Skip to main content

Causes, Geodynamic Factors and Models of Metamorphism

  • Chapter
  • First Online:
The Nature and Models of Metamorphism

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

This chapter considers numerical model-based relationships between metamorphism and geodynamics, discusses tectonomagmatic causes and controls of metamorphism, and makes attempt to link the geological types of metamorphism to the specific Р-Т conditions and Р-Т-t paths. Three categories of metamorphism are distinguished based on the magnitude of the heat flux: (1) metamorphism induced by a thermal gradient close to the average continental values (metamorphism associated with crustal subsidence, in depressions during continental rifting, metamorphism caused by tectonic stacking in orogeny, and metamorphism associated with Archean crust formation), (2) by a higher thermal gradient caused by the supply of additional heat by magmatic intrusions (contact metamorphism, medium-pressure zonal metamorphism) and diapirism, (3) by a lower thermal gradient during the collision of lithospheric plates and crustal blocks (metamorphism associated with overthrusting, underthrusting and subduction). Different types of metamorphism are manifested in different geodynamic regimes over different time scales and can be correlated with a specific combination of metamorphic facies. Interpretation of geodynamic and magmatic causes of different types of metamorphism using thermomechanical numerical models accounting for variable rates and mechanisms of subsidence and exhumation can be used to solve many geodynamical problems. Analysis of the problem reveals that metamorphism is a consequence and an indicator of geodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agard P, Yamato P, Jolivet L et al (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Sci Rev 92:53–79

    Article  Google Scholar 

  • Anan’ev VA (1999) Kontaktoviy metamorfizm Ayu-Daga (Contact metamorphism on the Ayu-Dagh mountain). Candidate of Science Dissertation, Novosibirsk

    Google Scholar 

  • Anan’ev VA, Polyansky OP, Lepezin GG et al (2003) Metamorphic zoning of the Tongulak mountain range, Altai: mathematical modeling. Russ Geol Geophys 44(4):297–304

    Google Scholar 

  • Aranovich LY, Podlesskii KK (1983) Phase conformity in the system: cordierite–garnet–sillimanite– quartz In: Marakushev AA (ed) The biotite – garnet – cordierite equilibria and the evolution of metamorphism Nauka, Moscow, pp 89–123

    Google Scholar 

  • Arndt NT (2013) Formation and evolution of the continental crust. Geochem Perspectiv 2(3):405–533

    Article  Google Scholar 

  • Artemieva IM (2003) Lithospheric structure, composition and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth Planet Sci Lett 213:431–446

    Article  Google Scholar 

  • Artyushkov EV (1993) Fizicheskaya tektonika (Physical tectonics) Nauka, Moscow

    Google Scholar 

  • Artyushkov EV, Batsanin SF (1984) On the thermal regime variations in the Earth crust connected with the approach to its lower boundary of anomalous mantle. Izvest Acad Sci USSR. Phys Solid Earth 12:3–9

    Google Scholar 

  • Ashworth JR, Evirgen MM (1985) Plagioclase relations in pelites, Central Meuderes Massif, Turkey. II. Perturbation of garnet-plagioclase geobarometers. J Metamorph Geol 3:219–229

    Article  Google Scholar 

  • Babichev AV, Polyansky OP, Korobeynikov SN et al (2014) Mathematical modeling of magma fracturing and dike formation. Dokl Earth Sci 458(2):1298–1301

    Article  Google Scholar 

  • Badarch G, Cunningham WD, Windley BW (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. J Asian Earth Sci 21:87–110

    Article  Google Scholar 

  • Baltybaev ShK, Glebovitskii VA, Shul’diner VI et al (1996) The Meyeri thrust: the main element of the suture at the boundary between the Karelian Craton and the Svecofennian belt in the Ladoga region of the Baltic Shield. Dokl Acad Nauk 348(4):581–584

    Google Scholar 

  • Baltybaev ShK, Levchenkov OA, Levskii LK (2009) Svekofennskiy poyas Fenno-skandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoyskikh endogennykhprotsessov (The Svecofennian belt of the Fennoscandia: spatio-temporal correlation of the early Proterozoic endogenous processes), Nauka, St. Petersburg

    Google Scholar 

  • Barber JP, Yardley BWD (1985) Conditions of high grade metamorphism in the Dalradian of Connemara, Ireland. J Geol Soc London 142:87–96

    Article  Google Scholar 

  • Barton MD, Ilchik RP, Marikos MA (1991a) Metasomatism. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Book Crafters Inc, Chelsea, Michigan, pp 321–350

    Google Scholar 

  • Barton MD, Staude J-M, Snow EA et al (1991b) Aureole systematics In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Book Crafters Inc, Chelsea, Michigan, pp 723–847

    Google Scholar 

  • Baumgartner L, Ferry JM (1991) A model for coupled fluid-flow and mixed-volatile mineral reactions with applications to regional metamorphism. Contr Mineral Petrol 106:273–285

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Hymalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Bebout GE (2007) Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett 260:373–393

    Article  Google Scholar 

  • Berg JH (1977a) Dry granulite mineral assemblages in the contact aureoles of the Nain complex, Labrador. Contr Mineral Petrol 64:33–52

    Article  Google Scholar 

  • Berg JH (1977b) Regional geobarometry in the contact aureoles of the anorthositic Nain complex, Labrador. J Petrol 18:399–430

    Article  Google Scholar 

  • Bialas RW, Buck WR, Qin R (2010) How much magma is required to rift a continent? Earth Planet Sci Lett 292:68–78

    Article  Google Scholar 

  • Birth F, Schairer JF, Spicer HC (1942) Handbook of physical constants. Geol Soc Amer, Spec Paper 36:325

    Google Scholar 

  • Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70

    Article  Google Scholar 

  • Bohlen SR, Montana A, Kerrick DM (1991) Precise determinations of the equilibria kyanite – sillimanite and kyanite – andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–680

    Google Scholar 

  • Bowers JR, Kerrick DM, Furlong KP (1990) Conduction model for the thermal evolution of the Cupsuptic aureole, Maine. Am J Sci 290:644–665

    Article  Google Scholar 

  • Brown M (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout earth history: when did earth first adopt a plate tectonics mode of behavior? In: Condie KC, Pease V (eds) When did plate tectonics begin on planet earth? Geol Soc Am, Spec Paper, vol 440, p 97–128

    Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Google Scholar 

  • Brown EH, Walker NW (1993) A magma-loading model for Barrovian metamorphism in the Southeast Coast Plutonic Complex, British Columbia and Washington. Geol Soc Am Bull 105:479–500

    Article  Google Scholar 

  • Buck WR (1986) Small-scale convection induced by passive rifting: the cause of uplift of rift shoulders. Earth Planet Sci Lett 77:362–372

    Article  Google Scholar 

  • Buck WR (1991) Modes of continental lithospheric extension. J Geophys Res 96(B12):20161–20178

    Article  Google Scholar 

  • Buntebarth G (1984) Geothermics—an introduction. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Buntebarth G (1991) Thermal model of cooling. In: Voll G, Töpel J, Pattison DRM, Seifert F (eds) Equilibrium and kinetics in contact metamorphism. The Ballachulish igneous complex and its aureole. Springer, Berlin, Heidelberg, pp 379–402

    Chapter  Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junctions. Key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Article  Google Scholar 

  • Burov E, Cloetingh S (2009) Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys J Int 178:1691–1722

    Article  Google Scholar 

  • Burov E, Yamato P (2008) Continental plate collision, P-T–t–z conditions and unstable vs. stable plate dynamics: insights from thermo-mechanical modeling. Lithos 103:178–204

    Article  Google Scholar 

  • Burov E, Jaupart C, Guillou-Frottier L (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J Geophys Res 108:2177

    Article  Google Scholar 

  • Burov E, Francois Th, Yamato Ph et al (2014) Mechanism of continental subduction and exhumation of HP and UHP rock. Gondwana Res 25:464–493

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136:27–63

    Article  Google Scholar 

  • Chatterjee ND, Johannes WS (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1- muscovite, KAl2Al3Si3O10(OH)2. Contrib Mineral Petrol 48:89–114

    Article  Google Scholar 

  • Chemenda AL, Mattauer M, Malavieille J et al (1995) A mechanism for syn-collisional deep rock exhumation and associated normal faulting: results from a physical modelling. Earth Planet Sci Lett 132:225–232

    Article  Google Scholar 

  • Chopra PN, Patterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876

    Article  Google Scholar 

  • Choukroune P, Ludden JN, Chardon D et al (1997) Archaean crustal growth and tectonic processes: a comparison of the Superior Province, Canada and the Dharwar Craton, India. Geol Soc Spec Publ 121:63–98. Blackwell, London

    Google Scholar 

  • Christensen UR (1992) An Eulerian technique for thermomechanical modeling of lithospheric extention. J Geophys Res 97:2015–2036

    Article  Google Scholar 

  • Clark SP (1966) Handbook of physical constants. Revised edition. Geol Soc Amer Memoir 97

    Google Scholar 

  • Cloos M (1993) Lithospheric buoyancy and collisiona1 oгogenesis: sulbduction of oceanic p 1ateaus, continenta1 margins, is1and arcs, spгeading ridges, and seamounts. Geol Soc Am Bull 105:715–737

    Google Scholar 

  • Coleman RG, Wang X (eds) (1995) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney

    Google Scholar 

  • Compton RR (1960) Contact metamorphism in the Santa Rosa Range, Nevada. Geol Soc Amer Bull 71:1383–1416

    Article  Google Scholar 

  • Condie KC (1981) Archean greenstone belts. Elsevier, Amsterdam

    Google Scholar 

  • Condie KC (2001) Mantle plumes and their record in earth history. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Conrad CP, Hager BH (1999) The thermal evolution of an earth with strong subduction zones. Geophys Res Lett 26:3041–3044

    Article  Google Scholar 

  • Copeland P, Harrison TM (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal Fan. Geology 18:354–357

