0-12-801457-8.00009-4

    Google Scholar 

  2. Barbaro P. Recycling asymmetric hydrogenation catalysts by their immobilization onto ion-exchange resins 2006:5666–5675. https://doi.org/10.1002/chem.200501133

    Article  CAS  Google Scholar 

  3. Corain B, Centomo P, Lora S, Kralik M (2003) Functional resins as innovative supports for catalytically active metal nanoclusters. J Mol Catal A Chem 204–205:755–762. https://doi.org/10.1016/S1381-1169(03)00361-3

    Article  CAS  Google Scholar 

  4. Su J, Chen JS (2017) Synthetic porous materials applied in hydrogenation reactions. Microporous Mesoporous Mater 237:246–259. https://doi.org/10.1016/j.micromeso.2016.09.039

    Article  CAS  Google Scholar 

  5. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38:481–494. https://doi.org/10.1039/B802654H

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Wu WT, Chen T, Chen Q, He MY (2014) Ion-exchange resin-catalyzed synthesis of polyoxymethylene dimethyl ethers: a practical and environmentally friendly way to diesel additive. Chem Eng Commun 201:709–717. https://doi.org/10.1080/00986445.2013.778835

    Article  CAS  Google Scholar 

  7. Sharma MM (1995) Some novel aspects of cationic ion-exchange resins as catalysts. React Funct Polym 26:3–23. https://doi.org/10.1016/1381-5148(95)00029-F

    Article  CAS  Google Scholar 

  8. Alemán-Vázquez LO, Cano-Domínguez JL, Torres-Mancera P, Ancheyta J (2017) Organic polymers as solid hydrogen donors in the hydrogenation of cyclohexene. Catal Today https://doi.org/10.1016/j.cattod.2017.08.039

    Article  Google Scholar 

  9. Cobzaru C, Inglezakis V (2015) Ion exchange, Elsevier Ltd. https://doi.org/10.1016/b978-0-12-384746-1.00010-0

    Chapter  Google Scholar 

  10. Inglezakis VJ, Poulopoulos SG (2006) Adsorption, ion exchange and catalysis: design of operations and environmental applications, Elsevier Sci B V, p 602 https://doi.org/10.1016/b978-044452783-7/50003

  11. Post MFM (1991) Diffusion in zeolite molecular sieves. Stud Surf Sci Catal 58:391–443 (Chapter 11). https://doi.org/10.1016/s0167-2991(08)63609-5

    Google Scholar 

  12. Goszewska I, Giziński D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J et al (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68. https://doi.org/10.1016/j.catcom.2017.02.014

    Article  CAS  Google Scholar 

  13. Osako T, Torii K, Hirata S, Uozumi Y (2017) Chemoselective continuous-flow hydrogenation of aldehydes catalyzed by platinum nanoparticles dispersed in an amphiphilic resin. https://doi.org/10.1021/acscatal.7b02604

    Article  CAS  Google Scholar 

  14. Monguchi Y, Ichikawa T, Nozaki K, Kihara K (2015) Development of chelate resin-supported palladium catalysts for chemoselective hydrogenation. Tetrahedron 71:6499–6505. https://doi.org/10.1016/j.tet.2015.03.086

    Article  CAS  Google Scholar 

  15. Dabbawala AA, Mishra DK, Hwang JS (2016) Selective hydrogenation of D-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catal Today 265:163–173. https://doi.org/10.1016/j.cattod.2015.09.045

    Article  CAS  Google Scholar 

  16. Nikoshvili L, Shimanskaya E, Bykov A, Yuranov I, Kiwi-Minsker L, Sulman E (2015) Selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles stabilized in hypercrosslinked polystyrene: solvent effect. Catal Today 241:179–188. https://doi.org/10.1016/j.cattod.2014.01.045

    Article  CAS  Google Scholar 

  17. Kleman P, Barbaro P, Pizzano A (2015) Chiral Rh phosphine-phosphite catalysts immobilized on ionic resins for the enantioselective hydrogenation of olefins in water. Green Chem 17:1–54. https://doi.org/10.1039/C5GC00485C

