Skip to main content

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1462 Accesses

Abstract

The subject of this chapter is fabrication of ferroelectric components and microwave tunable devices based on them. The main methods of fabrication of ferroelectric components are considered including the single crystal growth and slicing techniques; bulk ceramic sintering; thick film, HTCC and LTCC technologies; chemical and physical deposition methods. The methods of fabrication of ferroelectric components are considered in association with structural characterizations which allows one to establish correlations between processing parameters and device performance. The basic principles and details of processing of devices utilizing ferroelectric components are given by examples of devices described in the Chap. 5. Special sections describe the general technology platforms of fabrication of microwave tunable devices based on thin films grown by chemical and physical deposition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acikel B (2002) High performance barium strontium titanate varactor technology for low cost circuit applications, PhD thesis, University of California, Santa Barbara.

    Google Scholar 

  • Al-Taei S et al. (2001) Multilayer ceramic integrated circuits (MCICs) technology and passive circuit design, Proceedings of the London Communication Symposium, 10–11 September 2001, 6th Annual London Conference on Communications:139–142.

    Google Scholar 

  • Bao R et al. (2008) Barium strontium titanate thin film varactors for room-temperature microwave device applications. J Phys D: Appl Phys 41:063001

    Article  ADS  CAS  Google Scholar 

  • Baumert B A et al. (1997) Characterization of sputtered barium strontium titanate and strontium titanate-thin films. J Appl Phys 82:2558

    Article  ADS  CAS  Google Scholar 

  • Bednorz J G, Arend H (1984) A 1 kW mirror furnace for growth of refractory oxide single crystals by a floating zone technique. J Cryst Growth 67:660–662.

    Article  ADS  CAS  Google Scholar 

  • Bednorz J G, Scheel H (1977) Flame-fusion growth of SrTiO 3. J Cryst Growth 41:5–12

    Article  ADS  CAS  Google Scholar 

  • Berge J et al. (2008) Field and temperature dependent parameters of the DC field induced resonances in Ba 0.25 Sr 0.75 TiO 3-based tunable thin film bulk acoustic resonators. J Appl Phys 103:064508-064508-8

    Article  ADS  CAS  Google Scholar 

  • Berge J, Vorobiev A, Gevorgian S (2007) The effect of growth temperature on the nanostructure and dielectric response of BaTiO 3 ferroelectric films. Thin Solid Films 515: 6302

    Article  ADS  CAS  Google Scholar 

  • Buse K, Baller F, Pankrath R et al. (1993) Photorefractive and related properties of Ba 0.984 Sr 0.016 TiO 3 Crystals. Solid State Commun 88:587–591

    Article  ADS  CAS  Google Scholar 

  • Carlson C M, Rivkin T V, Parilla P A et al. (2000) Large dielectric constant (.ε/.ε 0>6000) Ba 0.4 Sr 0.6 TiO 3 thin films for high performance microwave phase shifters. Appl Phys Lett 76:1920

    Article  ADS  CAS  Google Scholar 

  • Chang W, Horwitz J S, Carter A C et al. (1999) The effect of annealing on the microwave properties of Ba 0.5 Sr 0.5 TiO 3 thin films. Appl Phys Lett 74:1033

    Article  ADS  CAS  Google Scholar 

  • Chrisey D B, Hubler G K (1994) Pulsed Laser Deposition of Thin Films. John Wiley & Sons

    Google Scholar 

  • Cukauskas E J, Kirchoefer S W Pond J M (2000) Low-loss Ba 0.5 Sr 0.5 TiO 3 thin films by inverted cylindrical magnetron sputtering. J Appl Phys 88:2830

    Article  ADS  CAS  Google Scholar 

  • Das S N (1964) Quality of a ferroelectric material. IEEE Trans MTT 12(7):440

    Article  Google Scholar 

  • De Flaviis F (1997) Planar Microwave Integrated Phase Shifter Design with High Purity Ferroelectric Material. IEEE Trans MTT 45:963–969

    Article  Google Scholar 

  • De Flaviis F et al. (1995) Ferroelectric materials for wireless communications. COMCON 5th Int Conf Advances in Commun and Control, Rithymnon, Crete, Greece, June 26–30