    Article  Google Scholar 

  • Crawford ML, Mark LE (1982) Evidence from metamorphic rocks for overthrusting. Pennsylvania Piedmont, USA. Can Mineral 20:333–347

    Google Scholar 

  • De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • De Yoreo JJ, Lux DR, Guidotti CV (1989a) A thermal model for Carboniferous metamorphism near the Sebago batholoth in western Maine. In: Tucker RD, Marvinney RG (eds) Igneous and metamorphic geology. Maine Geol Sur V, Augusta, ME, vol 3, pp 19–34

    Google Scholar 

  • De Yoreo JJ, Lux DR, Guidotti CV et al (1989b) The Acadian thermal history of western Maine. J Metamorph Geol 7:169–190

    Article  Google Scholar 

  • De Yoreo JJ, Lux DR, Guidotti CV (1991) Thermal modelling in low-pressure/high-temperature metamorphic belts. Tectonophysics 188:209–238

    Article  Google Scholar 

  • Delaney PT (1988) FORTRAN 77 programs for conductive cooling of dikes with tempera- ture-dependent thermal properties and heat of crystallization. Comput Geosci 14:181–212

    Article  Google Scholar 

  • Dobretsov NL (1974) Glaukofanslantsevyye i eklogit-glaukofanslantsevyye kompleksy SSSR (Glaucophane schists and eclogite-glaucophane schists complexes of the USSR). Nauka, Novosibirsk

    Google Scholar 

  • Dobretsov NL (1981) Global’nyye petrologicheskiye protsessy (Global petrological processes). Nedra, Moscow

    Google Scholar 

  • Dobretsov NL (1991) Blueschist and eclogites: a possible plate tectonic mechanism for the emplacement from the upper mantle. Tectonophysics 186:253–268

    Article  Google Scholar 

  • Dobretsov NL (2000) Collision processes in Paleozoic foldbelts of Asia and exhumation mechanisms. Petrology 8(5):403–427

    Google Scholar 

  • Dobretsov NL (2010) Global geodynamic evolution of the Earth and global geodynamic models. Russ Geol Geophys 51(6):592–610

    Article  Google Scholar 

  • Dobretsov NL, Kirdyashkin AG (1991) Dynamics of subduction zones: models of accretionary wedge formation and exhumation of glaucophane schist and eclogites. Soviet Geol Geophys 32(3):9–20

    Google Scholar 

  • Dobretsov NL, Kirdyashkin AG (1994) Glubinnaya geodinamika (Deep-seated geodynamics). GEO, Novosibirsk

    Google Scholar 

  • Dobretsov NL, Кirdyashkin AG (1994) Blueescltist belts of North Asia and models of subduction-accretion wedge. In: Coleman RG (ed) Reconstuction of Paleo-Asian ocean. VSP International Science Publication, Netherland, pp 91–106

    Google Scholar 

  • Dobretsov NL, Khlestov VV, Reverdatto VV et al (1972) The facies of metamorphism. Australian National University, Canberra, Publ, p 214

    Google Scholar 

  • Dobretsov NL, Khlestov VV, Sobolev VS (1973) The facies of regional metamorphism at moderate pressure. Australian National University, Canberra, Publ, p 236

    Google Scholar 

  • Dobretsov NL, Sobolev VS, Sobolev NV et al (1975) The facies of regional metamorphism at high pressure. Australian National University, Canberra, Publ, p 266

    Google Scholar 

  • Dobretsov NL, Sobolev NV, Shatsky VS (1989) Eklogity i glaukofanovyye slantsy v skladchatykh oblastyakh (Eclogites and glaucophane schists in folded areas). Nauka, Siberian Branch, Novosibirsk

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Dortman MB (ed) (1984) Phisicheskie svoistva gornyh porod i poleznyh iskopaemyh (petrophisica) (Physical properties of rocks and minerals (petrophysics). Nedra, Moscow

    Google Scholar 

  • Droop GTR, Brodie KH (2012) Anatectic melt volumes in the thermal aureole of the Etive Complex, Scotland: the roles of fluid-present and fluid-absent melting. J Metamorph Geol 30. https://doi.org/10.1111/j.1525-1314.01001.x.2012

  • Duchkov AD, Lysak SV, Balobaev VT et al (eds) (1987) Teplovoe pole nedr Sibiri (Thermal field of Siberia interiors). Nauka, Novosibirsk

    Google Scholar 

  • Dudarev AN, Kudryavtsev VA, Melamed VG et al (1972) Teploobmen v magmatogennykh protsessakh (Heat transfer in magmatic processes). Nauka, Siberian Branch, Novosibirsk

    Google Scholar 

  • Elan R (1985) High grade contact metamorphism at the Lake Isabella north shore roof pendant, southern Sierra Nevada, California. Dissertation, University of Southern California

    Google Scholar 

  • England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc London 134:201–213

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamorphism: heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Englebrecht JP (1990) Contact metamorphism processes related to the aureole of the Bushveld complex in Marico district, western Transvaal, South Africa. Geology 93:339–349

    Google Scholar 

  • Ernst WG (1973) Blueschist metamorphism and P-T regimes in active subduction zones. Tectonophysics 17:255–272

    Article  Google Scholar 

  • Ernst WG (1975) Systematics of large-scale tectonics and age progressions in Alpine and circum-Pasific blueschist belts. Tectonophysics 26:229–246

    Article  Google Scholar 

  • Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16:1081–1084

    Article  Google Scholar 

  • Eskola P (1948) The problem of mantled gneiss domes. Quart J Geol Soc London 104:461–476

    Article  Google Scholar 

  • Evans BW (1990) Phase relations of epidote-blueschists. Lithos 25:3–23

    Article  Google Scholar 

  • Faccenda M, Gerya TV, Burlini L (2009) Deep slab hydration induced by bending related variations in tectonic pressure. Nature Geosci 2:790–793

    Article  Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Article  Google Scholar 

  • Friedinger PJ, Reverdatto VV, Polyansky OP (1991) Metamophism of subsiding sediments in rift structures of the Earth’s crust (approach on the basis of model). Sov Geol Geophys 32(9):71–79

    Google Scholar 

  • Friedrich AM, Hodges KV, Bowring SA et al (1999) Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara Caledonides, western Ireland. J Geol Soc London 156:1217–1230

    Article  Google Scholar 

  • Fullagar D, Butler JR (1979) 325 to 265 Ma-old granitic plutons in the Piedmont of the south-eastern Appalachians. Am J Sci 279:161–185

    Article  Google Scholar 

  • Furlong KP, Hanson RB, Bower JR (1991) Modeling thermal regimes. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26, Mineral Soc Am, Book Crafters Inc., Chelsea, Michigan, pp 437–505

    Google Scholar 

  • Gaiduk VV (1988) Vilyuyskaya srednepaleozoyskaya riftovaya sistema (The Middle Paleozoic Vilyui Rift System). YaF SO AN SSSR, Yakutsk

    Google Scholar 

  • Garagash IA, Ermakov VA (2004) A probable geodynamic model of the early earth. Dokl Earth Sci 394(1):73–77

    Google Scholar 

  • Gerya TV (2002) P-T-trendy i model’ formirovaniya granulitovykh kompleksov dokembriya (P-T trends and model of formation of Precambrian granulite complexes). Doctor of Science Dissertation. Moscow State University, Moscow

    Google Scholar 

  • Gerya TV (2010) Introduction to numerical geodynamic modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerya TV (2015) Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism. J Metamorph Geol 33:785–800

    Article  Google Scholar 

  • Gerya TV, Burg J-P (2007) Intrusion of ultramafic magmatic bodies into the continental crust: numerical simulation. Phys Earth Planet Inter 160:124–142

    Article  Google Scholar 

  • Gibson RG, Speer JA (1986) Contact aureoles as constraints on regional P-T trajectories, an example from the northern Alabama Piedmont, USA. J Metamorph Geol 4:285–308

    Article  Google Scholar 

  • Glukhovskoy MZ, Moralev VM (1996) Geotektonika plyumov rannego dokembriya na primere evolyutsii Sunnaginskogo enderbitovogo kupola (Aldanskiy shchit) (Geotectonics of plumes of the Early Precambrian on the example of the evolution of the Sunnagin enderbite dome (Aldan Shield)). Geotectonika 6:81–93

    Google Scholar 

  • Golubev VS, Sharapov VN (1974) Dinamika endogennogo rudoobrazovaniya (Dynamics of endogenous ore formation). Nedra, Moscow

    Google Scholar 

  • Green DH (1967) High-temperature peridotite intrusions. In: Wyllie PJ (ed) Ultramafic and related rocks. Wiley, New York, pp 212–222

    Google Scholar 

  • Griffin WL, Sturt BA, O’Neill CJ et al (2013) Intrusion and contamination of high-temperature dunitic magma: the Nordre Bumandsfjord pluton, Seiland, Arctic Norway. Contrib Mineral Petrol 165:903–930

    Article  Google Scholar 

  • Grigor’eva LV, Shinkarev NF (1981) Usloviya obrazovaniya kupol’nykh struktur v Priladozh’ye (Emplacement Conditions of Dome-Shaped Structures of the Ladoga region). Izvestiya Akad Nauk SSSR, Ser Geol 3:41–50

    Google Scholar 

  • Guillot S, Hattori K, Agard Ph et al (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 175–205

    Chapter  Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(B1):2029. https://doi.org/10.1029/2001jb001127

  • Hansen FD, Carter NL (1982) Creep of selected crustal rocks at 1000 MPa. Trans Amer Geophys Union 63:437

    Google Scholar 

  • Harley SL (1989) The origin of granulites: metamorphic perspective. Geol Mag 126:215–247

    Article  Google Scholar 

  • Harwood DS (1973) Bedrock geology of the Capsaptic and Arnold Pond quadrangles, west central Maine. US Geol Surv Bull 1346:90

