Skip to main content

Abstract

Fuel cell systems offer the promise of economically delivering power with environmental and other benefits. Recently, polymer electrolyte membrane fuel cells (PEMFCs) have passed the demonstration phase and have partly reached the commercialization stage due to impressive research efforts. Nevertheless, there are still some technological challenges to be solved. Among those challenges, (i) choice of fuel (gasoline, methanol, or hydrogen), (ii) efficient fuel processing, with reduction of weight, volume, and carbon monoxide (CO) residuals, and (iii) development of anode electrocatalysts tolerant to CO at levels of 50 ppm (with a noble metal loading of 0.1 mg cm-2 or less) are deemed to be the most significant barriers that PEMFCs must overcome to achieve complete commercialization. The first and second challenges are closely related to the source and purity of hydrogen as the fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trimm DL, Önsan ZI. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 2001;43:31–84.

    Article  Google Scholar 

  2. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP. Catalytic synthesis of methanol from CO/H2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts. J Catal 1979;56:407–29.

    Article  Google Scholar 

  3. Gadgil MM, Sasikala R, Kulshreshtha SK. CO oxidation over Pd/SnO2 catalyst. J Mol Catal 1994;87:297–309.

    Article  Google Scholar 

  4. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet KJ, Delmon B. Lowtemperature oxidation of CO over gold supported on TiO2, -Fe2O3, and Co3O4. J Catal 1993;144:175–92.

    Article  Google Scholar 

  5. Echigo M, Shinke N, Takami S, Higashiguchi S, Hirai K, Tabata T. Development of residential PEFC cogeneration systems: Ru catalyst for CO preferential oxidation in reformed gas. Catal Today 2003;84:209–15.

    Article  Google Scholar 

  6. US Department of Energy. Fuel cell. In: DOE multi-year research, development and demonstration plan: planned program activities for 2005–2015. Available on: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf.

    Google Scholar 

  7. Ralph TR, Hards GA, Thompsett D, Gascoyne JM. Fuel cell seminar extended abstracts; 1994 Nov 28–Dec. 1; San Diego, CA: p. 199.

    Google Scholar 

  8. Gottesfeld S, Pafford J. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 1988;135:2651–2.

    Article  Google Scholar 

  9. Beden B, Lamy C, Bewick A, Kumimatsu K. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species. J Electroanal Chem 1981;121:343–7.

    Google Scholar 

  10. Crown A, Kim H, Lu GQ, de Moraes IR, Rice C, Wieckowski A. Research toward designing high activity catalysts for fuel cells: structure and reactivity. J New Mat Electrochem Systems 2000;3:275–84.

    Google Scholar 

  11. Iwasita T. Methanol and CO electrooxidation. In: Vielstich W, Gasteiger HA, Lamm A, editors. Handbook of fuel cells – fundamentals, technology and applications, Vol 2. New York: John Wiley & Sons, 2003: 603–24.

    Google Scholar 

  12. Spendelow JS, Babu PK, Wieckowski A. Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr Opin Solid State Mater Sci 2005;9:37–416.

    Article  Google Scholar 

  13. Adams WA, Blair J, Bullock KR, Gardner CL. Enhancement of the performance and reliability of CO poisoned PEM fuel cells. J Power Sources 2005;145:55–61.

    Article  Google Scholar 

  14. Iorio T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y. Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc A 2003;150:A1225–30.

    Article  Google Scholar 

  15. Wee JH, Lee KY. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J Power Sources 2005;157:128–35.

    Article  Google Scholar 

  16. Kuk ST, Wieckowski A. Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles. J Power Sources 2005;141:1–7.

    Article  Google Scholar 

  17. Spendelow JS, Lu GQ, Kenis PJA, Wieckowski A. Electrooxidation of adsorbed CO on Pt(1 1 1) and Pt(1 1 1)/Ru in alkaline media and comparison with results from acidic media. J Electroanal Chem 2004;568:215–24.

    Article  Google Scholar 

  18. Lin WF, Iwasita T, Vielstich W. Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study. J Phys Chem B 1999;103:3250–3257.

    Article  Google Scholar 

  19. McGovern MS, Waszczuk P, Wieckowski A. Stability of carbon monoxide adsorbed on nanoparticle Pt and Pt/Ru electrodes in sulfuric acid media. Electrochim Acta 2006;51:1194–8.

    Article  Google Scholar 

  20. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ. Co electrooxidation on wellcharacterized Pt-Ru Alloys. J Phys Chem 1994;98:617–625.

    Article  Google Scholar 

  21. Grgur BN, Zhuang G, Markovi NM, Ross PN Jr. Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. J Phys Chem B 1997;101:3910–3.

    Article  Google Scholar 

  22. Grgur BN, Markovi NM, Ross PN Jr. Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J Phys Chem B 1998;102:2494–501.

    Article  Google Scholar 

  23. Grgur BN, Markovi NM, Ross PN. The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 1999;146:1613–9.

    Article  Google Scholar 

  24. Massong H, Wang H, Samjeske G, Baltruschat, H. The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim Acta 2000;46:701–7.

    Article  Google Scholar 

  25. Pozio A, Giorgi L, Antolini E, Passalacqua E. Electroxidation of H2 on Pt/C Pt–Ru/C and Pt–Mo/C anodes for polymer electrolyte fuel cell. Electrochim Acta 2000;46:555–61.

    Article  Google Scholar 

  26. Lee SJ, Mukerjee S, Ticianelli EA, McBreen L. Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta 1999;44:3283–93.

    Article  Google Scholar 

  27. Christoffersen E, Liu P, Ruban A, Skriver HL, Norskov JK. Anode materials for lowtemperature fuel cells: a density functional theory study. J Catal 2001;199:123–31.

    Article  Google Scholar 

  28. Giorgi L, Pozio A, Bracchini C, Giorgi R, Turtu S. H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts. J Appl Electrochem 2001;31:325–34.

    Article  Google Scholar 

  29. McBreen J, Mukerjee S. In-situ X-ray-absorption studies of a Pt-Ru electrocatalyst. J Electrochem Soc 1995;142:3399–404.

    Article  Google Scholar 

  30. Mukerjee S, McBreen J. An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts: Part I. J Electrochem Soc 1999;146:600–6.

    Article  Google Scholar 

  31. Koper MTM. Electrocatalysis on bimetallic and alloy surfaces. Surf Sci 2004;548:1–3.

    Article  Google Scholar 

  32. Gallagher ME, Lucas CA, Stamenkovic V, Markovi NM, Ross PN. Surface structure and relaxation at the Pt3Sn(1 1 1)/electrolyte interface. Surf Sci 2003;544:L729–34.

    Article  Google Scholar 

  33. Morimoto Y, Yeager EB. Comparison of methanol oxidations on Pt, PtRu and PtSn electrodes. J Electroanal Chem 1998;444:95–100.

    Article  Google Scholar 

  34. Wang K, Gasteiger HA, Markovi NM, Ross PN Jr. On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta 1996;41:2587–93.

    Article  Google Scholar 

  35. Gasteiger HA, Markovi NM, Ross PN Jr. Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. J Phys Chem 1995;99:8945–9.

    Article  Google Scholar 

  36. Paffett MT, Gebhard SC, Windham RG, Koel BE. Chemisorption of carbon monoxide, hydrogen, and oxygen on ordered tin/platinum(111) surface alloys. J Phys Chem 1990;94:6831–9.

    Article  Google Scholar 

  37. Haner AN, Ross PN. Electrochemical oxidation of methanol on tin-modified platinum single-crystal surfaces. J Phys Chem 1991;95:3740–6.

    Article  Google Scholar 

  38. Markovi NM, Widelov A, Ross PN, Monteiro OR, Brown IG. Electrooxidation of CO and CO/H2 mixtures on a Pt-Sn catalyst prepared by an implantation method. Catal Lett 1997;43:161–6.

    Article  Google Scholar 

  39. Xiao X-Y, Tillmann S, Baltruschat H. Scanning tunneling microscopy of Sn coadsorbed with Cu and CO on Pt(111) electrodes. Phys Chem Chem Phys 2002;4:4044–50.

    Article  Google Scholar 

  40. Stamenkovic VR, Arenz M, Lucas CA, Gallagher ME, Ross PN, Markovi NM. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J Am Chem Soc 2003;125:2736–45.

    Article  Google Scholar 

  41. Hayden BE, Rendall ME, South O. Electro-oxidation of carbon monoxide on wellordered Pt(111)/Sn surface alloys. J Am Chem Soc 2003;125:7738–42.

    Article  Google Scholar 

  42. Arenz M, Stamenkovic V, Ross PN, Markovi NM. Preferential oxidation of carbon monoxide adsorbed on Pd submonolayer films deposited on Pt(1 0 0). Electrochem Commun 2003;5:809–13.

    Article  Google Scholar 

  43. Ralph TR, Hogarth MP. Catalysis for low temperature fuel cells, part II: the anode challenges. Platinum Metals Rev Vol No pp 2002;46(3):117–135.

    Google Scholar 

  44. Waszczuk P, Wieckowski A, Zelenay P, Gottesfeld S, Coutanceau C, Leger JM, et al. Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. J Electroanal Chem 2001;511:55–64.

    Article  Google Scholar 

  45. Lu GQ, White JO, Wieckowski A. Vibrational analysis of chemisorbed CO on the Pt(1 1 1)/Ru bimetallic electrode. Surf Sci 2004;564:131–40.

    Article  Google Scholar 

  46. Lu GQ, Waszczuk P, Wieckowski A. Oxidation of CO adsorbed from CO saturated solutions on the Pt(111)/Ru electrode. J Electroanal Chem 2002;532:49–55.

    Article  Google Scholar 

  47. Brankovic SR, Marinkovic NS, Wang JX, Adzic RR. Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes. J Electroanal Chem 2002;532:57–60.

    Article  Google Scholar 

  48. Bellows RJ, Marucchi-Soos E, Reynolds RP. The mechanism of CO mitigation in proton exchange membrane fuel cells using dilute H2O2 in the anode humidifier. Electrochem Solid State Lett 1998;1:69–70.

    Article  Google Scholar 

  49. Lindstrom RW, inventor; Protech Co., assignee. Electrocatalytic gas diffusion electrode employing thin carbon cloth layer. US Patent US4647359. 1987 Mar 3.

    Google Scholar 

  50. Yu H, Hou Z, Yi B, Lin Z. Composite anode for CO tolerance proton exchange membrane fuel cells. J Power Sources 2002;105:52–57.

    Article  Google Scholar 

  51. Wan C-H, Zhuang Q-H. Novel layer wise anode structure with improved CO-tolerance capability for PEM fuel cell. Electrochim Acta 2007;52:4111–23.

    Article  Google Scholar 

  52. Wilkinson DP, Voss HH, Prater KB, Hards GA, Ralph TR, Thompsett D, inventors; Johnson Matthey PLC, Ballard Power Systems, assignees. Electrode. US Patent US5795669. 1998 Aug 18.