    Google Scholar 

  • Deleniv A et al. (2003) Tunable ferroelectric components in LTCC technology. Digest IEEE Int Microwave Symposium 2:1997–2000

    Google Scholar 

  • Deleniv A et al. (2005) LTCC Compatible Ferroelectric Phase Shifters. IEEE IMS’2005

    Google Scholar 

  • Deleniv A, Eriksson A, Gevorgian S (2002) Design of Narrow-Band Tunable Band-Pass Filters Based on Dual Mode SrTiO 3 Disk Resonators. IEEE MTT-S International Microwave Symposium Digest 2:1197–1200

    Google Scholar 

  • Ditum C M, Button T W (2003) Screen printed barium strontium titanate films for microwave applications. J European Ceramic Society 23:2693–2697

    Article  CAS  Google Scholar 

  • Domenico M D, Johnson D A, Pantell R H (1962) Ferroelectric harmonic generator and the large-signal microwave characteristics of a ferroelectric ceramic. J Appl Phys 33:1697

    Article  ADS  Google Scholar 

  • Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New York

    Google Scholar 

  • Eriksson A, Deleniv A, Gevorgian S (2003) Orientation and direct current field dependent dielectric properties of bulk single crystal SrTiO 3  at microwave frequencies. J Appl Phys 93:2848–2854

    Article  ADS  CAS  Google Scholar 

  • Eriksson A, Deleniv A, Gevorgian S (2004) Two-Pole Tunable Bandpass Filter Based on YBCO Plated Single Crystal KTO Disk Resonators. IEEE Trans Appl. Supercond 14:1–6

    Article  CAS  Google Scholar 

  • Foster C M (1997) In: Ramesh R (Ed) Thin Film Ferroelectric Materials and Devices. Kluwer Acad Publ, Boston

    Google Scholar 

  • Frey M H et al. (1998) The Role of Interfaces on an Apparent Grain Size Effect on the Dielectric Properties for Ferroelectric Barium Titanate Ceramics. Ferroelectrics 206–207(1–4):337–53

    Article  Google Scholar 

  • Gevorgian S, Eriksson A, Deleniv A et al. (2002) The double loop hysteresis in DC dependent dielectric permittivity of SrTiO 3. J Appl Phys 92:61656171

    Article  CAS  Google Scholar 

  • Guo X G, Chen X S, Sun Y L et al. (2003) Electronic band structure of Nb doped SrTiO 3 from first principles calculation. Physics Letters A 317:501–506

    Article  ADS  CAS  Google Scholar 

  • Hagberg J et al. (2003) Printing with gravure methods in electronics. 14th European Microelectronics and Packaging Conference & Exhibition, Friedrichshafen, Germany, 23–25 June 2003

    Google Scholar 

  • Herner S B et al. (1993) The effect of various dopants on the dielectric properties of barium strontium titanate. Mater Lett 15:317–324

    Article  CAS  Google Scholar 

  • Hobby A (1997) Printing Thick Film Hybrids. DEK Printing Machines Ltd

    Google Scholar 

  • Hu W et al. (2005) Cost Effective Ferroelectric Thick Film Phase Shifter Based on Screen-Printing Technology. IEEE MTT-S: 591–594

    Google Scholar 

  • International Technology Roadmap for Semiconductors (ITRS). 2005 Edition, Executive Summary

    Google Scholar 

  • Irissou E et al. (2006) Influence of an inert background gas bimetallic cross-beam pulsed laser deposition. J Appl Phys 99:034904

    Article  ADS  CAS  Google Scholar 

  • Izuhara T, Osgood R M Jr, Levy M et al. (2002) Low-loss crystal-ion-sliced single-crystal potassium tantalate films. Appl Phys Lett 80:1046–1048

    Article  ADS  CAS  Google Scholar 

  • Jackson C M et al. (1992) Novel monolithic phase shifter combiing ferroelectric and high temperature superconductors. Micr Optic Technol Letters 5:722–726