    Google Scholar 

  • Hasenclever J, Morgan JP, Hort M et al (2011) 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet Sci Lett 311:53–68

    Article  Google Scholar 

  • Hayba DO, Ingebritsen SE (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102:12235–12252

    Article  Google Scholar 

  • He B, Xu Y-G, Paterson S (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615–626

    Article  Google Scholar 

  • Hermes OD, Murray DP (1988) Middle Devonian to Permian plutonism and volcanism in the N. American Appalachians. In: Harris AL, Fettes DJ (eds) The Caledonian Appalachian Orogeny, vol 38. Geological Society Special Publication, Blackwell, London, pp 559–571

    Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hodge DS (1974) Thermal model for origin of granitic batholiths. Nature 251:297–299

    Article  Google Scholar 

  • Hodges KV (2005) Geochronology and thermochronology in orogenic system. In: Rudnick RL (ed) The crust. Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Oxford, pp 263–292

    Google Scholar 

  • Hoisch TD (1989) A muscovite-biotite geothermometer. Am Mineral 74:565–572

    Google Scholar 

  • Holdaway MJ (2000) Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. Am Mineral 85:881–892

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198

    Article  Google Scholar 

  • Holland TJB, Powell R (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. J Metamorph Geol 3:343–370

    Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodyna- mic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holness MB (1999) Contact metamorphism and anatexis of Torridonian arkose by minor intrusions of the Rhum Igneous Complex, Inner Hebrides, Scotland. Geol Mag 136:527–542

    Article  Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308

    Article  Google Scholar 

  • Huerta AD, Royden LH, Hodges KV (1999) The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. J Metamorph Geol 17:349–366

    Article  Google Scholar 

  • Huismans RS, Podladchikov YY, Cloetingh SAPL (2001) Transition from passive to active rifting: relative importance of asthenospheric doming and passive extension of the lithosphere. J Geophys Res 106:11271–11292

    Article  Google Scholar 

  • Ingersoll LR, Zobel OJ (1913) An introduction to the mathematical theory of heat conduction with engineering and geological applications. Ginn and Co, Boston

    Google Scholar 

  • Jaeger JC (1957) The temperature in the neighbourhood of a cooling intrusive sheet. Am J Sci 255:305–318

    Article  Google Scholar 

  • Jaeger JC (1959) Temperatures outside a cooling intrusive sheet. Am J Sci 257:44–54

    Article  Google Scholar 

  • Jaeger JC (1964) Thermal effect of intrusions. Rev Geophys 2:443–466

    Article  Google Scholar 

  • Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH and the late Poldervaart A (eds) Basalts. The Poldervaart treatise on rocks of basaltic composition. Interscience Publisher, New York-London-Sidney, pp 503–536

    Google Scholar 

  • Jamieson RA, Beaumont C (2013) On the origin of orogens. Geol Soc Am Bull 125:1671–1702. https://doi.org/10.1130/B30855.1

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Fullsack P et al (1998) Barrovian regional metamorphism: where’s the heat? In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions? special publication, vol 138. Geological Society, London, pp 23–45

    Google Scholar 

  • Jamieson RA, Beaumont C, Nguyen MH et al (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. J Metamorph Geol 20:9–24

    Article  Google Scholar 

  • Jansen JBH, Schuiling RD (1976) Metamorphism on Naxos: petrology and geothermal gradients. Am J Sci 276:1225–1253

    Article  Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  • Jarvis GT, McKenzie DP (1980) Sedimentary basin formation with finite extension rates. Earth Planet Sci Lett 48:42–52

    Article  Google Scholar 

  • Jellinek AM, Kerr RC (1999) Mixing and compositional stratification produced by natural convection. 2. Applications to the differentiation of basaltic and silicic magma chambers and komatiite lava flows. J Geophys Res 104:7203–7218

    Article  Google Scholar 

  • Johannes W (1984) Beginning of melting in the granite system Qz–Or–Ab–An–H2O. Contrib Mineral Petrol 86:264–273

    Article  Google Scholar 

  • Johnson MRW, Harley SL (2012) Orogenesis: the making of mountains. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Karabinos P, Ketchman R (1988) Thermal structure of active thrust belts. J Metamorph Geol 6:559–570

    Article  Google Scholar 

  • Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778

    Article  Google Scholar 

  • Katz RF, Weatherley SM (2012) Consequences of mantle heterogeneity for malt extraction. Earth Planet Sci Lett 335–336:226–237

    Article  Google Scholar 

  • Khain VE, Lomize MG (1995) Geotektonika s osnovami geodinamiki (Geotectonics with the basics of geodynamics). Moscow State University, Moscow

    Google Scholar 

  • Kirdyashkin AA, Kirdyashkin AG (2013) Interaction of a thermochemical plume with free convection mantle flows and its influence on mantle melting and recrystallization. Russ Geol Geophys 54(5):544–554

    Article  Google Scholar 

  • Kiselev AI, Yarmolyuk VV, Ivanov AV et al (2014) Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time. Russ Geol Geophys 55(2):144–152

    Article  Google Scholar 

  • Kleemann U, Reinhardt J (1994) Garnet-biotite thermometry revisited: The effect of AlVI and Ti in biotite. Eur J Mineral 6:925–941

    Article  Google Scholar 

  • Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) Treatise on geochemistry. Crust, vol 3, pp 433–463

    Google Scholar 

  • Kohn MJ (2008) P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Amer Bull 120:259–273

    Article  Google Scholar 

  • Kohn MJ, Orange DL, Spear FS et al (1992) Pressure, temperature, and structural evolution of west-central New Hampshire: hot thrusts over cold basement. J Petrol 33:521–556

    Article  Google Scholar 

  • Kolobov VY, Likhanov II, Reverdatto VV (1992) Kontaktovo-metamorficheskiye porody (Contact-metamorphic rocks). In: Dobretsov NL, Bogatikov OA, Rosen OM (eds) Classification and nomenclature of metamorphic Rocks Nauka. Siberian Branch, Novosibirsk, pp 77–97

    Google Scholar 

  • Korenaga J (2003) Energetics of mantle convection and the fate of fossil heat. Geophys Res Lett 30:1437–1440

    Google Scholar 

  • Korikovsky SP (1995) Kontrastnyye modeli progradno-retrogradnoy evolyutsii meta-morfizma fanerozoyskikh skladchatykh poyasov v zonakh kollizii i subduktsii (Contrast models of the prograde-retrograde evolution of metamorphism of the Phanerozoic folded belts in zones of collision and subduction). Petrologiya 3(1):45–63

    Google Scholar 

  • Koritnig S (1955) Die Blaue Kuppe bei Eschwege mit ihren Kontacterscheinungen. Heidelberg Beitr Mineral Petrogr 4:504–521

    Google Scholar 

  • Korobeinikov SN, Polyansky OP, Likhanov II et al (2006) Mathematical modeling of overthrusting fault as a cause of andalusite–kyanite metamorphic zoning in the Yenisei Ridge. Dokl Earth Sci 408(4):652–656

    Article  Google Scholar 

  • Korobeinikov SN, Polyansky OP, Sverdlova VG et al (2008) Computer modeling of underthrusting and subduction under conditions of gabbro–eclogite transition in the mantle. Dokl Earth Sci 421(5):724–728

    Article  Google Scholar 

  • Korobeynikov SN (2000) Nelineynoye deformirovaniye tverdykh tel (Nonlinear Deformation of Solids). SO RAN Press, Novosibirsk

    Google Scholar 

  • Korobeynikov SN, Reverdatto VV, Polyanskii OP et al (2009) Computer simulation of undrthrusting and subduction due to collision of slabs. Num Anal Applic 2(1):58–73

    Article  Google Scholar 

  • Korsman K, Korja T, Pajunen M et al (1999) The GGT/SVEKA transect—structure and evolution of the continental crust in the Paleoproterozoic Svecofennian orogen in Finland. Int Geol Rev 41:287–333

    Article  Google Scholar 

  • Kozakov IK, Glebovitsky VA, Bibikova EV et al (2002) Hercynian granulites of Mongolian and Gobian Altai: geodynamic setting and formation conditions. Dokl Earth Sci 386(7):781–785

    Google Scholar 

  • Kozakov IK, Didienko AN, Azimov PY et al (2011) Geodynamic settings and formation conditions of crystalline complexes in the South Altai and South Gobi metamorphic belts. Geotectonics 45(3):174–194

    Article  Google Scholar 

  • Koziol AM, Newton RC (1988) Redetermination of the garnet breakdown reaction and improvement of the plagiclase-garnet-Al2SiO5-quartz geobarometer. Am Mineral 73:216–223

    Google Scholar 

  • Krebs M, Maresch WV, Schertl H-P et al (2008) The dynamics of intra-oceanic subduction zones: A direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103:106–137

    Article  Google Scholar 

  • Kremenetsky AA, Milanovsky SY, Ovchinnikov LN (1989) A heat generation model for the continental crust based on deep drilling in the Baltic Shied. Tectonophysics 159:231–246

    Article  Google Scholar 

  • Kronenberg AK, Tullis J (1984) Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. J Geophys Res 89:4281–4297

    Article  Google Scholar 

  • Kruckenberg SC, Vangervaeghe O, Ferre EC et al (2011) Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece. Tectonics 30. https://doi.org/10.1029/2010tc002751

  • Kusznir NJ, Park RG (1984) The strength of intraplate lithosphere. J Phys Earth Planet Int 36:224–235

    Article  Google Scholar 

  • Kuzmin MI, Yarmolyuk VV, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Sci Rev 102:29–59

    Article  Google Scholar 

  • Lachenbruch AH, Sass JH (1978) Models of an extending lithosphere and heat flow in the Basin and Range Province. Cenozoic Tectonics und Regional Geophysics of the Western Cordillera. Geol Soc Am Mem 152:209–250

    Google Scholar 

  • Landau LD, Lifshitz EM (1986) Gidrodinamika (Hydrodynamics), 3rd edn. Nauka, Moscow