    Google Scholar 

  53. Haug A, White RE, Weidner JW, Huang W, Shi S, Rana N, et al. Using sputter deposition to increase CO tolerance in a proton-exchange membrane fuel cell. J Electrochem Soc 2002;149:A868–72.

    Article  Google Scholar 

  54. Wilkinson DP, Thompsett D. In: Proceedings of the second international symposium on new materials for fuel cell and modern battery systems. Savadogo O, Roberge PR, editors. Montreal, Canada: Les edition de l’Ecole Polytechnique de Montreal, 1997: 266.

    Google Scholar 

  55. McKee DW, Pak MS. Electrocatalysts for hydrogen/carbon monoxide fuel cell anodes. J Electrochem Soc 1969;116:516–20.

    Article  Google Scholar 

  56. Ross PN, Kinoshita K, Scarpellino AJ, Stonehart P. Electrocatalysis on binary alloys: I. Oxidation of molecular hydrogen on supported Pt Rh alloys. J Electroanal Chem 1975;59:177–89.

    Article  Google Scholar 

  57. Hogarth M, Glipa X. High temperature membranes for solid polymer fuel cells. Report issued by Johnson Matthey Technology Centre to the ETSU on behalf of the Department of Trade and Industry as ETSU F/02/00189/REP; DTI/Pub URN 01/893; 2001.

    Google Scholar 

  58. Hogarth WHJ, Diniz da Costa JC, Lu GQ. Solid acid membranes for high temperature (at 140 °C) proton exchange membrane fuel cells. J Power Sources 2005;142:223–37.

    Article  Google Scholar 

  59. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S. Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H2 dilution, and high fuel utilization. J Electrochem Soc 2001;148:A11–23.

    Article  Google Scholar 

  60. Benicewicz BC. In: Advances in materials for PEM fuel cell systems. Polymer Division, American Chemical Society; Asilomar, California; 2003 February 23–27.

    Google Scholar 

  61. Kikuchi E. Membrane reactor application to hydrogen production. Catal Today 2000;56:97–101.

    Article  Google Scholar 

  62. Thomason AH, Lalk TR, Appleby AJ. Effect of current pulsing and “self-oxidation” on the CO tolerance of a PEM fuel cell. J Power Sources 2004;135:204–11.

    Article  Google Scholar 

  63. Zhang J, Datta R. Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J Electrochem Soc 2002;149:1423–31.

    Article  Google Scholar 

  64. Beden B, Bewick A, Kunimatsu K, Lamy C. Infrared study of adsorbed species on electrodes: adsorption of carbon monoxide on Pt, Rh and Au. J Electroanal Chem 1982;142:345–56.

    Article  Google Scholar 

  65. Schmidt TJ, Jusys Z, Gasteiger HA, Behm RJ, Endruschat H, Boennemann U. On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts. J Electroanal Chem 2001;501:132–40.

    Article  Google Scholar 

  66. Bhatia KK, Wang C-Y. Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochim Acta 2004;49:2333–41.

    Article  Google Scholar 

  67. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes. J Electroanal Chem 1998;444:41–53.

    Article  Google Scholar 

  68. Ralph TR, Hogarth MP. Catalysis for low temperature fuel cells part I the cathode challenges. Platinum Met Rev 2002;46:3–14.

    Google Scholar 

  69. Ralph TR, Hogarth MP. Catalysis for low temperature fuel cells part III the challenges for the direct methanol fuel cell. Platinum Met Rev 2002;46:146.

    Google Scholar 

  70. Urian RC, Gulla AF, Mukerjee S. Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I. J Electroanal Chem 2003;554–555:307–24.

    Google Scholar 

  71. Ruth K, Vogt M, Zuber R. Development of CO-tolerant catalysts. In: Vielstich W, Gasteiger HA, Lamm A, editors. Handbook of fuel cells – fundamentals, technology and applications, Vol 3. New York: John Wiley & Sons, 2003: 489–96.

    Google Scholar 

  72. Watkins DS. Research, development and demonstration of solid polymer fuel cell systems. In: Fuel cell systems. Blomen L, Mugerwa M, editors. New York: Plenum Press, 1993: 493–530.

    Google Scholar 

  73. Hirschenhofer JH, Stauffer DB, Engleman RR. Fuel cells: a handbook. 3rd rev. Reading: Gilbert/Commonwealth, Inc., 1994.

    Google Scholar 

  74. Bellows RJ, Marucchi-Soos EP, Buckley DT. Analysis of reaction kinetics for carbon monoxide and carbon dioxide on polycrystalline platinum relative to fuel cell operation. Ind Eng Chem Res 1996;35:1235–42.

    Article  Google Scholar 

  75. Divisek J, Oetjen H-F, Peinecke V, Schmidt VM, Stimming U. Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta 1998;43:3811–5.

    Article  Google Scholar 

  76. Beden B, Bewick A, Lamy C. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J Electroanal Chem 1983;148:147–60.

    Article  Google Scholar 

  77. Villegas I, Weaver MJ. Carbon monoxide adlayer structures on platinum (111) electrodes: A synergy between in-situ scanning tunneling microscopy and infrared spectroscopy. J Chem Phys 1994;101:1648–60.

    Article  Google Scholar 

  78. Petukhov AV. Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction. Chem Phys Lett 1997;277:539–44.

    Article  Google Scholar 

  79. Petukhov AV, Akemann W, Friedrich KA, Stimming U. Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface. Surf Sci 1998;402–404:182–6.

    Google Scholar 

  80. Koper MTM, Jansen APJ, Santen RAv, Lukien JJ, Hilbers PAJ. Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum. J Chem Phys 1998;109:6051–62.

    Article  Google Scholar 

  81. Koper MTM, Jansen APJ, Lukkien J. Lattice–gas modeling of electrochemical Langmuir–Hinshelwood surface reactions. Electrochim Acta 1999;45:645–51.

    Article  Google Scholar 

  82. Koper MTM, Lukien JJ, Jansen APJ, van Santen RA. Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces. J Phys Chem B 1999;103:5522–9.

    Article  Google Scholar 

  83. Massong H, Tillmann S, Langkau T, Abd El Meguid EA, Baltruschat H. On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO. Electrochim Acta 1998;44:1379–88.

    Article  Google Scholar 

  84. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA. Role of crystalline defects in electrocatalysis: mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J Phys Chem B 2002;106:12938–47.

    Article  Google Scholar 

  85. Lebedeva NP, Koper MTM, Herrero E, Feliu JM, van Santen RA. Cooxidation on stepped Pt[n(111)×(111)] electrodes. J Electroanal Chem 2000;487:37–44.

    Article  Google Scholar 

  86. Samjeské G, Xiao X-Y, Baltruschat H. Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic CO oxidation. Langmuir 2002;18:4659–66.

    Article  Google Scholar 

  87. Watanabe M, Motoo S. Electrocatalysis by ad-atoms part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 1975;60:267–73.

    Article  Google Scholar 

  88. Ralph TR, Hards GA. Powering the cars and homes for tomorrow. Chem Ind (London) 1998;9:337–42.

    Google Scholar 

  89. Watanabe M, Motoo S. Electrocatalysis by ad-atoms: part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 1975;60:275–83.

    Article  Google Scholar 

  90. Liu P, Norskov JK. Kinetics of the anode processes in PEM fuel cells - the promoting effect of Ru in PtRu anodes. Fuel Cells 2001;1:192–201.

    Article  Google Scholar 

  91. Parsons R, Vandernoot T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J Electroanal Chem 1988;257:9–45.

    Article  Google Scholar 

  92. Hamnett A. Mechanism of methanol electro-oxidation. In: A.Wieckowski, editor. Interfacial electrochemistry: theory, experiment, and applications. New York: Marcel Dekker, 1999: 843–83.

    Google Scholar 

  93. Samjeské G, Wang H, Löffler T, Baltruschat H. CO and methanol oxidation at Ptelectrodes modified by Mo. Electrochim Acta 2002;47:3681–92.

    Article  Google Scholar 

  94. Berenz P, Tillmann S, Massong H, Baltruschat H. Decoration of steps at Pt single crystal electrodes and its electrocatalytic effect. Electrochim Acta 1998;43:3035–43.

    Article  Google Scholar 

  95. de Becdelievre AM, de Becdelievre J, Clavilier J. Electrochemical oxidation of adsorbed carbon monoxide on platinum spherical single crystals. Effect of anion adsorption. J Electroanal Chem 1990;294:97–110.

    Article  Google Scholar 

  96. Baschuk J, Li X. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res 2001;25:695–713.

    Article  Google Scholar 

  97. Dhar HP, Christner LG, Kush AK. Nature of CO adsorption during H2 oxidation in relation to modeling for CO poisoning of a fuel cell anode. J Electrochem Soc 1987;134:3021–6.

    Article  Google Scholar 

  98. Gilman S. The mechanism of electrochemical oxidation of carbon monoxide and methanol on platinum II: the “reactant pair” mechanism for electrochemical oxidation of carbon monoxide and methanol. J Phys Chem 1964;68:70–80.

    Article  Google Scholar 

  99. Stonehart P, Ross P. The commonality of surface processes in electrocatalysis and gasphase heterogeneous catalysis. Cat Rev – Sci Eng 1975;12:1–35.

    Article  Google Scholar 

  100. Vogel W, Lundquist J, Ross P, Stonehart P. Reaction pathways and poisons-II. The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 1975;20:79–93.

    Article  Google Scholar 

  101. Wilson M, Derouin C, Valerio J, Gottesfeld S. Electrocatalysis issues in polymer electrolyte fuel cells. Proceedings of the Intersociety Energy Conversion Engineering Conference 1993;1:1203–8.

    Google Scholar 

  102. Oetjen H-F, Schmidt VM, Stimming U, Trila F. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J Electrochem Soc 1996;143:3838–42.

    Article  Google Scholar 

  103. Iwase M, Kawatsu S. Optimized CO tolerant electrocatalysts for polymer electrolyte fuel cells. In: Proton conducting membrane fuel cells I. Gottesfeld S, Halpert G, Landgrebe A, editors. Electrochemical Society Proceedings 1995;95–23:12–23.

    Google Scholar 

  104. Schmidt VM, Ianneillo R, Oetjen H-F, Reger H, Stimming U, Trila F. 1995. Oxidation of H2/CO in a proton exchange membrane fuel cell. In: Proton conducting membrane fuel cells I. Gottesfeld S, Halpert G, Landgrebe A, editors. Electrochemical Society Proceedings 1995;95–23:1–11.

    Google Scholar 

  105. Zawodzinski TA, Karuppaiah C, Uribe F, Gottesfeld S. Aspects of CO tolerance in polymer electrolyte fuel cells: some experimental findings. In: Electrode materials and processes for energy conversion and storage I. Srinivasan S, McBreen J, Khandkar AC, Tilak VC, editors. Proceedings of the Electrochemical Society 1997;97(13):139–146.

    Google Scholar 

  106. Lu C, Rice C, Masel RI, Babu PK, Waszczuk P, Kim HS, et al. UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts. J Phys Chem B 2002;106:9581–9.