    Article  CAS  Google Scholar 

  18. Liguori F, Barbaro P (2014) Continuous flow synthesis of Rh and Pd nanoparticles onto ion-exchange borate monoliths: Application to selective catalytic hydrogenation of unsaturated carbonyl compounds under flow conditions. Catal Sci Technol 4:3835–3839. https://doi.org/10.1039/C4CY01050G

    Article  CAS  Google Scholar 

  19. Barbaro P, Gonsalvi L, Guerriero A, Liguori F (2012) Facile heterogeneous catalytic hydrogenations of C=N and C=O bonds in neat water : anchoring of water-soluble metal complexes onto ion-exchange. Green Chem 3211–3219. https://doi.org/10.1039/c2gc36144b

  20. Maria A, Galletti R, Antonetti C, Luise V. De, Martinelli M (2012) A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 688–694. https://doi.org/10.1039/c2gc15872h

    Article  CAS  Google Scholar 

  21. Drelinkiewicz A, Stanuch W, Knapik A, Ghanem A, Kosydar R, Bukowska A et al (2009) Amine groups functionalized gel-type resin supported Pd catalysts: physicochemical and catalytic properties in hydrogenation of alkynes. J Mol Catal A: Chem 300:8–18. https://doi.org/10.1016/j.molcata.2008.10.035

    Article  CAS  Google Scholar 

  22. Talwalkar S, Thotla S, Sundmacher K, Mahajani S (2009) Simultaneous hydrogenation and isomerization of diisobutylenes over pd-doped ion-exchange resin catalyst. Ind Eng Chem Res 10857–10863

    Article  CAS  Google Scholar 

  23. Drelinkiewicz A, Knapik A, Waksmundzka-Góra A, Bukowska A, Bukowski W, Noworól J (2008) Functional gel-type resin based palladium catalysts: the role of polymer properties in the hydrogenation of the C=C bond of maleic and fumaric acids, the isomers of dicarboxylic acids. React Funct Polym 68:1059–1071. https://doi.org/10.1016/j.reactfunctpolym.2008.02.008

    Article  CAS  Google Scholar 

  24. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Glycerol hydrogenolysis to 1, 2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C, 329:30–35. https://doi.org/10.1016/j.apcata.2007.06.019

    Article  CAS  Google Scholar 

  25. Li B (2007) Preparation and characterization of spherical nickel-doped carbonized resin as hydrogenation catalysts II. Thermal decomposition of resin and preparation of metal-doped catalysts with different nickel loadings. Carbon 45:1219–1225. https://doi.org/10.1016/j.carbon.2007.02.002

    Article  CAS  Google Scholar 

  26. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J Catal 240:213–221. https://doi.org/10.1016/j.jcat.2006.03.023

    Article  CAS  Google Scholar 

  27. Marrodan CM, Berti D (2012). In situ generation of resin-supported Pd nanoparticles under mild catalytic conditions : a green route to highly efficient, reusable hydrogenation catalysts. Catal Sci Technol 2279–2290. https://doi.org/10.1039/c2cy20205k

    Article  CAS  Google Scholar 

  28. Mendow G, Sánchez A, Grosso C, Querini CA (2017) A novel process for nitrate reduction in water using bimetallic Pd-Cu catalysts supported on ion exchange resin. J Environ Chem Eng 5:1404–1414. https://doi.org/10.1016/j.jece.2017.01.033

    Article  CAS  Google Scholar 

  29. Mendow G, Grosso CI, Sánchez A, Querini CA (2017) Hybrid process for the purification of water contaminated with nitrites: Ion exchange plus catalytic reduction. Chem Eng Res Des 125:348–360. https://doi.org/10.1016/j.cherd.2017.07.019

    Article  CAS  Google Scholar 

  30. Paun C, Giziński D, Zienkiewicz M (2017) p-Nitrophenol flow hydrogenation with nano-Cu2O grafted on polymeric resin. Catal Commun https://doi.org/10.1016/j.catcom.2017.01.003

    Article  CAS  Google Scholar 

  31. Abdullaev MG, Gebekova ZG (2016) Hydrogenation of aromatic nitro compounds on palladium-containing anion-exchange resins. Pet Chem 56:146–150. https://doi.org/10.1134/S096554411602002X