    Google Scholar 

  • Lazaro C, Garcia-Casco A, Rojas Agramonte Y et al (2009) Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Carribean plate (Sierra del Convento mélange, Cuba). J Metamorph Geol 27:19–40

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Lee MK (1986) A new gravity survey of the Lake district and three-dimensional model of the granite batholith. J Geol Soc London 143:425–435

    Article  Google Scholar 

  • Leonov YuG (2004) Kharakternyye osobennosti stroyeniya i razvitiya nekotorykh tipov osadochnykh basseynov (Characteristic features of the structure and development of some types of sedimentary basins). In: Leonov YuG, Volozh YuA (eds) Sedimentary basins: methods of study, structure and evolution. Nauch Mir, Moscow, pp 38–60

    Google Scholar 

  • Lepezin GG (1972) Metamorfizm fatsii epidotovıh amfibolitov (Metamorphism of the facies of epidote amphibolites). Nauka, Moscow

    Google Scholar 

  • Li ZH, Gerya TV, Burg P (2010) Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J Metamorph Geol 28:227–247

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV (2002) Mass transfer during andalusite replacement by kyanite in Al- and Fe-rich metapelites in the Yenisei Range. Petrology 10(5):479–494

    Google Scholar 

  • Likhanov II, Reverdatto VV (2011) Neoproterozoic collisional metamorphism in overthrust terranes of the Transangarian Yenisei Ridge, Siberia. Int Geol Rev 53:802–845

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Memmi I (1994) Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro intrusion (Russia). Eur J Mineral 6:133–144

    Article  Google Scholar 

  • Likhanov II, Ten AA, Reverdatto VV et al (1996) Low-grade metamorphism of clays at the contacts of andesite plugs in Turkmenistan (western Badkhys). Transactions (Doklady) Earth Sci 346(1):78–81

    Google Scholar 

  • Likhanov II, Polyanskii OP, Kozlov PS et al (2000) Replacement of andalusite by kyanite with increasing pressure at a low geothermal gradient in metapelites of the Enisei Ridge. Dokl Earth Sci 375(9):1411–1416

    Google Scholar 

  • Likhanov II, Polyanskii OP, Reverdatto VV et al (2001) Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisei Range): mineral associations, P-T conditions, and tectonic model. Geol Geofiz 42(8):1205–1220

    Google Scholar 

  • Likhanov II, Polyansky OP, Reverdatto VV et al (2004) Evidence from Fe- and Al- rich metapelites for thrust loading in the Transangarian Region of the Yenisei Ridge, eastern Siberia. J Metamorph Geol 22:743–762

    Article  Google Scholar 

  • Likhanov II, Kozlov PS, Popov NV et al (2006) Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge. Dokl Earth Sci 411(1):1313–1317

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS et al (2008a) Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range. Petrology 16(2):136–160

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Verschinin AE (2008b) Fe- and Al-rich metapelites of the Teya sequence, Yenisei Range: geochemistry, protoliths and the behavior of their matter during metamorphism. Geochem Int 46(1):17–36

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS (2011) The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and medium-pressure facies series. Dokl Earth Sci 436(2):213–218

    Article  Google Scholar 

  • Likhanov II, Reverdatto VV, Kozlov PS (2012) U-Pb and 40Ar-39Ar evidence for Grenvillian activity in the Yenisei ridge during formation of the Teya metamorphic complex. Geochem Int 50(6):551–557

    Article  Google Scholar 

  • Likhanov II, Nozhkin AD, Reverdatto VV et al (2014) Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton. Geotectonics 48(5):371–389

    Article  Google Scholar 

  • Likhanov II, Régnier J-L, Santosh M (2018) Blueschist facies fault tectonites from the western margin of the Siberian Craton: implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean. Lithos 304–307:468–488

    Article  Google Scholar 

  • Liou JG, Hacker BR, Zhang RY (2000) Into the forbidden zone. Science 287:1215–1216

    Article  Google Scholar 

  • Lister GS, Etheridge MA, Symonds PA (1991) Detachment models for the formation of passive continental margins. Tectonics 10:1038–1064

    Article  Google Scholar 

  • Little TA, Hacker BR, Gordon SM et al (2011) Diapiric exhumation of Earth’s youngest (UHP) eclogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea. Tectonophysics 510:39–68

    Article  Google Scholar 

  • Ljubimova EA (1968) Termika Zemli i Luny (Thermics of Earth and Moon). Nauka, Moscow

    Google Scholar 

  • Logatchev NA, Rogozhina VA, Solonenko VP et al (1978) Deep structure and evolution of the Baikal rift zone. In: Ramberg IB, Neumann ER (eds) Tectonisc and geophysics of continental rifts. Norwell MaS Reidel, pp 49–62

    Google Scholar 

  • Long SP, McQuarrie N, Tobgay T et al (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics 31(5). https://doi.org/10.1029/2012tc0 03155

  • Loosveld RJH, Etheridge MA (1990) A model for low-pressure facies metamorphism during crustal thickening. J Metamorph Geol 8:257–267

    Article  Google Scholar 

  • Lovering TS (1935) Theory of heat conduction applied to geological problems. Geol Soc Amer Bull 46:69–94

    Article  Google Scholar 

  • Lovering TS (1936) Heat conduction in dissimilar rocks and the use of thermal models. Geol Soc Amer Bull 47:87–100

    Article  Google Scholar 

  • Lovering TS (1955) Temperatures in and near intrusions. Econ Geol 50:249–281

    Article  Google Scholar 

  • MacKenzie DB (1960) High-temperature alpine-type peridotite from Venezuela. Geol Soc Amer Bull 71(3):303–318

    Article  Google Scholar 

  • Mancktelow NS (2008) Tectonic pressure: theoretical concepts and models. Lithos 103:149–177. In: Abstracts of the international symposium “Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny”, Novosibirsk, 13–16 Aug 2007. Publ. House of SB RAS, Novosibirsk, pp 39–42

    Google Scholar 

  • Martin H (1994) The Archean grey gneisses and the genesis of continental crust. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 205–259

    Chapter  Google Scholar 

  • Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites of the world and their exhumation. Int Geol Rev 38:485–594

    Article  Google Scholar 

  • Masaitis VL (2007) Devonian basalts of Siberian platform, and their heterogeneous mantle sources. In: Abstracts of the international symposium “Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny”, Novosibirsk, 13–16 August 2007. Publishing house of SB RAS, Novosibirsk, p 39–42

    Google Scholar 

  • Masaitis VL, Mikhailov MV, Selivanovskaya TV (1975) Vulkanism i tektonika Patomsko-Viluyiskogo srednepaleozoiskogo avlakogena (Volcanism and tectonics of the middle Paleozoic Patom-Vilyui aulacogen). Nedra, Moscow

    Google Scholar 

  • Mason R (1978) Petrology of the metamorphic rocks. George Allen and Unwin, London

    Google Scholar 

  • Mathew G, De Sarkar S, Pande K et al (2013) Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono-thermal evolution. Int J Earth Sci 102:1911–1936

    Article  Google Scholar 

  • McCarthy TS, Fripp REP (1980) The crystallization history of a granitic magma, as revealed by trace element abundances. J Geol 88:211–224

    Article  Google Scholar 

  • McLelland JM, Isachsen YW (1985) Geological evolution of the Adirondack mountains: a review. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. NATO ASI series (Series C. Mathematical and physical sciences). vol 158. Springer, Dordrecht, pp 175–215

    Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Mei S, Bai W, Hiraga T et al (2002) Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet Sci Lett 201:491–507

    Article  Google Scholar 

  • Milliard Y (1959) Les massifs metamorphiques et ultrabasiques de la zone paleozoique interne du Rif. Notes du service Geol du Maroc 18(147):125–160

    Google Scholar 

  • Mints MV, Glaznev VN, Konilov AN et al (1996) Ranniy dokembriy severo-vostoka Baltiyskogo shita (Early Precambrian of the northeast Baltic shield: paleogeodynamics, structure and evolution of the continental crust). Nauchnyi Mir, Moscow

    Google Scholar 

  • Miyashiro A (1961) Evolution of metamorphic belts. J Petrol 2:277–311

    Article  Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Allen and Unwin, London

    Book  Google Scholar 

  • Mohan MR, Satyanarayanan M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2013) Neoarchean suprasubduction zone arc magmatism in southern India: geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi anotthosite complex. Gondwana Res 23:539–557

    Google Scholar 

  • Montel J-M, Kornprobst J, Vielzeuf D (2000) Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Marocco). J Metamorphic Geol 18:335–342

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA et al (2004) Finite- frequency tomography reveals a variety of plums in the mantle. Science 303:338–343

    Article  Google Scholar 

  • Moretti I, Froidevaux C (1986) Thermomechanical models of active rifting. Tectonics 5:501–511

    Article  Google Scholar 

  • Morozov YuA, Gaft DE (1985) O prirode granitogneisovyh kupolov Severnogo Priladozya (On the nature of granite-gneiss domes of the Northern Ladoga region). In: Ez VV (ed) Structure and petrology of the precambrian complexes. IFZ AN SSSR, Moscow

    Google Scholar 

  • Mossakovskii AA, Ruzhentsev SV, Samygin SG et al (1993) Centralnio-asiatskiy skladchtyi poyas: geodinamicheskaya evoluciya i istoriya formirovaniya (Central Asian fold belt: geodynamic evolution and the history of formation). Geotectonika no 6:3–33

    Google Scholar 

  • Mukherjee S (2013) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci 102:1811–1835

    Article  Google Scholar 

  • Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature–time paths in contact aureoles. Earth Planet Sci Lett 317(318):157–164

    Article  Google Scholar 

  • Nakada M (1994) Convective coupling between ductile lower crust and upper mantle and its tectonic implications. Geophys J Int 118:579–603

