Skip to main content
Log in

Studies on the Interaction of Ion Exchange Resins with Initial Catalyst Concentrations of a Chemical Oscillator using Spectrophotometric and Electrochemical Methods

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Ion exchange resins are well known because of their vast applications in the processes like water softening, catalysis, waste water treatment, hydrometallurgy and chromatography. In the present investigation based on the interaction of different ion exchangers with ferroin to be used as catalyst in a nonlinear chemical reaction, quantitative estimation of Fe2+ was done by loading it on three different ion exchange resins, viz. Dowex Marathon C Na, Amberlite IRC86 and Dowex m4195 at different loading time intervals. The supernatant containing the residual ferroin was separated from ion exchange resins and added directly to the substrate molecule of the chemical oscillator as catalyst and the series of reaction systems were monitored by potentiometry and spectrophotometry and the results obtained were confirmed by advanced cyclic voltammetry as a supportive technique. Thus, the effect of catalyst after its interaction with ion exchange resins at optimal level was monitored. At the same time, it was found that the concentration of ferroin to be involved in the Belousov−Zhabotinsky reaction as a catalyst in the present interactive systems can be estimated up to 10–5 M and even lower, depending on the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Helfferich, F., Ion Exchange, New York: McGraw-Hill, 1962.

    Google Scholar 

  2. Gustafson, R.L. and Fillius, H.F., Ind. Eng. Chem. Fundam., 1970, vol. 9, p. 221.

    Article  CAS  Google Scholar 

  3. Kunin, R. and Fisher, S., J. Phys Chem., 1962, vol. 66, p. 2275.

    Article  CAS  Google Scholar 

  4. Kosandrovich, E.G. and Soldatov, V.S., Fibrous ion exchangers, in Ion Exchange Technology I: Theory and Materials, Amsterdam: Springer, 2012, ch. 9.

    Google Scholar 

  5. Soldatov, V.S., Prostye ionoobmennye ravnovesiya (Simple Ion Exchange Equilibria), Minsk: Nauka i Tekhnika, 1972.

  6. Kim, T.I., Hwang, T.S., Son, W.K., Choi, D.M., Oh, I.S., and Soldatov, B.C., Polymer (Korea), 1999, vol. 23, p. 747.

    CAS  Google Scholar 

  7. Gregor, H.P., Belle, J., and Marcus, R.A., J. Am. Chem. Soc., 1955, vol. 77, p. 2713.

    Article  CAS  Google Scholar 

  8. Gregor, H.P., Belle, J., and Marcus, R.A., J. Am. Chem. Soc., 1954, vol. 76, p. 1984.

    Article  CAS  Google Scholar 

  9. Mills, G.F. and Dickinson, B.N., Ind. Eng. Chem., 1949, vol. 41, no. 12, p. 2842.

    Article  CAS  Google Scholar 

  10. Hiroyuki, A., Akihiko, T., Naoki, T., and Hidefum, H., Ind. Eng. Res., 1990, vol. 29, no. 11, p. 2267.

    Article  Google Scholar 

  11. Goupil, J.M., Hemidy, J.F., and Cornet, D., Zeolites, 1982, vol. 2, p. 47.

    Article  CAS  Google Scholar 

  12. Toshima, N., Asanuma, H., Yamaguchi, K., and Hirai, H., Bull. Chem. Soc. Jpn., 1989, vol. 62, p. 563.

    Article  CAS  Google Scholar 

  13. Chaitanya, R.A., Hideaki, K., and Mikiya, T., Solvent Extr. Ion Exch., 2011, vol. 29, p. 323.

    Article  CAS  Google Scholar 

  14. Cortina, J.L., Miralles, N., Aguilar, M., and Sastre, A.M., Hydrometallurgy, 1994, vol. 36, p. 131.

    Article  CAS  Google Scholar 

  15. Cortina, J.L., Miralles, N., and Sastre, A.M., Hydrometallurgy, 1995, vol. 37, p. 301.

    Article  CAS  Google Scholar 

  16. Sole, K.C., Solvent Extraction in the Hydrometallurgical Processing and Purification of Metals: Process Design and Selected Applications, New York: Taylor and Francis, 2008.

    Book  Google Scholar 

  17. Uziel, M., Koh, K.C., and Cohn, W.E., Anal. Biochem., 1968, vol. 25, p. 77.

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto, S. and Ishihara, J., J. Chromatogr. A, 1999, vol. 852, no. 1, p. 31.

    Article  CAS  PubMed  Google Scholar 

  19. Bodamer, G. and Kunin, R., Ind. Eng. Chem., 1951, vol. 43, no. 5, p. 1082.

    Article  CAS  Google Scholar 

  20. Schmidle, C.J., Ind. Eng. Chem., 1952, vol. 44, no. 6, p. 1388.

    Article  CAS  Google Scholar 

  21. Astle, M.J. and Zaslowsky, J.A., Ind. Eng. Chem., 1952, vol. 44, no. 12, p. 2867.

    Article  CAS  Google Scholar 

  22. Kunin, R. and Preuss, A.F., Ind. Eng. Chem., 1964, vol. 3, no. 4, p. 304.

    CAS  Google Scholar 

  23. Beatty, S.T., Fischer, R.J., Hagers, D.L., and Rosenberg, E.A., Ind. Eng. Chem., 1999, vol. 38, no. 11, p. 4402.

    Article  CAS  Google Scholar 

  24. Mabrouk, A., Lagneau, V., de Dienlevenlt, C., Bachet, M., Schneider, H., and Coquelet, C., Int. J. Eng. Appl. Sci., 2012, vol. 6, p. 130.