    Article  Google Scholar 

  107. Lu C, Masel RI. The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B 2001;105:9793–7.

    Article  Google Scholar 

  108. Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electrooxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B 2004;108:2654–9.

    Article  Google Scholar 

  109. Brankovic SR, Wang JX, Adži RR. Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid-State Lett 2001;4:A217–20.

    Article  Google Scholar 

  110. Gasteiger HA, Markovic NM, Ross PN. H2 and CO electrooxidation on wellcharacterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 degree C. J Phys Chem 1995;99:16757–67.

    Article  Google Scholar 

  111. Gasteiger HA, Markovic NM, Ross PN. H2 and CO electrooxidation on wellcharacterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 1995;99:8290–301.

    Article  Google Scholar 

  112. Friedrich KA, Geyzers KP, Linke U, Stimming U, Stumper J. CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: an IR spectroscopic study. J Electroanal Chem 1996;402:123–8.

    Article  Google Scholar 

  113. Zawodzinski TA, Springer TE, Gottesfeld S. The 1997 joint international meeting of ECS and ISE. ECS Meeting Abstracts 1997;97–2:1228.

    Google Scholar 

  114. Kua J, Goddard WA III. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells. J Am Chem Soc 1999;121:10928–41.

    Article  Google Scholar 

  115. Denis MC, Gouerec P, Guay D, Dodelet JP, Lalande G, Schulz R. Improvement of the high energy Ball-Milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells. J Appl Electrochem 2000;30:1243–53.

    Article  Google Scholar 

  116. Tong YY, Kim HS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 2002;124:468–473.

    Article  Google Scholar 

  117. Lamouri A, Gofer Y, Luo Y, Chottiner GS, Scherson DA. Low energy electron diffraction, X-ray photoelectron spectroscopy, and CO-temperature-programmed desorption characterization of bimetallic ruthenium–platinum surfaces prepared by chemical vapor deposition. J Phys Chem B 2001;105:6172–7.

    Article  Google Scholar 

  118. Camara GA, Giz MJ, Paganin VA, Ticianelli EA. Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells. J Electroanal Chem 2002;537:21–9.

    Article  Google Scholar 

  119. Lin WF, Zei MS, Eiswirth M, Ertl G, Iwasita T, Vielstich W. Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation. J Phys Chem B 1999;103:6968–77.

    Article  Google Scholar 

  120. Qi Z, Kaufman A. CO-tolerance of low-loaded Pt/Ru anodes for PEM fuel cells. J Power Sources 2003;113:115–23.

    Article  Google Scholar 

  121. Viswanathan R, Hou G, Liu R, Bare SR, Modica F, Mickelson G, et al. In-situ XANES of carbon-supported Pt-Ru anode electrocatalyst for reformate-air polymer electrolyte fuel cells. J Phys Chem B 2002;106:3458–65.

    Article  Google Scholar 

  122. Koper MTM, Lebedeva NP, Hermse CGM. Dynamics of CO at the solid/liquid interface studied by modeling and simulation of CO electro-oxidation on Pt and PtRu electrodes. Faraday Discuss 2002;121:301–11.

    Article  Google Scholar 

  123. Koper MTM, Shubina TE, van Santen RA. Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts. J Phys Chem B 2002;106:686–92.

    Article  Google Scholar 

  124. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA. Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). J Electroanal Chem 2002;524–525:242–51.

    Google Scholar 

  125. Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J. The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 2002;149:A748–53.

    Article  Google Scholar 

  126. Mukerjee S, Urian RC. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy. Electrochim Acta 2002;47:3219–31.

    Article  Google Scholar 

  127. Mukerjee S, Urian RC, Lee SJ, Ticianelli EA, McBreen J. Electrocatalusis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. J Electrochem Soc 2004;151:A1094–103.

    Article  Google Scholar 

  128. Russell AE, Maniguet S, Mathew RJ, Yao J, Roberts MA, Thompsett D. In situ X-ray absorption spectroscopy and X-ray diffraction of fuel cell electrocatalysts. J Power Sources 2001;96:226–32.

    Article  Google Scholar 

  129. Goetz M, Wendt H. Composite electrocatalysts for anodic methanol and methanolreformate oxidation. J Appl Electrochem 2001;31:811–7.

    Article  Google Scholar 

  130. Skelton DC, Tobin RG, Lambert DK, DiMaggio CL, Fisher GB. Oxidation of CO on gold-covered Pt(335). J Phys Chem B 1999;103:964–71.

    Article  Google Scholar 

  131. Hammer B, Norskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci 1995;343:211–20.

    Article  Google Scholar 

  132. Liu P, Logadottir A, Norskov JK. Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim Acta 2003;48:3731–42.

    Article  Google Scholar 

  133. Krausa M, Vielstich W. Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 1994;379:307–14.

    Article  Google Scholar 

  134. Frelink T, Visscher W, Vanveen JAR. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 1995;335:353–60.

    Article  Google Scholar 

  135. Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ. CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces – a combined STM and TPD/TPR study. Surf Sci 1998;411:249–62.

    Article  Google Scholar 

  136. Watanabe M, Zhu YM, Igarashi H, Uchida H. Mechanism of CO tolerance at Pt-Alloy anode catalysts for polymer electrolyte fuel cells. Electrochemistry 2000;68:244–51.

    Google Scholar 

  137. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, et al. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 2005;127:14607–15.

    Article  Google Scholar 

  138. El-Shafei AA, Hoyer R, Kibler LA, Kolb DM. Methanol oxidation on Ru-modified preferentially oriented Pt electrodes in acidic medium. J Electrochem Soc 2004;151:F141–5.

    Article  Google Scholar 

  139. Davies JC, Hayden BE, Pegg DJ. The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation. Surf Sci 2000;467:118–30.

    Article  Google Scholar 

  140. Frelink T, Visscher W, Cox AP, Vanveen JAR. Ellipsometry and dems study of the electrooxidation of methanol at Pt and Rupromoted and Sn-promoted Pt. Electrochim Acta 1995;40:1537–43.

    Article  Google Scholar 

  141. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, et al. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 2005;127:14607–15.

    Article  Google Scholar 

  142. Waszczuk P, Lu GQ, Wieckowski A, Lu C, Rice C, Masel RI. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochim Acta 2002;47:3637–52.

    Article  Google Scholar 

  143. Iwasita T. Progress in the study of methanol oxidation by in situ, ex situ and on-line methods. In: Advances in electrochemical science and engineering. Gerischer H, Tobias Ch, editors. Verlag Chemie 1990;1:127–70.

    Google Scholar 

  144. Wolter O, Giordano C, Heitbaum J, Vielstich W. Proceedings of the symposium on electrocatalysis. Pennington, NJ: The Electrochemical Society, 1982: 235.

    Google Scholar 

  145. Bittins-Cattaneo B, Cattaneo E, Königshoven P, Vielstich W. New developments in electrochemical mass spectroscopy. In: Electroanalytical chemistry: a series of advances. Bard AJ, editor. New York: Marcel Dekker, New York: vol 17, ch 3, 181–220.

    Google Scholar 

  146. Iwasita T, Nart FC. In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 1997;55:271–340.

    Article  Google Scholar 

  147. Clavilier J, Armand D, Sun SG, Petit M. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J Electroanal Chem 1986;205:267–77.

    Article  Google Scholar 

  148. Ocko BM, Wang J, Davenport A, Isaacs H. In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 1990;65:1466–9.

    Article  Google Scholar 

  149. Faguy PW, Markovic N, Adzic RR, Fierro CA, Yeager EB. A study of bisulfate adsorption on Pt(111) single crystal electrodes using in situ Fourier transform infrared spectroscopy. J Electroanal Chem 1990;289:245–62.

    Article  Google Scholar 

  150. Tidswell IM, Markovic NM, Ross PN. Potential dependent surface relaxation of the Pt(001)/electrolyte interface. Phys Rev Lett 1993;71:1601–4.

    Article  Google Scholar 

  151. Sawatari Y, Inukai J, Ito M. The structure of bisulfate and perchlorate on a Pt(111) electrode surface studied by infrared spectroscopy and ab-initio molecular orbital calculation. J Electron Spec 1993;64/65:515–22.

    Article  Google Scholar 

  152. Nart FC, Iwasita T, Weber M. Vibrational spectroscopy of adsorbed sulfate on Pt(111). Electrochim Acta 1994;39:961–8.

    Article  Google Scholar 

  153. Lucas C, Markovic NM, Ross PN. Observation of an ordered bromide monolayer at the Pt(111)-solution interface by in-situ surface X-ray scattering. Surf Sci 1995;340:L949–54.

    Article  Google Scholar 

  154. Kolb DM. Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 1996;51:109–73.

    Article  Google Scholar 

  155. Itaya K. In situ scanning tunneling microscopy in electrolyte solutions. Prog Surf Sci 1998;58:121–247.

    Article  Google Scholar 

  156. Hughes VB, Miles R. cyclic voltammetric investigation of adsorbed residues derived from methanol on platinum-based electrocatalysts. J Electroanal Chem 1983;145:87–107.

    Article  Google Scholar 

  157. Ticanelli E, Beery JG, Paffett MT, Gottesfeld S. An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface. J Electroanal Chem 1989;258:61–77.

    Article  Google Scholar 

  158. Richardz E, Wohlmann B, Vogel U, Hoffschulz H, Wandelt K. Surface and electrochemical characterization of electrodeposited PtRu alloys. Surf Sci 1995;335:361–71.

    Article  Google Scholar 

  159. Markovic NM, Ross PN Jr. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002;45:117–229.

    Article  Google Scholar 

  160. Watanabe M, Zhu Y, Uchida H. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. J Phys Chem B 2000;104:1762–8.

    Article  Google Scholar 

  161. Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem Commun 2002;1500–1.

    Google Scholar 

  162. Futamata M, Luo L, Nishihara C. ATR–SEIR study of anions and water adsorbed on platinum electrode. Surf Sci 2005;590:196–211.

    Article  Google Scholar 

  163. Chen YX, Miki A, Ye S, Sakai H, Osawa M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 2003;125:3680–1.

    Article  Google Scholar 

  164. Friedrich KA, Geyzers KP, Dickson AJ, Stimming U. Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts. J Electroanal Chem 2002;524–525:261–72.

    Article  Google Scholar 

  165. Cramm S, Friedrich KA, Geyzers K-P, Stimming U, Vogel R. Surface structural and chemical characterization of Pt/Ru composite electrodes: a combined study by XPS, STM and IR spectroscopy. Fres J Anal Chem 1997;358:189–92.

    Article  Google Scholar 

  166. Futamata M, Luo L. Adsorbed water and CO on Pt electrode modified with Ru. J Power Sources 2007;164:532–7.

    Article  Google Scholar 

  167. García G, Silva-Chong JA, Guillén-Villafuerte O, Rodríguez JL, González ER, Pastor E. CO tolerant catalysts for PEM fuel cells: spectroelectrochemical studies. Catal Today 2006;116:415–21.

    Article  Google Scholar 

  168. Vericat C, Wakisaka M, Haasch R, Bagus PS, Wieckowski A. Binding energy of ruthenium submonolayers deposited on a Pt(111) electrode. J Solid State Electrochem 2004;8:794–803.