    Article  Google Scholar 

  • Nell J (1985) The Bushveld metamorphic aureole in the Potgietersrus area, evidence for a two- stage metamorphic event. Econ Geol 80(4):1129–1152

    Article  Google Scholar 

  • Nenakhov VM (2001) Geodinamicheskie osobennosti rannego arheya (Geodynamic features of the early Archean). Geotectonika no 1:3–15

    Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the garnet-plagioclase-Al2SiO5- quartz geobarometer. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in physical geochemistry, vol 1. Springer, New-York, pp 131–147

    Google Scholar 

  • Norlander BH, Whitney DL, Teyssier Ch et al (2002) Partial melting and decompression of the Thor Odin dome, Shuswap metamorphic core complex. Lithos 61:103–125

    Article  Google Scholar 

  • Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Amer J Sci 277:937–981

    Article  Google Scholar 

  • Nozhkin AD, Krendelev FP, Myronov AG (1975) Radioaktivniye elementy v dokembrii Eniseyskogo kriazha (Radioactive elements in Precambrian of Yenisei Range). In: Kuznetsov VA (ed) Radioactive elements in rocks. Nauka, Novosibirsk, pp 183–189

    Google Scholar 

  • Nozhkin AD, Turkina OM, Bibikova EV et al (1999) Riphean granite-gneiss domes of the Yenisei Ridge: geological structure and U-Pb isotope age. Geol Geofiz 40(9):1284–1292

    Google Scholar 

  • Obata M (1980) The Ronda peridotite: garnet-, spinel-, and plagioclase – lherzolite facies and the P-T trajectories of a high-temperature mantle intrusion. J Petrol 21:533–572

    Article  Google Scholar 

  • Okay AI (2002) Jadeite–chloritoid–glaucophane–lawsonite blueschists in north-west Turkey: unusually high P/T ratios in continental crust. J Metamorphic Geol 20:757–768

    Article  Google Scholar 

  • Oxburgh ER, Turcotte DL (1974) Membrane tectonics and the East African Rift. Earth Planet Sci Lett 22:l33–140

    Article  Google Scholar 

  • Parker EC, Davis PM, Evans JR et al (1984) Upwarp of anomalous asthenosphere beneath the Rio Grande Rift. Nature 312:354–356

    Article  Google Scholar 

  • Patchett PJ (1992) Isotopic studies of Proterozoic crustal growth and evolution. In: Condie KC (ed) Proterozoic crustal evolution. Developments in Precambrian geology, vol 10. Elsevier, Amsterdam, p 481–508

    Google Scholar 

  • Paterson SR, Tobisch OT (1992) Rates and progress in magmatic arcs: implications for the timing and nature of pluton emplacement and wall rock deformation. J Struct Geol 14:291–300

    Article  Google Scholar 

  • Paterson SR, Vernon RH, Fowler TK (1991) Aureole tectonics. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26. Mineral Soc Amer, Washington, pp 673–722

    Google Scholar 

  • Pattison DRM (1991) P-T-a(H2O) conditions in the thermal aureole. Equilibrium and kinetics in contact metamorphism. In: Voll G, Töpel J, Pattison DRM et al (eds) The Ballachulish igneous complex and its aureole. Springer, Heidelberg, pp 327–350

    Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446

    Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 « triple point » assemblages in muscovite + biotite + quartz – bearing metapelites, with implications. Am Mineral 86:1414–1422

    Article  Google Scholar 

  • Pattison DRM, Tracy RJ (1991) Phase equilibria and thermobarometry of metapelites. In: Kerrick DM (ed) Contact metamorphism. Reviews in mineralogy, vol 26. Mineral Soc Amer, Washington, pp 105–206

    Google Scholar 

  • Peacock SM (1989) Numerical constraints on rates of metamorphism, fluid production, and fluid flux during regional metamorphism. Geol Soc Amer Bull 101:476–485

    Article  Google Scholar 

  • Peacock SM (1992) Blueschist facies metamorphism, shear heating and P-T-t paths in subduction shear zones. J Geophys Res 97:17693–17707

    Google Scholar 

  • Peacock SM (1993) The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust. Geol Soc Amer Bull 105:684–694

    Article  Google Scholar 

  • Pearson DG, Davies GR, Nixon PH (1995) Orogenic ultramafic rocks of UHP (diamond facies) origin. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, pp 456–510

    Chapter  Google Scholar 

  • Pecher A (1989) The metamorphism in the central Himalaya. J Metamorphic Geol 7:31–41

    Article  Google Scholar 

  • Pekhovich AI, Zhidkikh VM (1976) Raschety teplovogo regima tverdykh tel (Calculations of the thermal regime of solids). Energiya, Leningrad

    Google Scholar 

  • Persikov ES (1984) Vyazkost magmaticheskih rasplavov (Viscosity of igneous melts). Nauka, Moscow

    Google Scholar 

  • Pertsev NN (1977) Vysokotemperaturnyi metamorfizm i metasomatoz karbonatnykh porod (High-temperature metamorphism and metasomatism of carbonate rocks). Nauka, Moscow

    Google Scholar 

  • Petford N (1996) Dykes or diapirs? Trans Royal Soc Edinburgh Earth Sci 87:105–114. https://doi.org/10.1017/S0263593300006520

    Article  Google Scholar 

  • Petrini K, Podladchikov Yu (2000) Lithospheric pressure-depth relationship in compressive regions of thickened crust. J Metamorphic Geol 18:67–77

    Article  Google Scholar 

  • Pitcher WS, Berger AR (1972) The geology of Donegal. A study of granite emplacement and unroofing. Wiley, New York

    Google Scholar 

  • Pitcher WS, Sinha RC (1958) The petrochemistry of the Ardara aureole. Quart J Geol Soc London 113:393–408

    Article  Google Scholar 

  • Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pгessure metamorphic rocks. Bull Geol Soc Amer 97:1037–1053

    Article  Google Scholar 

  • Pleuger J, Podladchikov YY (2014) A purely structural restoration of the NFP20-East cross section and potential tectonic overpressure in the Adula nappe (central Alps). Tectonics 33:656–685

    Article  Google Scholar 

  • Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford monograph on geology and geophysics, vol 35. Oxford University Press, New York, pp 223–232

    Google Scholar 

  • Polyansky OP, Efremov VN (1989) Diagnostics of dome-like structures of the Northern Ladoga region on the basis of thermodynamic data and tectonophysical analysis. Sov Geol Geophys 30(4):36–39

    Google Scholar 

  • Polyansky OP, Reverdatto VV (2002) Fluid convection in sediment-hosted reservoirs due to thermal action of dikes and sills. Russ Geol Geophys 43(1):25–39

    Google Scholar 

  • Polyansky OP, Volkov PK (1990) Model of metamorphism at advection processes. Geologiya i Geofizika no 2:29–36

    Google Scholar 

  • Polyanskii OP, Reverdatto VV, Anan’ev VA (2000) Evolution of the rift sedimentary basin as an indicator of geodynamic setting (on example of the Enisei-Khatanga depression). Dokl Akad Nauk SSSR 370(1):71–75

    Google Scholar 

  • Polyanskii OP, Reverdatto VV, Sverdlova VG (2002) Convection of two-phase fluid in a layered porous medium driven by the heat of magmatic dikes and sills. Geochem Int 40(S1):S69–S81

    Google Scholar 

  • Polyansky OP, Reverdatto VV, Khomenko AV et al (2003) Modeling of fluid flow and heat transfer induced by basaltic near-surface magmatism in the Lena-Tunguska petroleum basin (eastern Siberia, Russia). J Geochem Explor 78–79:687–692

    Article  Google Scholar 

  • Polyansky OP, Babichev AV, Reverdatto VV et al (2009) Computer modeling of granite magma diapirism in the Earth’s crust. Doklady Earth Sci 429(8):1380–1384

    Article  Google Scholar 

  • Polyansky OP, Babichev AV, Korobeynikov SN et al (2010a) Computer modeling of granite gneiss diapirism in the Earth’s crust: Controlling factors, duration, and temperature regime. Petrology 18(4):432–446

    Article  Google Scholar 

  • Polyansky OP, Korobeynikov SN, Sverdlova VG et al (2010b) The influence of crustal rheology on plate subduction based on numerical modeling results. Doklady Earth Sci 430(2):158–162

    Article  Google Scholar 

  • Polyansky OP, Sukhorukov VP, Travin AV et al (2011) Tectonic interpretation of the thermochronological data and P-T conditions of rock metamorphism in the Bodonchin zone complex (Mongolian Altai). Russ Geol Geophys 52(9):991–1006

    Article  Google Scholar 

  • Polyansky OP, Korobeynikov SN, Babichev AV et al (2012) Formation and upwelling of mantle diapirs through the cratonic lithosphere: numerical thermomechanical modeling. Petrology 20(2):120–137

    Article  Google Scholar 

  • Polyansky OP, Prokop’ev AV, Babichev AV et al (2013) The rift origin of the Vilyui basin (East Siberia), from reconstructions of sedimentation and mechanical mathematical modeling. Russ Geol Geophys 54(2):121–137

    Article  Google Scholar 

  • Polyansky OP, Korobeinikov SN, Babichev AV et al (2014) Numerical modeling of mantle diapirism as a cause of intracontinental rifting. Izvestiya, Physics Solid Earth 50(6):839–852

    Article  Google Scholar 

  • Polyansky OP, Babichev AV, Sukhorukov VP et al (2015) A thermotectonic numerical model of collisional metamorphism in the Mongolian Altai. Doklady Earth Sci 465(1):1164–1167

    Article  Google Scholar 

  • Polyansky OP, Reverdatto VV, Babichev AV et al (2016) The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russ Geol Geophys 57(6):843–857

    Article  Google Scholar 

  • Polyansky OP, Prokopiev AV, Koroleva OV et al (2017) Temporal correlation between dyke swarms and crustal extension in the middle Palaeozoic Vilyui rift basin, Siberian platform. Lithos 282–283:45–64