    Article  ADS  Google Scholar 

  • Jackson T J and Palmer S B (1994) Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J Phys D: Appl Phys 27:1581–1594

    Article  ADS  CAS  Google Scholar 

  • Jantunen et al. (2004) Ferroelectric LTCC for multilayer devices. J Ceram Soc Jap 1305 [1129]:S1552–S1556

    Google Scholar 

  • Johnson, K M (1962) Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys 33:2826

    Article  ADS  Google Scholar 

  • Kanareykin A et al. (2006) Fast Switching Ferroelectric Materials for Accelerator Applications. In: Conde M, Eyberger C (Ed) 12th Advanced Accelerator Concepts Workshop AIP Conference Proceedings 877:311–319

    Google Scholar 

  • Keis V N et al. (1998) 20 GHz tunable filter based on ferroelectric (Ba,Sr)TiO, film varactors. Electronics Letters 34:1107–1109

    Article  CAS  Google Scholar 

  • Kim J-Y et al. (2004) Magnetically and electrically tunable devices using ferromagnetic/ferroelectric ceramics. Phys Stat Sol (b) 241:1714–1717

    Article  ADS  CAS  Google Scholar 

  • Kim KB, Yun TS, Lee JC et al. (2007) Integration of microwave phase shifter with BSTO varactor onto TiO 2 /Si wafer. Electronics Letters. doi:10.1049/el:2007 0448

    Google Scholar 

  • Kim K-B et al. (2006) Integration of Coplanar (Ba,Sr)TiO 3 Microwave Phase Shifters onto Si Wafers Using TiO 2 Buffer Layers. IEEE Transactions Ultrasonics, Ferroelectrics, and Frequency Control 53:518–524

    Article  Google Scholar 

  • Kim S S et al. (2006) Dielectric properties of ferroelectric (Ba 0.6 Sr 0.4 )TiO 3 thick films prepared by tape-casting, J Electroceram 17:451–454

    Article  CAS  Google Scholar 

  • Kim W J, Chang W, Qadri S B et al. (2000) Microwave properties of tetragonally distorted (Ba 0.5 Sr 0.5 )TiO 3 thin films. Appl Phys Lett 76:1185

    Article  ADS  CAS  Google Scholar 

  • Kirlin P et al. (1995) MOCVD of BaSrTiO 3 for ULSI DRAMS. Integrated Ferroelectrics 7:307

    Article  CAS  Google Scholar 

  • Kotecky D E et al. (1999) (Ba,Sr)TiO 3 dielectrics for future stacked-capacitor DRAM. IBM J Res Develop 43:367–382

    Article  Google Scholar 

  • Kozyrev A B et al. (2001) Ferroelectric (Ba,Sr)TiO 3 Thin-Film 60-GHz Phase Shifter. Technical Physics Letters 27: 1032–1034

    Article  ADS  CAS  Google Scholar 

  • Kozyrev A B et al. (2002) A Finline 60-GHz Phase Shifter Based on a (Ba,Sr)TiO 3 Ferroelectric Thin Film. Technical Physics Letters 28:239–241

    Article  ADS  CAS  Google Scholar 

  • Kozyrev A et al. (2000) Application of ferroelectrics in phase shifter design. IEEE MTT-S 3:1355–1358

    Google Scholar 

  • Kub F J, Hobart K D, Pond J M et al. (1999) Single-crystal ferroelectric microwave capacitor fabricated by separation by hydrogen implantation. Electron Lett 35:477–478

    Article  CAS  Google Scholar 

  • Kuylenstierna D et al. (2005) Ultrawideband tunable true-time delay lines using ferroelectric varactors. IEEE Trans. Microwave Theory Tech 53:2164–2170

    Article  CAS  ADS  Google Scholar 

  • Kuylenstierna D et al. (2006) Composite Right/Left Handed Transmission Line Phase Shifter using Ferroelectric Varactors. IEEE Microwave and Wireless Components Letters 16:16–169

    Article  Google Scholar 

  • Lederer D, Raskin J-P (2005) New Substrate assivation Method Dedicated to SOI Wafer Fabrication with Increased Stability of Resisitivity. IEEE Electron Device Lett 26:805–807