    Article  Google Scholar 

  169. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M. CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 2001;3:306–14.

    Article  Google Scholar 

  170. Tillmann S, Samjeské G, Friedrich KA, Baltruschat H. The adsorption of Sn on Pt(1 1 1) and its influence on CO adsorption as studied by XPS and FTIR. Electrochim Acta 2003;49:73–83.

    Article  Google Scholar 

  171. Frances J, Scott E, Mukerjee S, Ramaker DE. CO coverage/oxidation correlated with PtRu electrocatalyst particle morphology in 0.3 M Methanol by in situ XAS. J Electrochem Soc 2007;154:A396–406.

    Article  Google Scholar 

  172. Stamenkovi V, Arenz M, Blizanac BB, Mayrhofer KJJ, Ross PN, Markovi NM. In situ CO oxidation on well characterized Pt3Sn(hkl) surfaces: A selective review. Surf Sci 2005;576:145–57.

    Article  Google Scholar 

  173. Tong YY, Wieckowski A, Oldfield E. NMR of electrocatalysts. J Phys Chem B 2002;106:2434–46.

    Article  Google Scholar 

  174. Babu PK, Oldfield E, Wieckowski A. Nanoparticle surfaces studied by electrochemical NMR. In: Modern aspects of electrochemistry, vol. 36. Vayenas C, Conway BE, White RE, editors. New York: Kluwer Academic/Plenum Publishers, 2003: 1–50.

    Google Scholar 

  175. Rudaz SL, Ansermet J-P, Wang P-K, Slichter CP. NMR study of chemosorption bond of carbon monoxide on platinum. Phys Rev Lett 1985;54:71.

    Article  Google Scholar 

  176. Yahnke MS, Rush BM, Reimer JA, Cairns EJ. Quantitative solidstate NMR spectra of CO adsorbed from aqueous solution onto a commercial electrode. J Am Chem Soc 1996;118:12250–1.

    Article  Google Scholar 

  177. Babu PK, Kim HS, Chung J-H, Oldfield E, Wieckowski A. Bonding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd. J Phys Chem B 2004;108:20228–32.

    Article  Google Scholar 

  178. Iwasita T, Hoster H, John-Anacker A, Lin WF, Vielstich W. Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution. Langmuir 2000;16:522–9.

    Article  Google Scholar 

  179. Slichter CP. Principles of magnetic resonance. 3rd ed. Berlin: Springer-Verlag, 1992.

    Google Scholar 

  180. Davies JC, Hayden BE, Pegg DJ. The electrooxidation of carbon monoxide on ruthenium modified Pt(110). Electrochim Acta 1998;44:1181–90.

    Article  Google Scholar 

  181. Blyholder G. Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 1964;68:2772–7.

    Article  Google Scholar 

  182. Hammer B, Morikawa Y, Norskov JK. CO chemisorption at metal surfaces and overlayers. Phys Rev Lett 1996;76:2141–4.

    Article  Google Scholar 

  183. Schlapka A, Lischka M, Gross A, Kasberger U, Jakob P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 2003;91:016101.

    Article  Google Scholar 

  184. Shubina TE, Koper MTM. Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochim Acta 2002;47:3621–36216.

    Article  Google Scholar 

  185. Diemant T, Hager T, Hoster HE, Rauscher H, Behm RJ. Hydrogen adsorption and coadsorption with CO on well-defined bimetallic PtRu surfaces––a model study on the CO tolerance of bimetallic PtRu anode catalysts in low temperature polymer electrolyte fuel cells. Surf Sci 2003;541:137–46.

    Article  Google Scholar 

  186. Leng YJ, Wang X, Hsing IM. Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy. J Electroanal Chem 2002;528:145–52.

    Article  Google Scholar 

  187. Wang X, Hsing IM, Leng Y-J, Yue PL. Model interpretation of electrochemical impedance spectroscopy and polarization behavior of H2/CO mixture oxidation in polymer electrolyte fuel cells. Electrochim Acta 2001;46:4397–405.

    Article  Google Scholar 

  188. Wang X, Hsing IM. Kinetics investigation of H2/CO electro-oxidation on carbon supported Pt and its alloys using impedance based models. J Electroanal Chem 2003;556:117–26.

    Article  Google Scholar 

  189. Koper MTM, Lukkien JJ. Modeling the butterfly: influence of lateral interactions and adsorption geometry on the voltammetry at (1 1 1) and (1 0 0) electrodes. Surf Sci 2002;498:105–15.

    Article  Google Scholar 

  190. Ge Q, Desai S, Neurock M, Kourtakis K. CO adsorption on Pt-Ru surface alloys and on the surface of Pt-Ru bulk alloy. J Phys Chem B 2001;105:9533–6.

    Article  Google Scholar 

  191. Liao M-S, Cabrera CR, Ishikawa Y. A theoretical study of CO adsorption on Pt, Ru and Pt–M (M=Ru, Sn, Ge) clusters. Surf Sci 2000;445:267–82.

    Article  Google Scholar 

  192. Ishikawa Y, Cabrera CR, Liao M-S. Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M=Ru, Sn): a theoretical study. Surf Sci 2000;463:66–80.

    Article  Google Scholar 

  193. Igarashi H, Fujino T, Watanabe M. Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. J Electroanal Chem 1995;391:119–23.

    Article  Google Scholar 

  194. Markovic NM, Lucas CA, Grgur BN, Ross PN. Surface electrochemistry of CO and H2/CO mixtures at Pt(100) interface: Electrode kinetics and interfacial structures. J Phys Chem B 1999;103:9616–23.

    Article  Google Scholar 

  195. Jusys Z, Kaiser J, Behm RJ. Electrooxidation of CO and H2/CO mixtures on a carbonsupported Pt catalyst—a kinetic and mechanistic study by differential electrochemical mass spectrometry. Phys Chem Chem Phys 2001;3:4650–60.

    Article  Google Scholar 

  196. G lmen MA, S mer A, Aksoylu AE. Adsorption properties of CO on low-index Pt3Sn surfaces. Surf Sci 2006;600:4909–21.

    Article  Google Scholar 

  197. Napporn WT, Leger J-M, Lamy C. Electrocatalytic oxidation of carbon monoxide at lower potentials on platinum-based alloys incorporated in polyaniline. J Electroanal Chem 1996;408:141–7.

    Article  Google Scholar 

  198. Ley KL, Liu R, Pu C, Fan Q, Leyarovska N, Segree C, et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J Electrochem Soc 1997;144:1543–8.

    Article  Google Scholar 

  199. Chen KY, Shen PK, Tseung ACC. Anodic oxidation of impure H2 on Teflon-bonded Pt-Ru/WO3/C electrodes. J Electrochem Soc 1995;142:L185–6.

    Article  Google Scholar 

  200. Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 1993;357:201–24.

    Article  Google Scholar 

  201. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 1995;142:1409–22.

    Article  Google Scholar 

  202. Gasteiger HA, Markovic NM, Ross PN. Structural effects in electrocatalysis: electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal Lett 1996;36:1–8.

    Article  Google Scholar 

  203. Stalnionis G, Tamasauskaite-Tamasiunaite L, Pautieniene A, Sudavicius VA, Jusys Z. Modification of a Pt surface by spontaneous Sn deposition for electrocatalytic applications. J Solid State Electrochem 2004;8:892.

    Article  Google Scholar 

  204. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, et al. Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 1999;2:12–5.

    Article  Google Scholar 

  205. Crabb EM, Ravikumar MK. Synthesis and characterisation of carbon-supported PtGe electrocatalysts for CO oxidation. Electrochim Acta 2001;46:1033–41.

    Article  Google Scholar 

  206. Aberdam D, Durand R, Faure R, Gloaguen F, Hazemann JL, Herrero E, et al. X-ray absorption near edge structure study of the electro-oxidation reaction of CO on Pt50Ru50 nanoparticles. J Electroanal Chem 1995;398:43–7.

    Article  Google Scholar 

  207. Gasteiger HA, Markovic N, Ross PN, Cairns EJ. Methanol electrooxidation on wellcharacterized platinum-ruthenium bulk alloys. J Phys Chem 1993;97:12020–9.

    Article  Google Scholar 

  208. Gasteiger HA, Markovic N, Ross PN, Cairns EJ. Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys. Electrochim Acta 1994;39:1825–32.

    Article  Google Scholar 

  209. Watanabe M, Uchida M, Motoo S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem 1987;229:395–406.

    Article  Google Scholar 

  210. Papageorgopoulos DC, Keijzer M, de Bruijn FA. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 2002;48:197–204.

    Article  Google Scholar 

  211. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 2005;56:9–35.

    Article  Google Scholar 

  212. Wiese W, Emonts B, Peters R. Methanol steam reforming in a fuel cell drive system. J Power Sources 1999;84:187–93.

    Article  Google Scholar 

  213. Vielstich W, Lamm A, Gasteiger H, editors. Handbook of fuel cells, vol. 3, part 3. West Sussex, UK: Wiley, 2003: 349–464.

    Google Scholar 

  214. Tremiliosi G, Kim H, Chrzanowski W, Wieckowski A, Grzybowska B, Kulesza P. Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers. J Electroanal Chem 1999;467:143–56.

    Article  Google Scholar 

  215. Chrzanowski W, Wieckowski A. Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 1997;13:5974–59716.

    Article  Google Scholar 

  216. Chrzanowski W, Wieckowski A. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis. Langmuir 1998;14:1967–70.

    Article  Google Scholar 

  217. Waszczuk P, Solla-Gullon J, Kim HS, Tong YY, Montiel V, Aldaz A, et al. Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. J Catal 2001;203:1–6.

    Article  Google Scholar 

  218. Maillard F, Lu G-Q, Wieckowski A, Stimming U. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 2005;109:16230–43.

    Article  Google Scholar 

  219. Maillard F, Gloaguen F, Hahn F, Léger J-M. Electrooxidation of carbon monoxide at ruthenium-modified platinum nano-particles: evidence for CO surface mobility. Fuel Cells 2002;2:143–52.

    Article  Google Scholar 

  220. Maillard F, Gloaguen F, Léger JM. Preparation of methanol oxidation electrocatalysts: ruthenium deposition on carbon-supported platinum nanoparticles. J Appl Electrochem 2003;33:1–8.

    Article  Google Scholar 

  221. Dubau L, Hahn F, Coutanceau C, Léger JM, Lamy C. On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation. J Electroanal Chem 2003;554:407–15.

    Article  Google Scholar 

  222. Dubau L, Coutanceau C, Garnier E, Léger JM, Lamy C. Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: atomic composition and temperature effects. J Appl Electrochem 2003;33:419–29.

    Article  Google Scholar 

  223. Holleck GL, Pasquariello DM, Clauson SL. Carbon monoxide tolerant anodes for proton exchange membrane (PEM) fuel cells. II. Alloy catalyst development In: proceedings of the 2nd international symposium on proton conducting membrane fuel cells 1998;2:150.