    Article  CAS  Google Scholar 

  32. Kim YN, Kim MY, Choi M (2016) Synergistic integration of catalysis and ion-exchange for highly selective reduction of nitrate into N2. Chem Eng J 289:423–432. https://doi.org/10.1016/j.cej.2016.01.002

    Article  CAS  Google Scholar 

  33. Barbosa DP, Tchiéta P, Rangel MDC, Epron F (2013) The use of a cation exchange resin for palladium-tin and palladium-indium catalysts for nitrate removal in water. J Mol Catal A Chem 366:294–302. https://doi.org/10.1016/j.molcata.2012.10.008

    Article  CAS  Google Scholar 

  34. Gašparovičová D, Králik M, Hronec M, Vallušová Z, Vinek H, Corain B (2007) Supported Pd-Cu catalysts in the water phase reduction of nitrates: functional resin versus alumina. J Mol Catal A Chem 264:93–102. https://doi.org/10.1016/j.molcata.2006.08.081

    Article  CAS  Google Scholar 

  35. Imchuen N, Lubphoo Y, Chyan JM, Padungthon S, Liao CH (2016) Using cation exchange resin for ammonium removal as part of sequential process for nitrate reduction by nanoiron. Sustain Environ Res 26:156–160. https://doi.org/10.1016/j.serj.2016.01.002

    Article  CAS  Google Scholar 

  36. Akagawa K, Akabane H, Sakamoto S, Kudo K (2009) Asymmetric transfer hydrogenation in aqueous media catalyzed by resin-supported peptide having a polyleucine tether. Tetrahedron Asymmetry 20:461–466. https://doi.org/10.1016/j.tetasy.2009.02.036

    Article  CAS  Google Scholar 

  37. Akagawa K, Akabane H, Sakamoto S, Kudo K. (2008) Organocatalytic asymmetric transfer hydrogenation in aqueous media using resin-supported peptide having a polyleucine tether. https://doi.org/10.1021/ol800031p

    Article  CAS  Google Scholar 

  38. Bhanushali MJ, Nandurkar NS, Bhor MD, Bhanage BM (2008) Cation exchange resin catalyzed hydroamination of vinylpyridines with aliphatic/aromatic amines. Catal Commun 9:425–430. https://doi.org/10.1016/j.catcom.2007.07.025

    Article  CAS  Google Scholar 

  39. Palomares AE, Prato JG, Márquez F, Corma A (2003) Denitrification of natural water on supported Pd/Cu catalysts. Appl Catal B Environ 41:3–13. https://doi.org/10.1016/S0926-3373(02)00203-5

    Article  CAS  Google Scholar 

  40. Králik M, Vallušová Z, Major P, Takáčová A, Hronec M, Gašparovičová D (2014) Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins. Chem Pap 68:1690–1700. https://doi.org/10.2478/s11696-014-0565-3

    Article  CAS  Google Scholar 

  41. Chen N, Rioux RM, Ribeiro FH (2002) Investigation of reaction steps for the hydrodechlorination of chlorine-containing organic compounds on Pd catalysts. J Catal 211:192–197. https://doi.org/10.1016/S0021-9517(02)93717-6

    Article  CAS  Google Scholar 

  42. Bacik DB, Zhang M, Zhao D, Roberts CB, Seehra MS, Singh V et al (2012) Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene. Nanotechnology 23:294004. https://doi.org/10.1088/0957-4484/23/29/294004

    Article  CAS  PubMed  Google Scholar 

  43. Han B, Liu W, Li J, Wang J, Zhao D, Xu R et al (2017) Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts. Water Res 120:199–210. https://doi.org/10.1016/j.watres.2017.04.059

    Article  CAS  PubMed  Google Scholar 

  44. Jadbabaei N, Ye T, Shuai D, Zhang H (2017) Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. Appl Catal B Environ 205:576–586. https://doi.org/10.1016/j.apcatb.2016.12.068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaiya Zainal Abidin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osazuwa, O.U., Abidin, S.Z. (2019). The Application of Ion-Exchange Resins in Hydrogenation Reactions. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_2

Download citation

Publish with us

Policies and ethics