    Article  ADS  CAS  Google Scholar 

  • Lee Y S, Djukic, D, Roth R M et al. (2006) Fabrication of patterned single-crystal SrTiO3 thin films by ion slicing and anodic bonding. Appl Phys Lett 89:122902-1-122902-3

    Article  ADS  CAS  Google Scholar 

  • Licari J, Enlow L (1988) Hybrid Microcircuit Technology Handbook. Noyes Publications, New Jersey

    Google Scholar 

  • Mahmud A et al. (2006) A 1-GHz Active Phase Shifter with a Ferroelectric Varactor. IEEE Micr Wireless Comp Lett 16:261–263

    Article  Google Scholar 

  • MaTecK GmbH. http://mateck.de/index.asp.html. Accessed 13 August 2008

    Google Scholar 

  • Miranda F A et al. (2008) Ba x Sr 1−x TiO 3 Thin Film Ferroelectric-Coupled Microstripline Phase Shifters with Reduced Device Hysteresis. J Am Ceram Soc 91:1864–1868

    Article  CAS  Google Scholar 

  • Mochizuki S, Fujishiro F, Shibata K et al. (2007) Optical, electrical, and X-ray-structural studies on Verneuil-grown SrTiO 3 single crystal: Annealing study. Physica B 401–402:433–436

    Article  CAS  Google Scholar 

  • Moeckly B H and Zhang Y (2001) Strontium Titanate Thin Films for Tunable YBa 2 Cu 3 O 7 Filters. IEEE Trans Appl Supercond 11:450–453

    Article  Google Scholar 

  • Moulson A J, Herbert J M (2003) Electroceramics Materials Properties Applications. John Wiley & Sons

    Google Scholar 

  • MTI Corporation. http://mtixtl.com/index.asp. Accessed 13 August 2008

    Google Scholar 

  • Nabokin P I, Souptel D, Balbashov A M (2003) Floating zone growth of high-quality SrTiO 3 single crystals. J Cryst Growth 250:397–404

    Article  ADS  CAS  Google Scholar 

  • Navuduri P, Abdel-Motaleb I M, Yoo Y-Z et al. (2006) Characterization of Large Area PLD Grown Combinatorial Compositions of Barium Strontium Titanium Oxides. International Conference on Solid-State and Integrated Circuit Technology, ICSICT 2006:1004–1006

    Google Scholar 

  • Nenasheva N et al. (2003) Ceramics Materials Based on (Ba,Sr)TiO 3 Solid Solutions for Tunable Microwave Devices. J Electrocer 13:235–238

    Article  Google Scholar 

  • Ong C K and Tan C Y (2005) Electrically tunable microwave devices with patterned ferroelectric thin film. US Patent Application 11/074, 417

    Google Scholar 

  • Padmini P, et al. (1999) Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering. Appl Phys Lett 75:3186

    Article  ADS  CAS  Google Scholar 

  • Petrov P, Carlsson E F, Larsson P et al. (1998) Improved SrTiO 3 multilayers for microwave application: Growth and properties. J Appl Phys 84:3134

    Article  ADS  CAS  Google Scholar 

  • Powell R A, Rossnagel S M (1999) PVD for Microelectronics-Sputter Deposition Applied to Semiconductor Manufacturing. Academic Press

    Google Scholar 

  • Prusseit W, Boatner L A, Rytz D (1993) Epitaxial YBa x Cu 1−x O 7 growth on KTaO 3 (001) single crystals. Appl Phys Lett 63:3376–3378

    Article  ADS  CAS  Google Scholar 

  • Rundqvist P, Liljenfors T, Vorobiev A et al. (2006) The effect of SiO 2, Pt and Pt/Au templates on microstructure and permittivity of Ba 0:25 Sr 0:75 TiO 3 films. J Appl Phys 100:114116

    Article  ADS  CAS  Google Scholar 

  • Rytz D, Wechsler B A, Nelson C C et al. (1990) Top-seeded solution growth of BaTiO 3, KNbO 3, SrTiO 3, Bi 12 TiO 20 and La 2−x BaxCuO 4. J Cryst Growth 99:864–868