    Google Scholar 

  224. Lima A, Coutanceau C, Léger JM, Lamy C. Investigation of ternary catalysts for methanol electrooxidation. J Appl Electrochem 2001;31:379–86.

    Article  Google Scholar 

  225. Götz M, Wendt H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 1998;43:3637–44.

    Article  Google Scholar 

  226. Aricò AS, Cretì P, Giordano N, Antonucci V. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. J Appl Electrochem 1996;26:959–67.

    Article  Google Scholar 

  227. Liu R, Iddir H, Fan Q, Hou G, Bo A, Ley KL, et al. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arcmelted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J Phys Chem B 2000;104:3518–31.

    Article  Google Scholar 

  228. Watanabe M, Igarashi H, Fujino T. Design of CO tolerant anode catalysts for polymer electrolyte fuel cell. Electrochemistry 1999;67:1194–6.

    Google Scholar 

  229. Uribe FA, Valerio JA, Garzon FH, Zawodzinski TA. PEMFC reconfigured anodes for enhancing CO tolerance with air bleed. Electrochem Solid-State Lett 2004;-7:A376–9.

    Article  Google Scholar 

  230. Ishikawa Y, Liao MS, Cabrera CR. Energetics of H2O dissociation and COads+OHads reaction on a series of Pt–M mixed metal clusters: a relativistic density-functional study. Surf Sci 2002;513:98–110.

    Article  Google Scholar 

  231. Dinh HN, Ren X, Garzon FH, Zelenay P, Gottesfeld S. Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 2000;491:222–33.

    Article  Google Scholar 

  232. Janssen MMP, Moolhuysen J. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochim Acta 1976;21:869–716.

    Article  Google Scholar 

  233. Liu R, Ley KL, Pu C, Fan Q, Leyarovska N, Segre C, et al. In: Electrode processes, VI. Wieckowski A, Itaya K, editors. Electrochemical Society Proceedings Series 1996;96–8:341–55.

    Google Scholar 

  234. Gottesfeld S, Zawodzinski TA. Polymer electrolyte fuel cells. In: Advances in electrochemical science and engineering. Alkire RC, Gerischer H, Kolb DM, Tobias CW, editors. New York: Wiley-VCH, 1997: vol 5, ch 4, 195–301.

    Chapter  Google Scholar 

  235. Stevens DA, Rouleau JM, Mar RE, Bonakdarpour A, Atanasoski RT, Schmoeckel AK, et al. Characterization and PEMFC testing of Pt1 xMx (M = Ru,Mo,Co,Ta,Au,Sn) anode electrocatalyst composition spreads. J Electrochem Soc 2007;154:B566–76.

    Article  Google Scholar 

  236. Attwood PA, McNicol BD, Short RT. The electrocatalytic oxidation of methanol in acid electrolyte: preparation and characterization of noble metal electrocatalysts supported on pre-treated carbon-fibre papers. J Appl Electrochem 1980;10:213–22.

    Article  Google Scholar 

  237. Frelink T, Visscher W, van Veen JAR. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem 1995;382:65–72.

    Article  Google Scholar 

  238. Kabbabi A, Gloagen F, Andolfatto F, Durand R. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. J Electroanal Chem 1994;373:251–4.

    Article  Google Scholar 

  239. Mukerjee S, McBreen J. Effect of particle size on the electrocatalysis by carbonsupported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 1998;448:163–71.

    Article  Google Scholar 

  240. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 2002;127:127–34.

    Article  Google Scholar 

  241. Pozio A, Silva RF, De Francesco M, Cardellini F, Giorgi L. Erratum to “A novel route to prepare stable Pt–Ru/C electrocatalysts for polymer electrolyte fuel cell”: [Electrochim Acta 48 (3): 255–262]. Electrochim Acta 2003;48:1625.

    Article  Google Scholar 

  242. Chen W, Sun G, Liang Z, Mao Q, Li H, Wang G, et al. The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. J Power Sources 2006;160:933–9.

    Article  Google Scholar 

  243. Gancs L, Hakim N, Hult B, Mukerjee S. Dissolution of Ru from PtRu electrocatalysts and its consequences in DMFCs. ECS Trans 2006;3(1):607–18.

    Article  Google Scholar 

  244. Gancs L, Hult BN, Hakim N, Mukerjee S. The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem Solid-State Lett 2007;10:B150–4.

    Article  Google Scholar 

  245. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P. Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 2004;151:A2053–9.

    Article  Google Scholar 

  246. Shi M, Anson FC. Mobilities and concentration profiles of counterion catalysts incorporated in Nafion coatings on electrodes. Electrochim Acta 1998;44:1301–5.

    Article  Google Scholar 

  247. Okada T. Effect of ionic contaminants. In: Handbook of fuel cells: fundamentals, technology, applications. Vol 3. Vielstich W, Gasteiger HA, Lamm A, editors. New York: John Wiley & Sons, 2003: 627.

    Google Scholar 

  248. LaConti AB, Hamdan M, McDonald RC. Mechanism of membrane degradation. In: Handbook of fuel cells: fundamentals, technology, applications. Vol 3. Vielstich W, Gasteiger HA, Lamm A, editors. New York: John Wiley & Sons, 2003: 647.

    Google Scholar 

  249. Zelenay P. In: Fuel cells durability: stationary, automotive, portable. 1st ed. Brookline, MA: Knowledge Press, 2006: 61.

    Google Scholar 

  250. Stamenkovic V, Grgur BN, Ross PN, Markovic NM. Oxygen reduction reaction on Pt and Pt-bimetallic electrodes covered by CO. J Electrochem Soc 2005;152:A277–82.

    Article  Google Scholar 

  251. Cao D, Wieckowski A, Inukai J, Alonso-Vante N. Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 2006;153:A869–74.

    Article  Google Scholar 

  252. Choban ER, Spendelow JS, Gancs L, Wieckowski A, Kenis PJA. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media. Electrochim Acta 2005;50:5390–8.

    Article  Google Scholar 

  253. Ranga JS, Gancs L, Choban ER, Primak A, Natarajan D, Markoski LJ, et al. Airbreathing laminar flow-based microfluidic fuel cell. J Am Chem Soc 2005;127:16758–9.

    Article  Google Scholar 

  254. Ghenciu AF. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 2002;6:389–99.

    Article  Google Scholar 

  255. Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 2003;114:32–53.

    Article  Google Scholar 

  256. Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000; Part II. Engineering, technology development and application aspects. J Power Sources 2001;102:253–69.

    Article  Google Scholar 

  257. Schaller KV, Gruber C. Fuel cell drive and high dynamic energy storage systems–opportunities for the future city bus. Fuel Cells Bull 2000;3:9–13.

    Article  Google Scholar 

  258. Grgur BN, Markovic NM, Ross PN. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysts. Part II. Electrooxidation of H2, CO and H2/CO mixtures on well characterized PtMo alloy. J Serb Chem Soc 2003;68:191–206.

    Article  Google Scholar 

  259. Gouérec P, Denis MC, Guay D, Dodelet JP, Schulz R. High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and their tolerance to CO. J Electrochem Soc 2000;147:3989–96.

    Article  Google Scholar 

  260. Ball S, Hodgkinson A, Hoogers G, Maniguet S, Thompsett D, Wong B. The proton exchange membrane fuel cell performance of a carbon supported PtMo catalyst operating on reformate. Electrochem Solid-State Lett 2002;-5:A31–4.

    Article  Google Scholar 

  261. Crabb EM, Ravikumar MK, Qian Y, Russell AE, Maniguet S, Yao J, et al. Controlled modification of carbon supported platinum electrocatalysts by Mo. Electrochem Solid-State Lett 2002;-5:A5–9.

    Article  Google Scholar 

  262. Santiago EI, Giuseppe GA, Camara A, Ticianelli EA. CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method. Electrochim Acta 2003;48:3527–34.

    Article  Google Scholar 

  263. Santiago EI, Batista MS, Assaf EM, Ticianelli EA. Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 2004;151:A944–9.

    Article  Google Scholar 

  264. Grgur BN, Markovic NM, Ross PN. In: Second international symposium on proton conducting membrane fuel cells II. Gottesfeld S, Fuller TF, Halpert G, editors. Pennington, NJ: The Electrochemical Society, 1998: PV 98–27, p. 176.

    Google Scholar 

  265. Janssen GJM. Modelling study of CO2 poisoning on PEMFC anodes. J Power Sources 2004;136:45–54.

    Article  Google Scholar 

  266. Moss TS, Peachey NM, Snow RC, Dye RC. Multilayer metal membranes for hydrogen separation. Int J Hydrogen Energy 1998;23:99–106.

    Article  Google Scholar 

  267. Crabb EM, Marshall R, Thompsett D. Carbon monoxide electr-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. J Electrochem Soc 2000;147:4440–7.

    Article  Google Scholar 

  268. Honma I, Toda T. Temperature dependance of kinetics of methanol electro-oxidation on PtSn alloys. J Electrochem Soc 2003;150:A1689–92.

    Article  Google Scholar 

  269. Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, et al. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 2004;126:16–22.

    Article  Google Scholar 

  270. Lamy C, Rousseau S, Belgasir EM, Coutanceau C, Leger J-M. Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 2004;49:3901–8.

    Article  Google Scholar 

  271. Arenz M, Stamenkovic V, Blizanac BB, Mayrhofer KJ, Markkovic NM, Ross PN. Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures.: Part II: the structure–activity relationship. J Catal 2005;232:402–10.

    Article  Google Scholar 

  272. Colmati F, Antolini E, Gonzalez ER. Pt–Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim Acta 2005;50:5496–503.

    Article  Google Scholar 

  273. Lee D-Y, Hwang S-W, Lee I-S. A study on composite PtRu(1:1)-PtSn(3:1) anode catalyst for PEMFC. J Power Sources 2005;145:147–53.

    Article  Google Scholar 

  274. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, et al. Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochim Acta 2005;50:5384–9.

    Article  Google Scholar 

  275. Srinivasan R, De Angeles RJ, Davis BH. Alloy formation in Pt-Sn-alumina catalysts: In situ X-ray diffraction study. J Catal 1987;106:449–57.

    Article  Google Scholar 

  276. Srinivasan R, De Angeles RJ, Davis BH. Structural studies of Pt-Sn catalysts on high and low surface area alumina supports. Catal Lett 1990;4:303–8.

    Article  Google Scholar 

  277. Srinivasan R, Rice LA, Davis BH. Electron microdiffraction study of Pt-Sn-alumina reforming catalysts. J Catal 1991;129:257–68.

    Article  Google Scholar 

  278. Srinivasan R, Davis BH. X-ray diffraction and electron microscopy studies of platinum-tin-silica catalysts. Appl Catal A Gen 1992;87:45–67.

    Article  Google Scholar 

  279. Liu ZL, Lin XH, Lee JY, Zhang W, Han M, Gan LM. Preparation and characterization of platinum-based electrocatalsyts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 2002;18(10):4054–60.

    Article  Google Scholar 

  280. Yu RQ, Chen LW, Liu QP, Lin JY, Tan KL, Ng SC, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 1998;10(3):718–22.