    Google Scholar 

  25. Anand, V. and Kandarapur, R., Drug Discovery Today, 2001, vol. 6, p. 905.

    Article  CAS  PubMed  Google Scholar 

  26. Polymers for Drug Delivery, Borodkin, S. and Tarcha, P.J., Eds., Boca Raton, FL: CRC, 1991.

    Google Scholar 

  27. Dixon, C. and Mizen, L.W., J. Physiol., 1977, vol. 269, p. 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lordi, N.G., Sustained release dosage forms, in The Theory and Practice of Industrial Pharmacy, Lachman, L., Liberman, H.A., and Kanig, J.L., Eds., Bombay: Varghese, 1991, p. 450.

    Google Scholar 

  29. Wertheimer, A.I. and Morrison, A., Pharm. Ther., 2002, vol. 27, p. 44.

    Google Scholar 

  30. Jeong, S.H. and Park, K., Int. J. Pharm., 2008, vol. 353, p. 195.

    Article  CAS  PubMed  Google Scholar 

  31. Sambaji, P., Rana, Z., Pradeep, N., Kakasaheb, M., and Shivajirao, K., AAPS PharmSciTech, 2004, vol. 5, p. 1.

    Google Scholar 

  32. Chaudhary, N.C. and Saunders, L., J. Pharm. Pharmacol., 1956, vol. 8, p. 975.

    Article  Google Scholar 

  33. Anand, V., Kandarapu, R., and Garg, S., Drug Dev. Tech., 2001, vol. 6, p. 17.

    Google Scholar 

  34. Irwin, W.J. and Belaid, K.A., Drug Dev. Ind. Pharm., 1987, vol. 13, p. 2017.

    Article  CAS  Google Scholar 

  35. Burke, G.M., Mendes, R.W., and Jambhekar, S.S., Drug Dev. Ind. Pharm., 1986, vol. 12, no. Suppl. 1, p. 713.

  36. Plaizier-Vercammen, J.A., Int. J. Pharm., 1992, vol. 85, p. 45.

    Article  CAS  Google Scholar 

  37. Bhalekar, M., Avari, J.G., and Jaiswal, S.B., Ind. J. Pharm. Sci., 2004, vol. 38, p. 184.

    Google Scholar 

  38. Sohi, H., Sultana, Y., and Khar, R.K., Drug Dev. Ind. Pharm., 2004, vol. 30, p. 429.

    Article  CAS  PubMed  Google Scholar 

  39. Keating, J.W., US Patent 2990332, 1961.

  40. Hays, E.E., US Patent 3035979, 1962.

  41. Keating, J.W., US Patent 3143465, 1964.

  42. Silva, D.L. and Brunner, G., Braz. J. Chem. Eng., 2006, vol. 23, p. 213.

    Article  CAS  Google Scholar 

  43. Dave, R.S., Dave, G.B., and Mishra, V.P., Pharma Chem., 2010, vol. 2, p. 327.

    CAS  Google Scholar 

  44. Schmid, B., Doker, M., and Gmehling. J., Ind. Eng. Chem. Res., 2008, vol. 47, p. 698.

    Article  CAS  Google Scholar 

  45. Patel, D. and Saha, B., Ind. Eng. Chem. Res., 2007, vol. 46, p. 3157.

    Article  CAS  Google Scholar 

  46. Harmer, M.A. and Sun, Q., Appl. Catal., A, 2001, vol. 221, p. 45.

  47. Sayell, L.G. and Cunningham, B.B., Ind. Eng. Chem., 1937, vol. 9, p. 67.

    Google Scholar 

  48. Lawrence, L.S., Anal. Chem., 1970, vol. 42, p. 779.

    Article  Google Scholar 

  49. Woods, J.T. and Mellon, M.J., Ind. Eng. Chem., 1941, vol. 13, p. 551.

    CAS  Google Scholar 

  50. Chanrakiran, O.P., Shanta, K., Sathwik, M., and Raghava, P., Indo Global J. Pharm. Sci., 2018, vol. 8, p. 76.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors also acknowledge the Head of the Department of Chemistry for infrastructural facilities used for carrying out this work.

Funding

The authors acknowledge the support from SERB Govt. of India in the form of Major Research Project no. SB/S1/PC-23/2014 sanctioned on 20th August 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghulam Mustafa Peerzada or Nadeem Bashir Ganaie.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sna Rashid, Peerzada, G.M., Ganaie, N.B. et al. Studies on the Interaction of Ion Exchange Resins with Initial Catalyst Concentrations of a Chemical Oscillator using Spectrophotometric and Electrochemical Methods. J Anal Chem 74, 1064–1072 (2019). https://doi.org/10.1134/S1061934819110091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934819110091

Keywords:.

Navigation