    Article  ADS  CAS  Google Scholar 

  • Sakai S, Takahashi M, Motohashi K et al. (2007) Large-area pulsed-laser deposition of dielectric and ferroelectric thin films. J Vac Sci Technol A 25:903–907

    Article  CAS  Google Scholar 

  • Samoilova T B et al. (2005) Microwave Up-Converter Based on a Nonlinear Ferroelectric Capacitor. Technical Physics 50:1335–1342

    Article  ADS  CAS  Google Scholar 

  • Scheel H (2000) Historical aspects of crystal growth technology. J Cryst Growth 211: 1–12

    Article  ADS  CAS  MathSciNet  Google Scholar 

  • Scheele P et al. (2004) Phase-Shifting Coplanar Stubline-Filter on Ferroelectric-Thick Film Proc EuMC’2004:1501–1504

    Google Scholar 

  • Scheele P et al. (2005) Continuously Tunable Impedance Matching Network Using Ferroelectric Varactors. IEEE MTT-S:603–605

    Google Scholar 

  • Schreiter M et al. (2004) Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators. Journal of the European Ceramic Society 24:1589–1592

    Article  CAS  Google Scholar 

  • Schwartz R W et al. (1999) Control of Microstructure and Orientation in Solution-Deposited BaTiO3 and SrTiO 3 Thin Films, J Am Ceram Soc 82(9):2359–67

    Article  CAS  Google Scholar 

  • Semenov A A (2006) Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett 88:033503

    Article  ADS  CAS  Google Scholar 

  • Semiconductor Wafer Inc. http://www.semiwafer.com/index.htm. Accessed 13 August 2008

    Google Scholar 

  • Sherman V et al. (2001) Digital reflection type phase shifter based on a ferroelectric planar capacitor. IEEE Micr Wireless Comp Letters 11:407–409

    Article  Google Scholar 

  • Sigman J et al. (2008) Fabrication of Perovskite-Based High-Value Integrated Capacitors by Chemical Solution Deposition. J Am Ceram Soc 91:1851–1857

    Article  CAS  Google Scholar 

  • Spirito M et al. (2005) Surface Passivated Hig-resisitivity Silicon as a true Microwave Substrate. IEEE Trans. Microwave Theory Techn 53 (7):2340–2347

    Article  ADS  Google Scholar 

  • Stauf G T et al. (1999) BaSrTiO 3 thin films for integrated high frequency capacitors. Proc 10th IEEE Int Symp Applications of Ferroelectrics 1:103–106

    Google Scholar 

  • Su B et al. (2003) Dielectric and microwave properties of barium strontium titanate (BST) thick films on alumina substrates. J European Ceramic Society 23:2699–2703

    Article  CAS  Google Scholar 

  • Tageman O, Falk K, Hallbjörner P et al. (2003) Ferroelectric Beam Steering Plate. Proc of Workshop on Tunable Ferroelectric Materials and devices for Microwave Applications, EuMC2003

    Google Scholar 

  • Tan C Y and Ong C K (2006) Planar tunable HTS microwave filter with patterned ferroelectric thin film Supercond. Sci Technol 19:1–5

    Google Scholar 

  • Teo P T et al. (2000) Design and Development of Tunable Multi-Layer Smart Antennas Using Ferroelectric Materials. J Intelligent Material Systems and Structures 2000 11:294–299

    Article  CAS  Google Scholar 

  • Tombak A et al. (2003) Voltage-Controlled RF Filters Employing Thin-Film Barium-Strontium-Titanate Tunable Capacitors. IEEE Trans Microwave Theory and Tech 51:462–576

    Article  ADS  Google Scholar 

  • Ustinov A B et al. (2006) Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. J Appl Phys 100:093905

    Article  ADS  CAS  Google Scholar 

  • Varadan et al. (1992) Ceramic Phase Shifters for Electronically Steerable Antenna Systems. Microwave Journal 34:116–125

    Google Scholar 

  • Varatharajan R, Madeswaran S, Jayavel R (2001) Nb:BST: Crystal growth andferroelectric properties. J Cryst Growth 225:484–488