    Article  Google Scholar 

  281. Lim D-H, Choi D-H, Lee W-D, Park D-R, Lee H-I. The effect of Sn addition on a Pt/C electrocatalyst synthesized by borohydrode reduction and hydrothermal treatment for a low-temperature fuel cell. Electrochem Solid-State Lett 2007;10:B87–90.

    Article  Google Scholar 

  282. Neto AO, Vasconcelos TRR, Da Silva RWRV, Linardi M, Spinace EV. Electrooxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process. J Appl Electrochem 2005;35:193–8.

    Article  Google Scholar 

  283. Zhu Y, Uchida H, Watanabe M. Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique. Langmuir 1999;15:8757–64.

    Article  Google Scholar 

  284. Kwak C, Park TJ, Suh DJ. Preferential oxidation of carbon monoxide in hydrogen-rich gas over platinum–cobalt–alumina aerogel catalysts. Chem Eng Sci 2005;60:1211–7.

    Article  Google Scholar 

  285. Yan J, Ma JX, Cao P, Li P. Preferential oxidation of CO in H2-rich gases over Copromoted Pt--Al2O3 catalyst. Catal Lett 2004;93:55–60.

    Article  Google Scholar 

  286. Page T, Johnson R, Hormes J, Noding S, Rambabu B. A study of methanol electrooxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS. J Electroanal Chem 2000;485:34–41.

    Article  Google Scholar 

  287. Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 1993;357:201–24.

    Article  Google Scholar 

  288. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER. Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. Int J Hydrogen Energy 2005;30:1213–20.

    Article  Google Scholar 

  289. Antolini E, Salgado JRC, Gonzalez ER. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: A short review. Appl Catal B 2006;63:137–49.

    Article  Google Scholar 

  290. Bonakdarpour A, Lobel R, Sheng S, Monchesky TL, Dahn JR. Acid stability and oxygen reduction activity of magnetron-sputtered Pt1-xTax (0 x 1) films. J Electrochem Soc 2006;153:A2304–13.

    Article  Google Scholar 

  291. Gómez R, Gutiérrez de Dios FJ, Feliu JM. Carbon monoxide oxidation and nitrous oxide reduction on Rh/Pt(1 1 1) electrodes. Electrochim Acta 2004;49:1195–1208.

    Article  Google Scholar 

  292. Llorca MJ, Feliu JM, Aldaz A, Chavilier J. Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes. J Electroanal Chem 1994;376:151–60.

    Article  Google Scholar 

  293. Baldauf M, Kolb DM. Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J Phys Chem 1996;100:11375–81.

    Article  Google Scholar 

  294. Lu GQ, Crown A, Wieckowski A. Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J Phys Chem B 1999;103:9700–11.

    Article  Google Scholar 

  295. Stonehart P. Fuel cell with Pt/Pd electrocatalyst electrode. United States Patent US4407906. 1983 Oct 4.

    Google Scholar 

  296. Stonehart P. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells. J Hydrogen Energy 1984;9:921–8.

    Article  Google Scholar 

  297. Papageorgopoulos DC, Keijzer M, Veldhuis JBJ, de Bruijn FA. CO tolerance of Pdrich platinum palladium carbon-supported electrocatalysts. J Electrochem Soc 2002;149:A1400–4.

    Article  Google Scholar 

  298. He C, Kunz HR, Fenton JM. Evaluation of platinum-based catalysts for methanol electro-oxidation in phosphoric acid electrolyte. J Electrochem Soc 1997;144:970–9.

    Article  Google Scholar 

  299. Stonehart P, Watanabe M, Yamamoto N, Nakamura T, Hara N, Tsurumi K, inventors. Tanaka, Precious Metal Ind., Stonehart Ass. Inc., assignees. Electrocatalyst. United States Patent US5208207. 1993 May 4.

    Google Scholar 

  300. Zhang H, Wang Y, Fachini ER, Cabrera CR. Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State 1999;2:437–9.

    Article  Google Scholar 

  301. Pinheiro ALN, Oliveira-Neto A, de Souza EC, Perez J, Paganin VA, Ticianelli E, et al. Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon. J New Mater Electrochem Syst 2003;6(1):1–16.

    Google Scholar 

  302. Stevens DA, Rouleau JM, Mar RE, Atanasoski RT, Schmoeckel AK, Debe MK, et al. Enhanced CO-tolerance of Pt–Ru–Mo hydrogen oxidation catalysts. J Electrochem Soc 2007;154:B1211–9.

    Article  Google Scholar 

  303. Wu G, Swaidan R, Cui G. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process. J Power Sources 2007;172:180–8.

    Article  Google Scholar 

  304. Venkataraman R, Kun HR, Fenton JM. Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells. J Electrochem Soc 2003;150:A278–84.

    Article  Google Scholar 

  305. Verbeek H, Sachtler WHM. The study of the alloys of platinum and tin by chemisorption. J Catal 1976;42:257–67.

    Article  Google Scholar 

  306. Wise H. Role of surface composition in co adsorption on Pd-Ag catalysts. J Catal 1976;43:373–5.

    Article  Google Scholar 

  307. Fleischmann R, Boehm H. Dechema Monographs 1982;92:309.

    Google Scholar 

  308. Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem Commun 2002;4:442–6.

    Article  Google Scholar 

  309. Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y. Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 2003;150:A1225–30.

    Article  Google Scholar 

  310. Matsui T, Fujiwara K, Okanishi T, Kikuchi R, Takeguchi T, Eguchi K. Electrochemical oxidation of CO over tin oxide supported platinum catalysts. J Power Sources 2006;155:152–6.

    Google Scholar 

  311. Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K. Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 2006;52:491–8.

    Article  Google Scholar 

  312. Machida K, Enyo M, Adachi G, Shiokawa J. Methanol oxidation characteristics of rare earth tungsten bronze electrodes doped with platinum. J Electrochem Soc 1988;135:1955–61.

    Article  Google Scholar 

  313. Shen PK, Tseung ACC. Anodic oxidation of methanol on Pt/WO3 in acidic media. J Electrochem Soc 1994;141:3082–90.

    Article  Google Scholar 

  314. Shukla AK, Ravikumar MK, Aricò AS, Candiano G, Antonucci V, Giordano N, et al . Methanol electrooxidation on carbon-supported Pt-WO3 x electrodes in sulphuric acid electrolyte. J Appl Electrochem 1995;25:528–32.

    Article  Google Scholar 

  315. Tseung ACC, Chen KY. Hydrogen spill-over effect on Pt/WO3 anode catalysts. Catal Today 1997;38:439–43.

    Article  Google Scholar 

  316. Shen PK, Chen KY, Tseung ACC. CO oxidation on Pt-Ru/WO3 electrodes. J Electrochem Soc 1995;142:L85–6.

    Article  Google Scholar 

  317. Chen KY, Sun Z, Tseung ACC. Preparation and characterization of high-performance Pt-Ru/WO3-C anode catalysts for the oxidation of impure hydrogen. Electrochem Solid State Lett 2000;3:10–2.

    Article  Google Scholar 

  318. Roth C, Goetz M, Fuess H. Synthesis and characterization of carbon-supported Pt–Ru–WOx catalysts by spectroscopic and diffraction methods. J Appl Electrochem 2001;31:793–8.

    Article  Google Scholar 

  319. Hou Z, Yi B, Yu H, Lin Z, Zhang H. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J Power Sources 2003;123:116–25.

    Article  Google Scholar 

  320. Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R. Is carbonsupported Pt-WOx composite a CO-tolerant material? Electrochim Acta 2007;52:1958–67.

    Article  Google Scholar 

  321. Gustavo L, Pereira S, dos Santos FR, Pereira ME, Paganin VA, Ticianelli EA. CO tolerance effects of tungsten-based PEMFC anodes. Electrochim Acta 2006;4061–6.

    Google Scholar 

  322. Giordano N, Aricò AS, Hocevar S, Staiti P, Antonucci PL, Antonucci V. Oxygen reduction kinetics in phosphotungstic acid at low temperature. Electrochim Acta 1993;38:1733–41.

    Article  Google Scholar 

  323. Giordano N, Staiti P, Aricò AS, Passalacqua E, Abate L, Hocevar S. Analysis of the chemical cross-over in a phosphotungstic acid electrolyte based fuel cell. Electrochim Acta 1997;42:1645–52.

    Article  Google Scholar 

  324. Aricò AS, Modeca E, Ferrara I, Antonucci V. CO and CO/H2 electrooxidation on carbon supported Pt–Ru catalyst in phosphotungstic acid (H3PW12O40) electrolyte. J Appl Electrochem 1998;28:881–7.

    Article  Google Scholar 

  325. Gatto I, Saccà A, Carbone A, Pedicini R, Urbani F, Passalacqua E. CO-tolerant electrodes developed with phosphomolybdic acid for polymer electrolyte fuel cell (PEFCs) application. J Power Sources 2007;171:540–5.

    Article  Google Scholar 

  326. Herrero E, Franaszczuk K, Wieckowski A. A voltammetric identification of the surface redox couple effective in methanol oxidation on a ruthenium-covered platinum (110) electrode. J Electroanal Chem 1993;361:269–73.

    Article  Google Scholar 

  327. Franszczuk K, Sobkowski J. The influence of ruthenium adatoms on the oxidation of chemisorbed species of methanol on a platinum electrode by a radiochemical method. J Electroanal Chem 1992;327:235–45.

    Article  Google Scholar 

  328. Fachini ER, Diaz-Ayala R, Casado-Rivera E, File S, Cabrera CR. Surface coordination of ruthenium clusters on platinum nanoparticles for methanol oxidation catalysts. Langmuir 2003;19:8986–93.

    Article  Google Scholar 

  329. Crabb EM, Ravikumar MK, Thompsett D, Hurford M, Rose A, Russell AE. Effect of Ru surface composition on the CO tolerance of Ru modified carbon supported Pt catalysts. Phys Chem Chem Phys 2004;6:1792–8.

    Article  Google Scholar 

  330. Crown A, Moraes IR, Wieckowski A. Examination of Pt(111)/Ru and Pt(111)/Os surfaces: STM imaging and methanol oxidation activity. J Electroanal Chem 2001;500:333–43.

    Article  Google Scholar 

  331. Szabo S, Bakos I. Investigation of ruthenium deposition onto a platinized platinumelectrode in sulfuric-acid media. J Electroanal Chem 1987;230:233–40.

    Article  Google Scholar 

  332. Friedrich KA, Geyzers KP, Marmann A, Stimming U, Vogel R. Bulk metal electrodeposition in the sub-monolayer regime: Ru on Pt(111). Z Phys Chem 1999;208:137–50.

    Google Scholar 

  333. Morimoto Y, Yeager EB. CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes. J Electroanal Chem 1998;441:77–81.

    Article  Google Scholar 

  334. Jarvi TD, Madden TH, Stuve EM. Vacuum and electrochemical behavior of vapor deposited ruthenium on platinum (111). Electrochem Solid-State Lett 1999;2:224–7.

