Skip to main content
Log in

Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Stability relations of Fe-Mg cordierite with K feldspar have been determined for conditions of muscovite-quartz instability, applicable to highgrade metamorphism of pelitic rocks. Fe cordierite, K feldspar, and water break down to Fe biotite, sillimanite, and quartz at pressures above a line through 640 ° C, 2kbar and 710 ° C, 2.7 kbar. A P-X diagram for the Fe-Mg analogue of this reaction at 675 ° C is consistent with a naturally occuring cordierite-biotite K D value of 0.53 if Al content of biotite and cordierite water of hydration are taken into account.

At higher temperatures Fe cordierite breaks down alone to almandine, sillimanite, quartz and water at pressures above a line through 650 ° C, 3.41 kbar and 760 ° C, 2.9 kbar. For the Fe-Mg reaction, P-X data up to 4 kbar may be extrapolated with use of natural K D values increasing toward one with increasing temperatures.

Lines of constant cordierite composition for the two reactions intersect in an Fe-Mg univariant reaction of sillimanite-biotite-quartz to cordieritealmandine-K feldspar-water which is metastable relative to melt at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) = P tot Reduced water pressure and impurities in the garnet and K feldspar greatly reduce the temperature of this reaction so that it becomes a reasonable reaction for upper amphibolite and granulite facies conditions.

The results demonstrate that (1) cordierite may be used as a geobarometer if temperature and approximate \(X_{{\text{H}}_{\text{2}} {\text{O}}} \) can be estimated, (2) almandine low in Mn and Ca does not participate in cordierite reactions where muscovite is present, and (3) the reaction which forms cordierite, almandine, and K feldspar is a possible melt-forming reaction which, under reduced \(P_{{\text{H}}_{\text{2}} {\text{O}}} \), occurs about 50 ° C above the muscovite melting reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, F.: Cordierite-garnet gneiss and associated microcline-rich pegmatite at Sturbridge, Massachusetts and Union, Connecticut. Am. Mineralogist 47, 907–918 (1962)

    Google Scholar 

  • Best, M.G., Weiss, L.E.: Mineralogical relations in some pelitic hornfelses from the southern Sierra Nevada. Am. Mineralogist 49, 1240–1266 (1964)

    Google Scholar 

  • Burnham, C.W.: Lattice constant refinement. Carnegie Inst. Wash. Yearbook 61, 132–135 (1962)

    Google Scholar 

  • Burnham, C.W., Holloway, J.R., Davis, N.F.: Thermodynamic properties of water to 1000 °C and 10,000 bars. Geol. Soc. Am. Spec. Papers 132, 96 p. (1969)

  • Chatterjee, N.D., Johannes, W.: Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite KAl2(AlSi3O10(OH)2). Contrib. Mineral. Petrol. 48, 89–114 (1974)

    Google Scholar 

  • Chinner, G.A.: Almandine in thermal aureoles. J. Petrol. 3, 316–340 (1962)

    Google Scholar 

  • Chinner, G.A.: The distribution of pressure and temperature during Dalradian metamorphism. Quart. J. Geol. Soc. London 122, 159–186 (1966)

    Google Scholar 

  • Currie, K.L.: The reaction 3 cordiertie = 2 garnet+4 sillimanit+5 quartz as a geological thermometer in the Opinicon Lake region, Ontario. Contrib. Mineral. Petrol. 33, 215–226 (1971)

    Google Scholar 

  • Currie, K.L.: A note on the calibration of the garnet-cordierite geothermometer and geobarometer. Contrib. Mineral. Petrol. 44, 35–44 (1974)

    Google Scholar 

  • Dallmeyer, R.D., Dodd, R.T.: Distribution and significance of cordierite in paragneisses of the Hudson Highlands, southeastern New York. Contrib. Mineral. Petrol. 33, 289–308 (1971)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock forming minerals, 3, Sheet silicates. London: Longmans 1962

    Google Scholar 

  • Dougan, T.W.: Cordierite gneisses and associated lithologies of the Guri area, northwest Guayana Shield, Venezuela. Contrib. Mineral. Petrol. 46, 169–188 (1974)

    Google Scholar 

  • Fyfe, W.S., Turner, F.J., Verhoogen, J.: Metamorphic reactions and metamorphic facies. Geol. Soc. Am. Mem. 73, 259 p. (1958)

    Google Scholar 

  • Gable, D.J., Sims, P.K.: Geology and regional metamorphism of some high-grade cordierite gneisses, Front Range, Colorado. Geol. Soc. Am. Spec. Papers 128, 87 p. (1969)

  • Griffin, D.T., Ribbe, P.H.: The crystal chemistry of staurolite. Am. J. Sci. 273A, 479–495 (1973)