    Article  Google Scholar 

  • Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Preiss WV (1987) The Adelaide geosyncline: late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. Geol Surv South Australia Bull no 53:411–426

    Google Scholar 

  • Ranalli G (1995) Rheology of the Earth. Chapman & Hall, London

    Google Scholar 

  • Reiners PW (2009) Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers. Geochim Cosmochim Acta 73(12):3612–3629

    Article  Google Scholar 

  • Reverdatto VV (1970) Ob izochemicheckoy prirode kontaktovogo metamorfisma (On the isochemical nature of contact metamorphism). Geologiya i Geofisika no 5:53–63

    Google Scholar 

  • Reverdatto VV (1973) The facies of contact metamorphism. Australian National University Publ no 233, Canberra

    Google Scholar 

  • Reverdatto VV (1973b) Velichiny geotermicheskih gradientov pri regionalnom metamorfizme (The values of geothermal gradients in regional metamorphism). Geologiya i Geofisika no 8:36–43

    Google Scholar 

  • Reverdatto VV Kalinin AS (1989a) Two-dimensional models of metamorphism and anatexis in folded regions of the crust. 1. Model of magmatic intrusive. Geologiya i Geofizika 30(6):54–58

    Google Scholar 

  • Reverdatto VV, Kalinin AS (1989b) Two-dimensional models of metamorphism and anatexis in folded regions of the Earth’s crust. 2. Model of fluid flow. Geologiya i Geofizika 30(8):37–42

    Google Scholar 

  • Reverdatto VV, Kalinin AS (1990) Two-dimensional models of metamorphism and anatexis in folded belts of Earth’s crust. 3. Combined fluid-magmatic model, comparison with other models, and analysis of the problem. Geologiya i Geofizika 31(6):1–8

    Google Scholar 

  • Reverdatto VV, Melenevskij VN (1983) Magmatic heat as a factor of hydrocarbon generation; the case of the basaltic sills. Geol Geofiz 24(6):13–21

    Google Scholar 

  • Reverdatto VV, Polyansky OP (1992) Evolution of PT-parameters in the alternative models of metamorphism. Dokl Akad Nauk SSSR 325(5):1017–1020

    Google Scholar 

  • Reverdatto VV, Polyansky OP (2004) Modelling of the thermal history of metamorphic zoning in the Connemara region (western Ireland). Tectonophysics 379:77–91

    Article  Google Scholar 

  • Reverdatto VV, Sheplev VS (1998) Geodynamic factors of metamorphism and their modeling: review and analysis of the problem. Russ Geol Geophys 39(12):1664–1677

    Google Scholar 

  • Reverdatto VV, Sharapov VN, Melamed VG (1970) The controls and selected peculiari- ties of the origin of contact metamorphic zonation. Contrib Mineral Petrol 29:310–337

    Article  Google Scholar 

  • Reverdatto VV, Sharapov VN, Slobodskoy RM (1972) Some questions of analytical simulation of contact metamorphism. Contrib Mineral Petrol 36:195–206

    Article  Google Scholar 

  • Reverdatto VV, Sharapov VN, Lavrent’ev Y et al (1974) Investigations in isochemical contact metamorphism. Contrib Mineral Petrol 48:287–299

    Article  Google Scholar 

  • Reverdatto VV, Melenevskii VN, Melamed VG (1982) Contact-metamorphism of the rocks containing dispersed organic-matter - time and temperature as factors of hydrocarbon generation in the case of parallel basaltic sills. Dokl Akad Nauk SSSR 266(4):952–955

    Google Scholar 

  • Reverdatto VV, Polyansky OP, Ananyev VA (1992) Model estimates of paleotemperatures and burial metamorphism during rifting processes. Dokl Akad Nauk SSSR 323(5):921–924

    Google Scholar 

  • Reverdatto VV, Sheplev VS, Polyansky OP (1995) Burial metamorphism and evolution of rift troughs—a model approach. Petrology 3(1):31–37

    Google Scholar 

  • Rey PF, Teyssieur C, Whitney DL (2009) Extension rates, crustal melting, and core complex dynamics. Geology 37:391–394

    Article  Google Scholar 

  • Robin CMI, Bailey RC (2009) Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37(6):523–526

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28

    Article  Google Scholar 

  • Ross DC (1985) Mafic gneissic complex (batholithic root?) in the southernmost Sierra Nevada, California. Geology 13:288–291

    Article  Google Scholar 

  • Rozen OM, Shchipansky AA, Turkina OM (2008) Geodinamika ranney Zemli: evoluciya i ustoychivost’ geologicheskih processov (ofiolity, ostrovnye dugi, cratony, osadochnye basseiny) (Geodynamics of the Early Earth: the evolution and stability of geological processes (ophiolites, island arcs, cratons, sedimentary basins)). Nauchnyi Mir, Moscow

    Google Scholar 

  • Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res 100(B12):24187–24215

    Article  Google Scholar 

  • Ruppel C, Hodges KV (1994) Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde and inverted metamorphism. Tectonics 13:17–44

    Article  Google Scholar 

  • Sajeev K, Windley BF, Hegner E et al (2013) High-temperature, high-pressure granulites (retrogressed eclogites) in the central region of the Lewissian, NW Scotland: crustal-scale subduction in the Neoarchaean. Gondwana Res 23:526–538

    Article  Google Scholar 

  • Sams DB, Saleeby JB (1988) Geology and petrotectonic significance of crystalline rocks of the southernmost Sierra Nevada, California. In: Ernst WG (ed) Metamorphism and crustal evolution, Western United States. Rubey vol 7. Prentice-Hall, Englewood Cliffs NJ, pp 865–893

    Google Scholar 

  • Sandiford M, van Kranendonk MJ, Bodorkos S (2004) Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains: a model based on the eastern Pilbara Craton, Western Australia. Tectonics 23. https://doi.org/10.1029/2002tc001452

  • Schumacher JC, Schumacher R, Robinson P (1989) Acadian metamorphism in central Massachusetts and southwestern New Hampshire: evidence for contrasting P-T trajectories In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts, vol 43. Geol Soc Spec Publ, pp 453–460

    Google Scholar 

  • Schmalholz SV, Podladchikov YY (2013) Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high pressure rocks. Geophys Res Lett 40:1984–1988

    Article  Google Scholar 

  • Schmalholz SM, Duretz T, Schenker FL et al (2014) Kinematics and dynamics of tectonic nappes: 2-D numerical modelling and implications for high and ultra-high pressure tectonism in the Western Alps. Tectonophysics 631:160–175

    Article  Google Scholar 

  • Searle PM, Stephenson B, Walker J et al (2007) Restoration of the Western Himalaya: implications for metamorphic protoliths, thrust and normal faulting, and channel flow models. Episodes 30(4):242–257

    Google Scholar 

  • Sengor AMC, Burke K (1978) Relative timing of rifting and volcanism on the earth and its tectonic implications. Geophys Res Lett 5:419–421

    Article  Google Scholar 

  • Sharapov VN, Averkin YuA (1990) Dinamika teplo- i massoperenosa v ortomagmaticheskih fluidnyh sistemah (Dynamics of heat and mass transfer in orthomagmatic fluid systems). Nauka, Novosibirsk

    Google Scholar 

  • Sharapov VN, Akimtsev VA, Dorovsky VN et al (2000) Dinamika razvitiya rudno-magmatitcheskih sistem zon spredinga (Dynamics of development of ore-magmatic systems of spreading zones). Publishing house of SB RAS, Novosibirsk

    Google Scholar 

  • Sheplev VS, Reverdatto VV (1994) The investigation of a model of rifting process. Dokl Akad Nauk SSSR 334(1):103–105

    Google Scholar 

  • Shi Y, Wang C (1987) Two-dimensional modeling of the P-T-paths of regional metamorphism in simple overthrust terraines. Geology 15:1048–1051

    Article  Google Scholar 

  • Shimizu M (1986) The Tokuwa batholith, central Japan, – an example of occurrence of ilmenite—series and magnetite—series granitoids in a batholith. The University Museum Bull no 28, The University of Tokyo, Tokyo

    Google Scholar 

  • Shmonov VM, Vitovtova VM, Zharikov AV (2002) Fluidnaya pronitsaemost’ porod zemnoi kory (Fluid permeability of rocks of the Earth’s crust). Nauchniy Mir, Moscow

    Google Scholar 

  • Siegesmund S, Becker JK (2000) Emplacement of the Ardara pluton (Ireland): new constraints from magnetic fabrics, rock fabrics and age dating. Int J Earth Sci 89(2):307–327

    Article  Google Scholar 

  • Simonov VA, Sakiev KS, Volkova NI et al (2008) Conditions of formation of the Atbashi Ridge eclogites (South Tien Shan). Russ Geol Geophys 49(11):803–815

    Article  Google Scholar 

  • Sklyarov EV (2006) Exhumation of metamorphic complexes: basic mechanisms. Russ Geol Geophys 47(1):68–72

    Google Scholar 

  • Sklyarov EV, Gladkochub DP, Donskaya TV et al (2001) Metamorfizm i tektonika (Metamorphism and Tectonics). Internet Engineering, Moscow

    Google Scholar 

  • Sobolev NV, Shatsky VS (1987) Inclusions of carbon minerals in garnets from metamorphic rocks. Geologiya i Geofisika 28(8):1–18

    Google Scholar 

  • Sobolev AV, Sobolev SV, Kuzmin DV et al (2009) Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ Geol Geophys 50(12):999–1033

    Article  Google Scholar 

  • Sommer H, Krӧner A (2013) Ultra-high temperature granulite-facies metamorphic rocks from the Mozambique belt of SW Tanzania. Lithos 170–171:117–143

    Article  Google Scholar 

  • Sorokov DS, Ginsburg GD (eds) (1974) Yenisei-Khatangskaya neftegazonosnaya oblast’ (Yenisei-Khatanga oil and gas province). Sci Res Inst Geol Arctic, Leningrad

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington

    Google Scholar 

  • Spear FS, Kohn MJ, Harrison TM (1989) A thermal model for west-central New Hampshire. Geol Soc Am, 1989 Annual Meeting 21:67–68

    Google Scholar 

  • Spear FS, Hickmott DD, Selverstone J (1990) Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. Geol Soc Am Bull 102:1344–1360

    Article  Google Scholar 

  • Spear FS, Kohn MJ, Cheney JT et al (2002) Metamorphic, thermal and tectonic evolution of Central New England. J Petrol 43:2097–2120

    Article  Google Scholar 

  • Spear FS, Peacock SM, Kohn MJ et al (1991) Computer programs for petrologic P-T-t path calculations. Am Mineral 76:2009–2012

    Google Scholar 

  • Spry AH, Solomon M (1964) Columnar buchites at Apsley, Tasmania. Quart J Geol Soc London 120:519–545

    Article  Google Scholar 

  • Strehlau J, Meissner R (1987) Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data. In: Fuchs K, Froidevaux C (eds) Compositions, structure and dynamics of the lithosphere-astenosphere system, Geodyn Ser, vol 16. AGU, Washington, pp 69–87

    Google Scholar 

  • Stüwe K (2002) Geodynamics of the lithosphere. Springer, Heidelberg

    Book  Google Scholar 

  • Sukhorukov VP, Polyansky OP, Krylov AA et al (2016) Reconstruction of the metamorphic P-T path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai. Petrology 24(4):409–432

    Article  Google Scholar 

  • Tapponnier P, Molnar P (1979) Active faulting and Cenozoic tectonics of the Tian Shan, Mongolia and Baikal regions. J Geophys Res 84(B7):3425–3459

    Article  Google Scholar 

  • Toé W, Vanderhaeghe O, André-Mayer A-S et al (2013) From migmatites to granites in the Pan-African Damara orogenic belt, Namibia. J African Earth Sci 85:62–74

    Article  Google Scholar 

  • Thompson A, Schulmann K, Jezek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks on convergent orogens. Geology 25:491–494

    Article  Google Scholar 

  • Thybo H, Artemieva IM (2013) Moho and magmatic underplating in continental lithosphere. Tectonophysics 609:605–619

    Article  Google Scholar 

  • Turcotte DL, Emerman SH (1983) Mechanism of active and passive rifting. Tectonophysics 94:39–50

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics. Applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Turner FJ (1968) Metamorphic petrology. Mineralogical and field aspects. McGraw-Hill, New York

    Google Scholar 

  • Turner FJ (1973) Buoyancy effects in fluids. (Cambridge monographs on mechanics and applied mathematics). Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511608827

  • Turner FJ, Verhoogen J (1951) Igneous and metamorphic petrology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Van der Wal D, Vissers RLM (1993) Uplift and emplacement of upper mantle rocks in the western Mediterranean. Geology 21:1119–1122

    Article  Google Scholar 

  • Van Kranendonk MJ, Collins WJ, Hickman A et al (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res 131:173–211

    Article  Google Scholar 

  • Vanderhaeghe O (2004) Structural development of the Naxos migmatite dome. In: Whitney DL, Teyssier C, Siddoway CS (eds) Gneiss domes in orogeny. Geol Soc Am Special Paper, vol 380. pp 211–228

    Google Scholar 

  • Veevers JJ (1984) Phanerozoic earth history of Australia. Oxford geol sci ser no 2. Clarendon Press, Oxford

    Google Scholar 

  • Volkova NI, Sklyarov EV (2007) High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russ Geol Geophys 48(1):83–90

    Article  Google Scholar 

  • Volkova NI, Tarasova EN, Polyanskii NV et al (2008) High-pressure rocks in the serpentinite melange of the Chara zone, Eastern Kazakhstan: Geochemistry, petrology, and age. Geochem Intern 46(4):386–401

    Article  Google Scholar 

  • Volkova NI, Stupakov SI, Babin GA et al (2009) Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan. Geochem Intern 47(4):380–392

    Article  Google Scholar 

  • Volkova NI, Travin AV, Yudin DS (2011) Ordovician blueschist metamorphism as a reflection of accretion-collision events in the Central Asian orogenic belt. Russ Geol Geophys 52(1):72–84

    Article  Google Scholar 

  • Voll G, Töpel J, Pattison DRM et al (1991) Equilibrium and kinetics in contact metamorphism. The Ballachulish igneous complex and its aureole. Springer, Heidelberg

    Book  Google Scholar 

  • Vrijmoed JC, Podladchikov YY, Andersen TB et al (2009) An alternative model for ultra-high pressure in the Svartberget Fe-Ti garnet-peridotite, Western Gneiss Region, Norway. Eur J Mineral 21:1119–1133

    Article  Google Scholar 

  • Walter MJ (2003) Melt extraction and compositional variability in mantle lithosphere. In: RW Carlson (ed) Treatise in geochemistry. The mantle and core, vol 2. Holland HD, Turekian KK (eds) Elsevier-Pergamon, Oxford, pp 363–394

    Google Scholar 

  • Watson JV (1978) Precambrian thermal regimes. Philosoph transact Royal Soc London 288:431–440

    Article  Google Scholar 

  • Weinberg RF, Podladchikov Y (1994) Diapiric ascent of magmas through power crust and mantle. J Geophys Res 99(B5):9543–9559

    Article  Google Scholar 

  • Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res 94(B10):13919–13950

    Article  Google Scholar 

  • Wells PRA (1979) Chemical and thermal evolution of Archean sialic crust, southern West Greenland. J Petrol 20:187–226

    Article  Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. J Struct Geol 4:105–115

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94(B10):7685–7729

    Article  Google Scholar 

  • Whitney DL, Miller RB, Paterson SR (1999) P-T-t evidence for mechanisms of vertical tectonic motion in a contractional orogen: north-western US and Canadian Cordillera. J Metamorphic Geol 17:75–90

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Wu CM, Zhang J, Ren LD (2004) Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. J Petrol 45:1907–1921

    Google Scholar 

  • Xiao W, Windley BF, Badarch G et al (2004) Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia. J Geol Soc London 161:339–342

    Article  Google Scholar 

  • Yardley BWD, Barber JP, Gray JR (1987) The metamorphism of the Dalradian rocks of western Ireland and its relation to tectonic setting. Philosoph Transact R Soc London 321:243–270

    Article  Google Scholar 

  • Yarmolyuk VV, Kozlovsky AM, Kuzmin MI (2016) Zoned magmatic areas and anorogenic batholith formation in the Central Asian Orogenic Belt (by the example of the Late Paleozoic Khangai magmatic area). Russ Geol Geophys 57(3):357–370

    Article  Google Scholar 

  • Yin A, Dubey CS, Kelty TK et al (2010) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology and tectonic evolution of the Eastern Himalaya. Geol Soc Amer Bull 122:360–395

    Article  Google Scholar 

  • Zen E, White WS, Hadley JB et al (1968) Studies of Appalachian geology, northern and marine. Wiley, New York

    Google Scholar 

  • Zhang J, Wei C, Chu H (2015) Blueschists metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China. J Asian Earth Sci 97:352–364

    Article  Google Scholar 

  • Zlobin VA, Kulikov AA, Bobrov VA (1975) Zakonomernosti raspredeleniya radioaktivnykh elementov v dokembriyskih otlozheniyah Eniseyskogo kryazha (Objective laws of distribution of radioactive elements in Precambrian suits of Yenisei Range). In: Kuznetsov VA (ed) Radioactive elements in rocks. Nauka, Novosibirsk, pp 198–203

    Google Scholar 

  • Zorin YuA (1981) The Baikal rift: an example of the intrusion of asthenospheric material into lithosphere as the cause of disruption of lithospheric plates. Tectonophysics 73:91–104

    Article  Google Scholar 

  • Zwart HJ (1969) Metamorphic facies series in the European orogenic belts and their bearing on the causes of orogeny. Geol Assoc Canada Special Paper 5:7–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Reverdatto .

Appendix

Appendix

The formulation is based on a coupled thermomechanical model of planar deformation. For twice continuously differentiable fields of the velocity vector ui, the equilibrium equations in differential form, together with the boundary conditions, have the form (here and below, the indices i and j run through 1, 2) (Korobeynikov 2000):

$$\begin{aligned} \sigma_{ij,j} + \rho g_{i} = 0{\text{ in }}V, \hfill \\ n_{i} \sigma_{ij} = f_{j}^{*} {\text{ at }}S_{f} , \hfill \\ u_{i} = u_{i}^{*} {\text{ at }}S_{u} . \, \hfill \\ \end{aligned}$$
(3.21)

Here, σij are components of the symmetric Cauchy stress tensor (i, j = 1, 2); gi the components of the gravity vector; ρ is the current mass density of the material; V is the domain occupied by the body in its current configuration; S is the closed boundary of domain V; Su and Sf are the segments of surface S on which the components of velocity vector ui and Cauchy stress vector \(n_{i} \sigma_{ij}\) are specified; ni are the vector components of the external unit normal vector to surface Sf; and summation goes over repeated indices from 1 to 2; the comma denotes partial derivative with respect to the corresponding coordinate, and the asterisk denotes a prescribed variable value.

For twice continuously differentiable temperature fields T, the heat balance equation may be expressed in the form (Landau and Lifshitz 1986):

$$\begin{aligned} \rho c_{p} \dot{T} = \sigma_{ij} d_{ij} + kT_{,ii} + r{\text{ in }}V, \hfill \\ kT_{,i} n_{i} = q_{n}^{*} {\text{ at }}S_{q} , \hfill \\ T = T^{*} {\text{ at }}S_{T} . \hfill \\ \end{aligned}$$
(3.22)

Here, cp is specific heat; \(d_{ij} \equiv \frac{1}{2}\left( {u_{i,j} + u_{j,i} } \right)\) are strain rate tensor components; \(q_{i}\) are heat flux vector components; k is thermal conductivity; r is the heat source in a unit volume; \(S_{q}\) and \(S_{T}\) are the segments of surface S on which \(q_{n}^{*}\) and \(T^{ * }\) are specified, respectively; the dot above quantity denotes partial derivative with respect to time. Equation (3.22) should be complemented with initial conditions in the form of temperature fields specified at each point of domain V at initial time.

Note that the differential Eqs. (3.21) and (3.22) require that the functions contained in them be highly smooth. If we ignore this requirement (for instance, in the case of discontinuous fields of stress tensor components), we should introduce the internal interfaces and specify the discontinuity conditions for functions or their derivatives on these boundaries. However, with the weak formulations of equations, the internal boundaries are not required because the equations will be satisfied irrespective of these discontinuities. The finite element method, which is applied in this study for numerical modeling of geodynamical processes, is based on the weak forms of thermomechanical equations. The equilibrium equations in weak form correspond to the principle of balance of virtual works of the internal and external forces:

$$\int\limits_{V} {\sigma_{ij} \delta d_{ij} dV = } \int\limits_{V} {\rho g_{i} \delta u_{i} dV} + \int\limits_{{S_{f} }} {f_{i}^{*} \delta u_{i} dS \, \ \ \forall \delta u_{i} \left( {\delta u_{i} = 0{\text{ at }}S_{u} } \right)},$$
(3.23)

while the weak form of heat transfer equation is

$$\int\limits_{V} {\left( {\rho c\dot{T}\delta T + kT_{{{\mathbf{,}}i}} \delta T_{,i} } \right)dV} = \int\limits_{V} {\left( {\sigma_{ij} d_{ij} + r} \right)\delta TdV} + \int\limits_{{S_{q} }} {q_{n}^{*} \delta TdS \,\ \ \forall \delta T\, \left( {\delta T = 0{\text{ at }}S_{T} } \right)},$$
(3.24)

where \(\delta ( \, ), \forall ( \, )\) mean variation and universal quantifier in corresponding variable.

The computational domain, including the sections of the earth’s crust and mantle lithosphere, is presented in Fig. 3.30. In the same figure, boundary conditions are given both for solving the mechanical problem (Fig. 3.30a) and for the thermal problem (Fig. 3.30b). Figure 3.30b shows the initial temperature distribution that corresponds to the stationary geothermal lithosphere of the craton with a mantle heat flux Q = 17 mW m−2 and the thermophysical parameters of the crust and mantle specified in Table 3.8. The following boundary conditions for the mechanical problem are employed: the top boundary is a free surface, the bottom boundary and lateral boundaries of the lithospheric mantle are free slip, lithostatic pressure is assumed on the lateral boundaries of the crust. The latter condition means that all lateral boundaries of the crust move horizontally. The crust and the mantle represent two bodies in contact, and Coulomb friction with the coefficient of friction μ = 0.9 is assumed for the surface of the deformable contact. For the thermal problem, we set up the boundary conditions of the isothermal upper surface (T = 0 °C), heat-insulated lateral boundaries, the constant thermal flux at the base of the lithosphere outside the plume region and the constant temperature (1450, 1550 and 1650 °C) in the 100-km zone of the sublithospheric upper mantle plume (Fig. 3.30).

Table 3.8 Thermomechanical model parameters of the crust and mantle

The model accounts for interaction of a partially molten material with the mantle at subsolidus temperature, which requires consideration of contrasting rheological properties of the rocks. The main strain mechanism in mantle under high temperatures and pressures is described by dislocation creep (Karato and Wu 1993). In the subsolidus and partially molten state, the medium is described by non-Newtonian nonlinear viscosity. A common approach to modeling the mantle flows consists in the use of constitutive relations for the non-Newtonian viscous incompressible fluid:

$$\sigma_{ij} = - p\delta_{ij} + s_{ij} ;\quad s_{ij} = 2\eta d_{ij},$$
(3.25)

where p is the lithostatic pressure; sij are the components of the Cauchy deviator stress tensor; η is the nonlinear P-T-dependent viscosity expressed as (Ranalli 1995):

$$\eta = \exp \left( {\frac{ - c\phi }{n}} \right){\rm A}^{{ - \frac{1}{n}}} \left[ {\dot{\varepsilon }_{II} } \right]^{{\frac{(1 - n)}{n}}} \exp \left( {\frac{{H + pV_{a} }}{nRT}} \right),\,\,\dot{\varepsilon }_{II} \equiv \frac{1}{2}d_{ij} d_{ij},$$
(3.26)

where \(\dot{\varepsilon }_{II}\) is the second invariant of the strain rate tensor; T is temperature; p is pressure; A is the coefficient before the exponent; n is the power-law exponent (n = 1 for the Newtonian liquid); \(\phi\) is the melt fraction; H and Va are activation energy and activation volume, respectively; c is a given parameter in the interval from 30 to 45; and R is the universal gas constant.

In this model we used complete constitutive equations of thermal elastoplasticity with allowance for creep deformations. With the combined rheological model, the components of strain rate tensor are cast as the sum of rates of elastic \(d_{ij}^{e}\), thermal \(d_{ij}^{T}\), plastic \(d_{ij}^{p}\) and creep strains \(d_{ij}^{c}\) (Korobeynikov 2000):

$$d_{ij}^{{}} = d_{ij}^{e} + d_{ij}^{T} + d_{ij}^{p} + d_{ij}^{c}.$$
(3.27)

It is suggested that non-elastic components of the strain rate tensor correspond to the conditions of incompressibility, i.e., for the plain strain conditions, they can be written as \(d_{11}^{p} + d_{22}^{p} = 0\) and \(d_{11}^{c} + d_{22}^{c} = 0.\)

In order to describe the rates of plastic and thermal strains, we used standard approach described in the works (Korobeynikov 2000; Polyansky et al. 2010a). As was shown by experiments on the rock strength, the tangential stresses never exceed some value corresponding to the yield stress, \(\sigma_{\text{Y}}\). In this relation, our modeling was based on the rheological model of medium involving both plastic and viscous strains. The plastic strains in mantle (in nearly liquid state) can be described by the model of material with the Huber—Mises yield surface, with sufficiently low value of yield stress (Gerya and Burg 2007; Polyansky et al. 2010b). The computations show that the yield stress varied from 100 to 400 MPa for crustal material and of 0.1 to 1 MPa for mantle plume.

For the creep components of the strain rate tensor, we use the Norton steady-state creep law (Korobeynikov 2000):

$$d_{ij}^{c} = \frac{3}{2}\frac{{\dot{\bar{\varepsilon }}^{c} }}{{\bar{\sigma }}}s_{ij},$$
(3.28)

where \(\bar{\sigma } = \sqrt {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}s_{ij} s_{ij} }\) is the effective stress and \(\dot{\bar{\varepsilon }}^{c} = \sqrt {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}d_{ij}^{c} d_{ij}^{c} }\) is the effective rate of creep strain. According to (Ranalli 1995), the equation for effective rate of creep deformations has the form

$$\dot{\bar{\varepsilon }}^{c} = 3^{{ - \frac{n + 1}{2}}} 2^{1 - n} A\exp \left( {c\phi } \right)\bar{\sigma }^{n} \exp \frac{{ - \left( {H + pV_{0} } \right)}}{RT}$$
(3.29)

The experimental data on the strains in partially molten and aqueous olivine–basalt aggregates suggest the exponential decay of viscosity with increase of melt fraction: \({\eta \mathord{\left/ {\vphantom {\eta {\eta_{0} }}} \right. \kern-0pt} {\eta_{0} }} = \exp \left( {\frac{ - c\phi }{n}} \right)\) where c ≈ 45 (Mei et al. 2002).

At such parameters, the ratio of mixture viscosity to that in the absence of melt was taken within the range from 0.2 to 10−3. Geochemical data on mantle peridotites from xenoliths within the ancient cratons such as Siberian, Slave and Kaapval (Walter 2003), indicate a degree of melting and extraction of the melt in the range of 30–50% with an average value of 45%. Figure 3.70 shows the temperature dependence of viscosity of wet and dry mantle rocks according to (3.26) at the strain rate of 10−13 s−1 based on experimental data of Chopra and Patterson (1984), Karato and Wu (1993).

Fig. 3.70
figure 70

Density and viscosity distribution as a function of temperature and phase transition during melting, accepted in models. Moho depth is provisional. 1, wet quartzite (Kronenberg and Tullis 1984); 2, diabase (Carter and Tsenn 1987); 3, wet dunite (Chopra and Patterson 1984); 4, molten wet olivine-basalt (Mei et al. 2002)

The model was underlain by the reference values of parameters, which corresponded to the continental felsic crust (Ranalli 1995; Gerya and Burg 2007) and mantle with rheology of wet dunite (Chopra and Patterson 1984), dry olivine (Karato and Wu 1993) or olivine–basalt–water–melt aggregate (Mei et al. 2002). Rheological parameters of crustal and mantle rocks are shown in Table 3.8.

The equation of state is assumed in the form of the dependence of density ρ on thermal expansion α and melt fraction \(\phi\):

$$\rho = \rho_{s} \left( {1 {-} \alpha T - \frac{{\rho_{s} - \rho_{m} }}{{\rho_{s} }}\phi } \right),$$
(3.30)

where \(\rho_{m}\) and \(\rho_{s}\) are the densities of the melt and the solid matrix, respectively. Beyond the melt region, \(\phi = 0\) and density variations are only due to thermal expansion; in the melt region, the melt fraction is assumed to be constant. Figure 3.70 shows the temperature dependence of density accounting for phase transition during melting of the granite crust and peridotite mantle.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., Kolobov, V.Y. (2019). Causes, Geodynamic Factors and Models of Metamorphism. In: The Nature and Models of Metamorphism. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-03029-2_3

Download citation

Publish with us

Policies and ethics