    Article  Google Scholar 

  335. Davies JC, Hayden BE, Pegg DJ, Rendall ME. The electrooxidation of carbon monoxide on ruthenium modified Pt(111). Surf Sci 2002;496:110–20.

    Article  Google Scholar 

  336. Cao DX, Bergens SH. An organometallic deposition of ruthenium adatoms on platinum that self poisons at a specific surface composition. A direct methanol fuel cell using a platinum–ruthenium adatom anode catalyst. J Electroanal Chem 2002;533:91–100.

    Article  Google Scholar 

  337. Crown A, Johnston C, Wieckowski A. Growth of ruthenium islands on Pt(hkl) electrodes obtained via repetitive spontaneous deposition. Surf Sci 2002;506:L268–74.

    Article  Google Scholar 

  338. Jiang Q, Lu HM, Zhao M. Modelling of surface energies of elemental crystals. J Phys Condens Matter 2004;16:521–30.

    Article  Google Scholar 

  339. Ianniello R, Schmidt VM, Stimming U, Stumper J, Wallau A. Co adsorption and oxidation on Pt and Pt-Ru alloys – dependence on substrate composition. Electrochim Acta 1994;39:1863–9.

    Article  Google Scholar 

  340. Brankovic SR, McBreen J, Adzic RR. Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 2001;503:99–104.

    Article  Google Scholar 

  341. Brankovic SR, McBreen J, Adzic RR. Spontaneous deposition of Pd on a Ru(0 0 0 1) surface. Surf Sci 2001;479:L363–8.

    Article  Google Scholar 

  342. Adzic RR, Brankovic SR, Wang JX. Carbon monoxide tolerant electrocatalyst with low platinum loading and a proces for its preparation United State patent pending, 2001.

    Google Scholar 

  343. Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR. Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 2004;49:3873–7.

    Article  Google Scholar 

  344. Campbell CT. Bimetallic surface chemistry. Annu Rev Phys Chem 1990;41:775–837.

    Article  Google Scholar 

  345. Rubin AV, Skriver HL, Nørskov JK. Surface segregation energies in transition-metal alloys. Phys Rev B 1999;59:15990–6000.

    Article  Google Scholar 

  346. Lasch K, Hayn G, Jörissen L, Garche J, Besenhardt O. Mixed conducting catalyst support materials for the direct methanol fuel cell. J Power Sources 2002;105(2):305–10.

    Article  Google Scholar 

  347. Somorjai G. Introduction to surface chemistry and catalysis. New York: Wiley, 1994: 442–595.

    Google Scholar 

  348. Nakamura T, Yamada M, Yamaguchi T. Catalytic properties of Mo(CO)6 supported on activated carbon for ethene homologation. Appl Catal A Gen 1992;87(1):69–79.

    Article  Google Scholar 

  349. de la Fuente JLG, Martinez-Huerta MV, Rojas S, Pe a MA, Terreros P, Fierro JLG. Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black. Carbon 2005;43(14):3002–5.

    Article  Google Scholar 

  350. de la Fuente JLG, Rojas S, Martínez-Huerta MV, Terreros P, Pe a MA, Fierro JLG. Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon 2006;44:1919–29.

    Article  Google Scholar 

  351. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354(6348):56–7.

    Article  Google Scholar 

  352. Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature 1992;358(6383):220–2.

    Article  Google Scholar 

  353. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, et al. Large-scale synthesis of aligned carbon nanotubes. Science 1996;274(5293):1701–3.

    Article  Google Scholar 

  354. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature 1996;382(6586):54–6.

    Article  Google Scholar 

  355. Che GL, Lakshmi BB, Martin CR, Fisher ER. Metal-nanocluster filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999;15(3):750–16.

    Article  Google Scholar 

  356. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001;412(6848):169–72.

    Article  Google Scholar 

  357. Sun X, Li R, Villers D, Dodelet JP, Desilets S. Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chem Phys Lett 2003;379(1–2):99–104.

    Article  Google Scholar 

  358. Pyun SI, Rhee CK. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures. Electrochim Acta 2004;49(24):4171–80.

    Article  Google Scholar 

  359. He ZB, Chen JH, Liu DY, Zhou HH, Kuang YF. Electrodeposition of PtRu nanoparticles on carbon nanotubes and their electrocatalystic properties for methanol electrooxidation. Diam Relat Mater 2004;13:1764–79.

    Article  Google Scholar 

  360. Liu ZL, Lee JY, Chen WX, Han M, Gan LM. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 2004;20(1):181–7.

    Article  Google Scholar 

  361. Yu JS, Kang S, Yoon SB, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J Am Chem Soc 2002;124(32):9382–3.

    Article  Google Scholar 

  362. Li WZ, Liang CH, Qiu JS, Xin Q. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel. Carbon 2002;40(5):791–4.

    Article  Google Scholar 

  363. Li WZ, Liang CH, Zhou WJ, Xin Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 2003;107(26):6292–9.

    Article  Google Scholar 

  364. Li L, Wu G, Xu B-Q. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids. Carbon 2006;44:2973–2983.

    Article  Google Scholar 

  365. Carmo M, Paganin VA, Rosolenand JM, Gonzalez ER. Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. J Power Sources 2005;142:169–76.

    Article  Google Scholar 

  366. Rodrigues NM, Chambers A, Baker RTK. Catalytic engineering of carbon nanostructures. Langmuir 1995;11:3862–6.

    Article  Google Scholar 

  367. Gadd GE, Blackford M, Moricca S, Weebb N, Evans PJ, Smith AM, et al. The world's smallest gas cylinders. Science 1997;277:933–6.

    Article  Google Scholar 

  368. Luo J, Maye MM, Kariuki NN, Wang LY, Njoki P, Lin Y, et al. Electrocatalytic oxidation of methanol: carbon-supported gold–platinum nanoparticle catalysts prepared by two-phase protocol. Catal Today 2005;99:291–7.

    Article  Google Scholar 

  369. Cameron D, Holliday R, Thompson D. Gold’s future role in fuel cell systems. J Power Sources 2003;118:298–303.

    Article  Google Scholar 

  370. Ullmann’s encyclopedia of industrial chemistry, Vol. A21. Gerhartz W, Elvers B, editors, Weinheim, Germany: VCH, 1992: 113.

    Google Scholar 

  371. Machida K, Enyo M. In situ X-ray diffraction study of hydrogen entry into Pd and Pd-Au alloy electrodes during anodic HCHO oxidation. J Electrochem Soc 1987;134:1472–4.

    Article  Google Scholar 

  372. Lewis FA. The palladium hydrogen system. London: Academic Press, 1967.

    Google Scholar 

  373. Thompsett D, Cooper SJ, Hards GA. Report ETSU F/02/00014/REP/1, 1998.

    Google Scholar 

  374. Yepez O, Scharifker BR. Oxidation of CO on hydrogen-loaded palladium. J Appl Electrochem 1999;29:1185–90.

    Article  Google Scholar 

  375. Fishman JH, inventor; Leesona Corp., assignee. Method of generating electricity comprising contacting a Pd/Au alloy black anode with a fuel containing carbon monoxide. United State Patente US3510355. 1970 May 5.

    Google Scholar 

  376. Eley DD, Moore PB. The adsorption and reaction of CO and O2 on Pd---Au alloy wires. Surf Sci 1981;111:325–43.

    Article  Google Scholar 

  377. Okanishi T, Matsui T, Takeguchi T, Kikuchi R, Eguchi K. Chemical interaction between Pt and SnO2 and influence on adsorptive properties of carbon monoxide. Appl Catal A 2006;298:181–7.

    Article  Google Scholar 

  378. Takeguchi T, Anzai Y, Kikuchi R, Eguchi K, Ueda W. Preparation and characterization of CO-tolerant Pt and Pd anodes modified with SnO2 nanoparticles for PEFC. J Electrochem Soc 2007;154:B1132–7.

    Article  Google Scholar 

  379. Okumura M, Masuyama N, Konishi E, Ichikawa S, Akita T. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method. J Catal 2002;208:485–9.

    Article  Google Scholar 

  380. Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 1999;461:14–31.

    Article  Google Scholar 

  381. Bonnemann H, Brinkmann R, Britz P, Endruschat U, Mortel R, Feldmeyer G, et al. J New Mater Electrochem Syst 2000;3:199.

    Google Scholar 

  382. Paulus U, Endruschat U, Feldmeyer G, Schmidt T, Behm R. New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal 2000;195:383–93.

    Article  Google Scholar 

  383. Luna A, Camara G, Paganin V, Ticianelli E, Gonzalez E. Effect of thermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuel cells. Electrochem Commun 2000;2:222–5.

    Article  Google Scholar 

  384. Antolini E, Giorgi L, Cardellini F, Passalacqua E. Physical and morphological characteristics and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts. J Solid State Electrochem 2001;5:131–40.

    Article  Google Scholar 

  385. Pozio A, Silva R, De Francesco M, Cardellini F, Giorgi L. A novel route to prepare stable Pt–Ru/C electrocatalysts for polymer electrolyte fuel cell. Electrochim Acta 2002;48:255–62.

    Article  Google Scholar 

  386. Che G, Lakeshmi B, Fisher E, Martin C. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998;393:346–9.

    Article  Google Scholar 

  387. Antolini E, Cardellini F. Formation of carbon supported PtRu alloys: an XRD analysis. J Alloys Compd 2001;315:118–22.

    Article  Google Scholar 

  388. Steigerwalt E, Deluga G, Cliffel D, Lukehart C. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J Phys Chem B 2001;105:8097–101.

    Article  Google Scholar 

  389. Fujiwara N, Shiozaki Y, Tanimitsu T, Yasuda K, Miyazaki Y. Precursor effects in PtRu electrocatalysts as a direct methanol fuel cell anode. Electrochemistry 2002;70:988–90.

    Google Scholar 

  390. Hills C, Mack N, Nuzzo R. The size-dependent structural phase behaviors of supported bimetallic (Pt-Ru) nanoparticles. J Phys Chem B 2003;107:2626–36.

    Article  Google Scholar 

  391. Liu Y, Qiu X, Chen Z, Zhu W. A new supported catalyst for methanol oxidation prepared by a reverse micelles method. Electrochem Commun 2002;4:550–3.

    Article  Google Scholar 

  392. Zhang X, Chan KY. Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 2003;15:451–9.

    Article  Google Scholar 

  393. Roth C, Martz N, Fuess H. Characterization of different Pt–Ru catalysts by X-ray diffraction and transmission electron microscopy. Phys Chem Chem Phys 2001;3:315–9.

    Article  Google Scholar 

  394. Goodenough JB, Hamnett A, Kennedy BJ, Manoharam R, Weeks SA. Porous carbon anodes for the direct methanol fuel cell—I. The role of the reduction method for carbon supported platinum electrodes. Electrochim Acta 1990;35:199–207.

    Article  Google Scholar 

  395. Lizcano-Valbuena WH, Paganin VA, Leite CA, Galembeck F, Gonzalez ER. Catalysts for DMFC: relation between morphology and electrochemical performance. Electrochim Acta 2003;48:3869–78.