    Article  ADS  CAS  Google Scholar 

  • Vinoy K J et al. (1999) Gain Enhanced Electronically Tunable Microstrip Patch Antenna. Microwave and Optical Technology Letters 23:368–370

    Article  Google Scholar 

  • Vorobiev A, Berge J, Gevorgian S (2007) Thin film Ba 0.25 Sr 0.75 TiO 3 voltage tuneable capacitors on fused silica substrates for applications in microwave microelectronics. Thin Solid Films 515:6606–6610

    Article  ADS  CAS  Google Scholar 

  • Vorobiev A, Gevorgian S (2007) Large area Ba x Sr 1−x TiO 3 thin films grown by magnetron sputtering. MRS Fall Meeting 2007, Boston

    Google Scholar 

  • Vorobiev A, Gevorgian S (2008) Development of processes for heterogeneous integration of ferroelectric films and devices in microwave systems. Electroceramics XI, Manchester, 31st August – 3rd September 2008

    Google Scholar 

  • Vorobiev A, Rundqvist P, Khamchane K et al. (2003) Microwave properties of SrTiO3/ SrRuO3/CeO2/YSZ heterostructure on low-resistivity silicon. J Eur Cer Soc 23(14):2711

    Article  CAS  Google Scholar 

  • Wang P et al. (2007) Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film. Supercond Sci Technol 20:77–80

    Article  ADS  CAS  Google Scholar 

  • Waser R (2005) Nanoelectronics and information technology: advanced electronic materials and novel devices. Wiley-WCH, Weinheim

    Google Scholar 

  • Waser R et al. (2001) Advanced chemical deposition techniques-from research to production. Integrated Ferroelectrics 36:3

    Article  CAS  Google Scholar 

  • Xu H (2005) MMICs using GaN HEMTs and Thin-Film BST Capacitors, PhD thesis, University of California, Santa Barbara

    Google Scholar 

  • Yan L et al. (2004) Ba 0.1 Sr 0.9 TiO 3 –BaTi 4 O 9 composite thin films with improved microwave dielectric properties. Eur Phys J B 41:201–205

    Article  ADS  CAS  Google Scholar 

  • Yeo K S K et al. (2004) High Frequency Thick Film BST Ferroelectric Phase Shifter. Integrated Ferroelectrics 61:65–70

    Article  CAS  Google Scholar 

  • Yeo K S K et al. (2004) Thick Film Ferroelectric Phase Shifters using Screen Printing Technology. Proc EuMC’2004:1489–1492

    Google Scholar 

  • York B (2008) Tunable Dielectrics for RF Circuits. In: Steer M (Ed) Multifunctional Adaptive Microwave Circuits and Systems. Scitech, Raleigh

    Google Scholar 

  • York R A et al. (2000) Microwave integrated circuits using thin-film BST. Proc 12th Intl Symp on Applications of Ferroelectrics (ISAF) 1:195

    Google Scholar 

  • York, B et al. (2000) Thin-Film Ferroelectrics: Deposition Methods and Applications, presented at Workshop Ferroelectric materials and their applications Int. Microwave Symposium IMS’2000

    Google Scholar 

  • Yoshimura J, Sakamoto T, Usui S et al. (1998) X-ray perfection study of Verneuil-grown SrTiO 3 crystals. J Cryst Growth 191: 483–491

    Article  ADS  CAS  Google Scholar 

  • Zimmermann F et al. (2004) Ba 0.6 Sr 0.4 TiO 3 and BaZr 0.3 Ti 0.7 O 3 thick films as tunable microwave dielectrics. J European Ceramic Society 24:1729–1733

    Article  CAS  Google Scholar 

  • Zinck C et al. (2004) Design, Integration and Characterization of PZT tunable FBAR. IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference: 29–32

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Vorobiev, A., Gevorgian, S. (2009). Fabrication of Ferroelectric Components and Devices. In: Ferroelectrics in Microwave Devices, Circuits and Systems. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-507-9_3

Download citation

Publish with us

Policies and ethics