    Google Scholar 

  • Guidotti, C.V., Cheney, J.T., Conatore, P.D.: Coexisting cordierite+biotite+chlorite from Rumford Quadrangle, Maine. Geology 3, 147–148 (1975a)

    Google Scholar 

  • Guidotti, C.V., Cheney, J.F., Conatore, P.D.: Interrelationship between Mg/Fe ratio and octahedral Al content in biotite. Am. Mineralogist 60, 849–853 (1975b)

    Google Scholar 

  • Haase, C.S., Rutherford, M.J.: The effect of pressure and temperature on the compositions of biotite and cordierite coexisting with sillimanite+quartz+sanidine (muscovite). Geol. Soc. Am. Abstracts with Programs 7, 1094–1095 (1975)

    Google Scholar 

  • Harris, N.B.W.: The significance of garnet and cordierite from the Sioux Lookout region, English River gneiss belt, Northern Ontario. Contrib. Mineral. Petrol. 55, 91–104 (1976)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of the stability of cordierite and garnet in pelitic compositions, I. Compositions with excess alumino-silicate. Contrib. Mineral. Petrol. 33, 309–330 (1971)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures, II. Compositions without excess alumino-silicate. Contrib. Mineral. Petrol. 35, 331–354 (1972)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures, III. Synthesis of experimental data and geological applications. Contrib. Mineral. Petrol. 38, 151–166 (1973)

    Google Scholar 

  • Hess, P.C.: The metamorphic paragenesis of cordierite in pelitic rocks. Contrib. Mineral. Petrol. 24, 191–207 (1969)

    Google Scholar 

  • Hewitt, D.A., Wones, D.R.: Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites. Am. Mineralogist 60, 854–862 (1975)

    Google Scholar 

  • Hey, M.H.: A new review of the chlorites. Mineral. Mag. 30, 227–292 (1954)

    Google Scholar 

  • Hoffer, E.: The reaction sillimanite+biotite+quartz = cordierite+K-feldspar+H2O and partial melting in the system K2O-FeO-MgO-Al2O3-SiO2-H2O. Contrib. Mineral. Petrol. 55, 127–130 (1976)

    Google Scholar 

  • Holdaway, M.J.: Stability of andalusite and the aluminium silicate phase diagram. Am. J. Sci. 271, 97–131 (1971)

    Google Scholar 

  • Holdaway, M.J.: Mutal compatibility relations of the Fe+2-Mg-Al silicates at 800 °C and 3kb. Am. J. Sci. 276, 285–308 (1976)

    Google Scholar 

  • Hsu, L.C.: Selected phase relationships in the system Al-Mn-Fe-Si-O-H: a model for garnet equilibria. J. Petrol. 9, 49–83 (1968)

    Google Scholar 

  • Hutcheon, I., Froese, E., Gordon, T.M.: The assemblage quartz-sillimanite-garnet-cordierite as an indicator of metamorphic conditions in the Daly Bay Complex, N.W.T. Contrib. Mineral. Petrol. 44, 29–34 (1974)

    Google Scholar 

  • Kamineni, D.C.: Chemical mineralogy of some cordierite-bearing rocks near Yellowknife, Northwest Territories, Canada. Contrib. Mineral. Petrol. 53, 293–310 (1975)

    Google Scholar 

  • Kays, M.A., Medaris, L.G.: Petrology of the Hara Lake Paragneisses, northeastern Saskatchewan, Canada. Contrib. Mineral. Petrol. 59, 141–159 (1976)

    Google Scholar 

  • Kerrick, D.M.: Experimental determination of muscovite+quartz stability with \(P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{tot}}} \). Am. J. Sci. 272, 946–958 (1972)

    Google Scholar 

  • Lee, S.M., Holdaway, M.J.: Cordierite breakdown under high-pressure hydrous conditions: a comment. Contrib. Mineral. Petrol. 56, 289–295 (1976)

    Google Scholar 

  • Lee, S.M., Holdaway, M.J.: Significance of Fe-Mg cordierite stability relations on temperature, pressure, and water pressure in cordierite granulites. In: Geophys. Monogr. 20, AGU, Washington, D.C. (in press, 1977)

    Google Scholar 

  • Miyashiro, A.: Cordierite-indialite relations. Am. J. Sci. 255, 43–62 (1957)

    Google Scholar 

  • Newton, R.C.: An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol. 80, 398–420 (1972)

    Google Scholar 

  • Ohmoto, H., Kerrick, D.M., Shettel, D.L.: Stability of graphite-bearing metamorphic mineral assemblages in P-T-f 02 space. Geol. Soc. Am. Abstracts with Programs 7, 1217–1218 (1975)

    Google Scholar 

  • Okrusch, M.: Garnet-cordierite-biotite equilibria in the Steinach aureole, Bavaria. Contrib. Mineral. Petrol. 32, 1–23 (1971)

    Google Scholar 

  • Osberg, P.H.: An equilibrium model for Buchan-type metamorphic rocks south-central Maine. Am. Mineralogist 56, 569–576 (1971)

    Google Scholar 

  • Reinhardt, E.W.: Phase relations in cordierite-bearing gneisses from Gananoque area, Ontario. Can. J. Earth Sci. 5, 455–482 (1968)

    Google Scholar 

  • Richardson, S.W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol. 9, 467–488 (1968)

    Google Scholar 

  • Robie, R.A., Waldbaum, D.R.: Thermodynamic properties of minerals and related substances at 298.15 K (25.0 C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, 256 p. (1968)

    Google Scholar 

  • Schreyer, W., Yoder, H.S., Jr.: The system Mg-cordierite-H2O and related rocks. Neues Jahrb. Mineral. Abhandl. 101, 271–342 (1964)

    Google Scholar 

  • Schreyer, W.: Zur Stabilität des Ferrocordierits. Contrib. Mineral. Petrol. 11, 297–322 (1965)

    Google Scholar 

  • Schreyer, W., Seifert, F.: Compatibility relations of the aluminum silicates in the system MgO-Al2O3-SiO2-H2O and K2O-MgO-Al2O3-SiO2-H2O at high pressures. Am. J. Sci. 267, 371–388 (1969)

    Google Scholar 

  • Seifert, F.: Low-temperature compatibility relations of cordierite in haplopelites of the system K2O-MgO-Al2O3-H2O. J. Petrol. 11, 73–99 (1970)

    Google Scholar 

  • Seifert, F., Schreyer, W.: Eower temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: a redetermination. Contrib. Mineral. Petrol. 27, 225–238 (1970)

    Google Scholar 

  • Seki, Y.: Petrological study of hornfelses in the central part of the Median Zone of Kitakami Mountainland. Saitama Univ. Sci. Repts., Ser. B 2, 307–361 (1975)

    Google Scholar 

  • Skinner, B.J.: Physical properties of the garnet group. Am. Mineralogist 41, 428–436 (1956)

    Google Scholar 

  • Tewhey, J.D., Hess, P.C.: Continuous metamorphic facies changes related to chlorite-disappearance in a contact metamorphic aureole. Geol. Soc. Am. Abstracts with Programs 6, 80 (1974)

    Google Scholar 

  • Thompson, A.B.: Calculation of muscovite-paragonite-alkali feldspar phase relations. Contrib. Mineral. Petrol. 44, 173–194 (1974)

    Google Scholar 

  • Thompson, A.B.: Mineral relations in pelitic rocks: I. Prediction of P-T-X (Fe-Mg) phase relations. Am. J. Sci. 276, 401–424 (1976a)

    Google Scholar 

  • Thompson, A.B.: Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. Am. J. Sci. 276, 425–454 (1976b)

    Google Scholar 

  • Turner, F.J.: Metamorphic petrology. New York: McGraw-Hill 1968

    Google Scholar 

  • Turnock, A.C., Eugster, H.P.: Fe-Al oxides: phase relationships below 1,000 °C. J. Petrol. 3, 533–565 (1962)

    Google Scholar 

  • Weisbrod, A.: Cordierite-garnet equilibrium in the system Fe-Mn-Al-Si-O-H. Carnegie Inst. Wash. Yearbook 72, 515–523 (1973)

    Google Scholar 

  • Wones, D.R., Burns, R.G., Carrol, B.M.: Stability and properties of synthetic annite (abs.). Trans. Am. Geophys. Union 52, 369 (1971)

    Google Scholar 

  • Wones, D.R.: Stability of biotite: a reply. Am. Mineralogist 57, 316–317 (1972)

    Google Scholar 

  • Wood, B.J.: Fe2+-Mg2+ partition between coexisting cordierite and garnet-a discussion of the experimental data. Contrib. Mineral. Petrol. 40, 253–258 (1973)

    Google Scholar 

  • Wynne-Edwards, H.R., Hay, P.W.: Coexisting cordierite and garnet in regionally metamorphosed rocks from the Westport area, Ontario. Can. Mineralogist 71, 453–478 (1963)

    Google Scholar 

  • Zen, E-an: Construction of pressure-temperature diagrams for multicomponent systems after the method of Schreinemakers-a geometric approach. U.S. Geol. Surv. Bull. 1225, 56 p. (1966)

  • Zwart, H.J.: On the determination of polymetamorphic mineral associations and its application to the Bosost area (Central Pyranees). Geol. Rundschau 52, 38–65 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holdaway, M.J., Lee, S.M. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contrib. Mineral. and Petrol. 63, 175–198 (1977). https://doi.org/10.1007/BF00398778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398778

Keywords

Navigation