    Article  Google Scholar 

  396. Colmati F Jr, Lizcano-Valbuena WH, Camara GA, Ticianelli EA, Gonzalez ER. Carbon monoxide oxidation on Pt-Ru electrocatalysts supported on high surface area carbon. J Braz Chem Soc 2002;13:474–82.

    Article  Google Scholar 

  397. Shukla AK, Neegat M, Bera P, Jayaram V, Hegde MS. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. J Electroanal Chem 2001;504:111–9.

    Article  Google Scholar 

  398. Watson DJ, Attard GA. The electro-oxidation of glucose using platinum–palladium bulk alloy single crystals. Electrochim Acta 2001;46:3157–61.

    Article  Google Scholar 

  399. Watson DJ, Attard GA. Surface segregation and reconstructive behaviour of the (1 0 0) and (1 1 0) surfaces of platinum–palladium bulk alloy single crystals: a voltammetric and LEED/AES study. Surf Sci 2002;515:87–93.

    Article  Google Scholar 

  400. Schmidt TJ, Markovic NM, Stamenkovic V, Ross PN, Attard GA, Watson DJ. Surface characterization and electrochemical behavior of well-defined Pt-Pd{111} singlecrystal surfaces: a comparative study using Pt{111} and palladium-modified Pt{111} electrodes. Langmuir 2002;18:6969–75.

    Article  Google Scholar 

  401. Clavilier J, Feliu JM, Aldaz A. An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. J Electroanal Chem 1988;243:419–33.

    Article  Google Scholar 

  402. Feliu JM, Fernández-Vega A, Aldaz A, Clavilier J. New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations. J Electroanal Chem 1988;256:149–63.

    Article  Google Scholar 

  403. Gómez R, Llorca MJ, Feliu JM, Aldaz A. The behaviour of germanium adatoms irreversibly adsorbed on platinum single crystals. J Electroanal Chem 1992;340:349–55.

    Article  Google Scholar 

  404. Feliu JM, Gómez R, Llorca MJ, Aldaz A. Electrochemical behavior of irreversibly adsorbed selenium dosed from solution on Pt(h,k,l) single crystal electrodes in sulphuric and perchloric acid media. Surf Sci 1993;289:152–62.

    Article  Google Scholar 

  405. Feliu JM, Llorca MJ, Gómez R, Aldaz A. Electrochemical behaviour of irreversibly adsorbed tellurium dosed from solution on Pt(h, k, l) single crystal electrodes in sulphuric and perchloric acid media. Surf Sci 1993;297:209–22.

    Article  Google Scholar 

  406. Clavilier J, Llorca MJ, Feliu JM, Aldaz A. Preliminary study of the electrochemical adsorption behaviour of a palladium modified Pt(111) electrode in the whole range of coverage. J Electroanal Chem 1991;310:429–35.

    Article  Google Scholar 

  407. Clavilier J, Llorca MJ, Feliu JM, Aldaz A. Electrochemical structure-sensitive behaviour of irreversibly adsorbed palladium on Pt(100), Pt(111) and Pt(110) in an acidic medium. J Electroanal Chem 1993;351:299–319.

    Article  Google Scholar 

  408. Gómez R, Feliu JM. Rhodium adlayers on Pt(111) monocrystalline surfaces. Electrochemical behavior and electrocatalysis. Electrochim Acta 1998;44:1191–205.

    Article  Google Scholar 

  409. Gutiérrez de Dios FJ, Gómez R, Feliu JM. Preparation and electrocatalytic activity of Rh adlayers on Pt(1 0 0) electrodes: reduction of nitrous oxide. Electrochem Commun 2001;3:659–64.

    Article  Google Scholar 

  410. Álvarez B, Climent V, Rodes A, Feliu JM. Potential of zero total charge of palladium modified Pt(111) electrodes in perchloric acid solutions. Phys Chem Chem Phys 2001;3:3269–76.

    Article  Google Scholar 

  411. Álvarez B, Rodes A, Pérez JM, Feliu JM. Two-dimensional effects on the in situ infrared spectra of CO adsorbed at palladium-covered Pt(111) electrode surfaces. J Phys Chem 2003;107:2018–28.

    Google Scholar 

  412. Inukai J, Ito M. Electrodeposition processes of palladium and rhodium monolayers on Pt(111) and Pt(100) electrodes studied by IR reflection absorption spectroscopy. J Electroanal Chem 1993;358:307–15.

    Article  Google Scholar 

  413. Attard GA, Al-Akl A. Palladium adsorption on Pt(111): a combined electrochemical and ultra-high vacuum study. Electrochim Acta 1994;39:1525–30.

    Article  Google Scholar 

  414. Climent V, Markovic NM, Ross PN. Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J Phys Chem B 2000;104:3116–20.

    Article  Google Scholar 

  415. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic MN. The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(1 1 1) in acid solution. Surf Sci 2003;523:199–209.

    Article  Google Scholar 

  416. Attard GA, Price R. Electrochemical investigation of a structure sensitive growth mode: palladium deposition on Pt(100)-hex-R0.7° and Pt(100)-(1×1). Surf Sci 1995;335:63–74.

    Article  Google Scholar 

  417. Attard GA, Price R, Al-Akl A. Electrochemical and ultra-high vacuum characterisation of rhodium on Pt(111): a temperature dependent growth mode. Surf Sci 1995;335:52–62.

    Article  Google Scholar 

  418. Tanaka K, Okawa Y, Sasahara A, Matsumoto Y. Chapter 18. In: Solid–liquid electrochemical interfaces. ACS symposium series. Washington DC: American Chemical Society, 1997.

    Google Scholar 

  419. Uosaki K, Ye S, Oda Y, Haba T, Kondo T. Electrochemical epitaxial growth of a Pt(111) phase on an Au(111) electrode. J Phys Chem B 1997;101:7566–72.

    Article  Google Scholar 

  420. Brankovic SR, Wang JX, Adzic RR. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci L 2001;474:L173–9.

    Article  Google Scholar 

  421. Keck L, Buchanan JS, Hards GA, inventors; Johnson Matthey PLC, assignee. Catalyst material. United States Patent US5068161. 1991 Nov 26.

    Google Scholar 

  422. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Bönnemann H. PtRu alloy colloids as precursors for fuel cell catalysts. J Electrochem Soc 1998;145:925–31.

    Article  Google Scholar 

  423. Boxall DL, Deluga GA, Kenik EA, King WD, Lukehart CM. Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: a DMFC anode catalyst of high relative performance. Chem Mater 2001;13:891–900.

    Article  Google Scholar 

  424. Kim JY, Yang ZG, Chang C-C, Valdez TI, Narayanan SR, Kumta PN. A sol-gel-based approach to synthesize high-surface-area Pt-Ru catalysts as anodes for DMFCs. J Electrochem Soc 2003;150:A1421–31.

    Article  Google Scholar 

  425. Kim T, Takahashi M, Nagai M, Kobayashi K. Preparation and characterization of carbon supported Pt and PtRu alloy catalysts reduced by alcohol for polymer electrolyte fuel cell. Electrochim Acta 2004;50:817–21.

    Article  Google Scholar 

  426. Liu Z, Ling XY, Su X, Lee JY. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 2004;108:8234–40.

    Article  Google Scholar 

  427. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR. Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 2004;126:8028–37.

    Article  Google Scholar 

  428. Chan K-Y, Ding J, Ren J, Cheng S, Tsang KY. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J Mater Chem 2004;14:505–16.

    Article  Google Scholar 

  429. Lizcano-Valbuena WH, de Azevedo DC, Gonzalez ER. Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells. Electrochim Acta 2004;49:1289–95.

    Article  Google Scholar 

  430. Sarma LS, Lin TD, Tsai Y-W, Chen JM, Hwang BJ. Carbon-supported Pt–Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells. J Power Sources 2005;139:44–54.

    Article  Google Scholar 

  431. Chu D, Gilman S. Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J Electrochem Soc 1996;143:1685–90.

    Article  Google Scholar 

  432. Jusys Z, Kaiser J, Behm RJ. Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation—: A DEMS study. Electrochim Acta 2002;47:3693–706.

    Article  Google Scholar 

  433. Lee SA, Park K-W, Choi J-H, Kwon B-K, Sung Y-E. Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J Electrochem Soc 2002;149:A1299–304.

    Article  Google Scholar 

  434. Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 2003;78:563–73.

    Article  Google Scholar 

  435. Solla-Gullon J, Vidal-Iglesias FJ, Montiel V, Aldaz A. Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water-in-oil microemulsion. Electrochim Acta 2004;49:5079–88.

    Article  Google Scholar 

  436. Bock C, Blakely M-A, MacDougall B. Characteristics of adsorbed CO and CH3OH oxidation reactions for complex Pt/Ru catalyst systems. Electrochim Acta 2005;50:2401–14.

    Article  Google Scholar 

  437. Aricò AS, Antonucci PL, Modica E, Baglio V, Kim H, Antonucci V. Effect of Pt---Ru alloy composition on high-temperature methanol electro-oxidation. Electrochim Acta 2002;47:3723–32.

    Article  Google Scholar 

  438. Sirk AHC, Hill JM, Kung SKY, Birss VI. Effect of redox state of PtRu electrocatalysts on methanol oxidation activity. J Phys Chem B 2004;108:689–95.

    Article  Google Scholar 

  439. Park K-W, Sung Y-E. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states. J Phys Chem B 2005;109:13585–9.

    Article  Google Scholar 

  440. Bönnemann H, Nagabhushana KS. Advantageous fuel cell catalysts from colloidal nanometals. J New Mater Electrochem Syst 2004;7:93–108.

    Google Scholar 

  441. Hui CL, Li XG, Hsing IM. Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: dispersion control and surfactant removal. Electrochim Acta 2005;51:711–9.

    Article  Google Scholar 

  442. Li X, Hsing I-M. Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation. Electrochim Acta 2006;52:1358–65.

    Article  Google Scholar 

  443. Sanchez MG, Park S, Maselli JM, City E, Graham JR. United States Patent 3830756, 1974.

    Google Scholar 

  444. Chen L, Guo M, Zhang H-F, Wang X-D. Characterization and electrocatalytic properties of PtRu/C catalysts prepared by impregnation-reduction method using Nd2O3 as dispersing reagent. Electrochim Acta 2006;52:1191–8.

    Article  Google Scholar 

  445. Zeng J, Lee JY. More active PtRu/C catalyst for methanol electrooxidation by reversal of mixing sequence in catalyst preparation. Mater Chem Phys 2007;104:336–41.

    Article  Google Scholar 

  446. Rolison DR. Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science 2003;299:1698–1701.

    Article  Google Scholar 

  447. Rolison DR, Hagans PL, Swider KE, Long JW. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 1999;15:774–9.

    Article  Google Scholar 

  448. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR. How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys. J Phys Chem B 2000;104:9772–6.

    Article  Google Scholar 

  449. Grgur BN, Markovi NM, Lucas CA, Ross PN. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysis. Part I: carbon monoxide oxidation onto low index platinum single crystals. J Serb Chem Soc 2001;66:785–97.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Ye, S. (2008). CO-tolerant Catalysts. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics