Skip to main content

A Brief Introduction to the History of the β-Amyloid Protein (Aβ) of Alzheimer’s Disease

  • Chapter
Abeta Peptide and Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. Typically, the disease progresses in a prolonged, inexorable manner [1]. Patients initially show symptoms of mild cognitive impairment, which may include some memory loss. As the disease progresses, more severe memory loss occurs (e.g., retrograde amnesia) leading to confusion and lack of orientation. The patient is often institutionalized in this period, as it becomes increasingly difficult for family members to cope with the constant requirements of care. In later stages of the disease, apathy and stupor can occur, and the patient becomes bedridden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storey E, Kinsella GJ, Slavin MJ. The neuropsychological diagnosis of Alzheimer’s disease. J Alzheimers Dis 2001;3:261–285.

    PubMed  Google Scholar 

  2. Probst A, Langui D, Ulrich J. Alzheimer’s disease: a description of the structural lesions.Brain Pathol1991; 1:229–239.

    PubMed  CAS  Google Scholar 

  3. Iqbal K, Alonso Adel C, Chen S, et al. Tau pathology in Alzheimer’s disease and other tauopathies. Biochim Biophys Acta 2005; 1739:198–210.

    PubMed  CAS  Google Scholar 

  4. Wisniewski HM, Wegiel J, Kotula L. Review. David Oppenheimer Memorial Lecture 1995: Some neuropathological aspects of Alzheimer’s disease and its relevance to other disciplines. Neuropathol Appl Neurobiol 1996; 22:3–11.

    Article  PubMed  CAS  Google Scholar 

  5. Castellani RJ, Smith MA, Perry G, Friedland RP. Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis.Neurobiol Aging 2004; 25:599–602.

    Article  PubMed  CAS  Google Scholar 

  6. Small DH, McLean CA. Alzheimer’s disease and the amyloid beta protein: What is the role of amyloid? J Neurochem 1999; 73:443–449.

    Article  PubMed  CAS  Google Scholar 

  7. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120:885–890.

    Article  PubMed  CAS  Google Scholar 

  8. Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer—s disease and Down syndrome. Proc Natl Acad Sci U S A 1985; 82:4245–4249.

    Article  PubMed  CAS  Google Scholar 

  9. Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733–736.

    Article  PubMed  CAS  Google Scholar 

  10. Wilquet V, De Strooper B. Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol 2004; 14:582–588.

    Article  PubMed  CAS  Google Scholar 

  11. Weidemann A, Konig G, Bunke D, et al. Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 1989; 57:115–126.

    Article  PubMed  CAS  Google Scholar 

  12. Esch FS, Keim PS, Beattie EC, et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 1990; 248:1122–1124.

    Article  PubMed  CAS  Google Scholar 

  13. Buxbaum JD, Liu KN, Luo Y, et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998; 273:27765–27767.

    Article  PubMed  CAS  Google Scholar 

  14. Lammich S, Kojro E, Postina R, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999; 96: 3922–3927.

    Article  PubMed  CAS  Google Scholar 

  15. Nunan J, Small DH. Regulation of APP cleavage by alpha-, beta-and gamma-secretases.FEBS Lett 2000; 483:6–10.

    Article  PubMed  CAS  Google Scholar 

  16. Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer—s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  17. Lin X, Koelsch G, Wu S, et al. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A 2000; 97:1456–1460.

    Article  PubMed  CAS  Google Scholar 

  18. Sinha S, Anderson JP, Barbour R, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 1999; 402:537–540.

    Article  PubMed  CAS  Google Scholar 

  19. Yan R, Bienkowski MJ, Shuck ME, et al. Membraneanchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 1999; 402:533–537.

    Article  PubMed  CAS  Google Scholar 

  20. Small DH, Mok SS, Bornstein JC. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2001; 2:595–598.

    Article  PubMed  CAS  Google Scholar 

  21. Yankner BA, Dawes LR, Fisher S, et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989; 245:417–420.

    Article  PubMed  CAS  Google Scholar 

  22. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, et al. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 1995; 64:253–265.

    Article  PubMed  CAS  Google Scholar 

  23. Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004; 44:181–193.

    Article  PubMed  CAS  Google Scholar 

  24. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256:184–185.

    Article  PubMed  CAS  Google Scholar 

  25. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2:864–870.

    Article  PubMed  CAS  Google Scholar 

  26. Jarrett JT, Lansbury PT, Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993; 73:1055–1058.

    Article  PubMed  CAS  Google Scholar 

  27. Bertram L, Tanzi RE. The current status of Alzheimer’s disease genetics: what do we tell the patients? Pharmacol Res 2004; 50:385–396.

    Article  PubMed  CAS  Google Scholar 

  28. Hock BJ Jr., Lamb BT. Transgenic mouse models of Alzheimer’s disease. Trends Genet 2001; 17:S7–12.

    Google Scholar 

  29. Lewis J, Dickson DW, Lin WL, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 2001; 293:1487–1491.

    Article  PubMed  CAS  Google Scholar 

  30. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375:754–760.

    Article  PubMed  CAS  Google Scholar 

  31. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269:973–977.

    Article  PubMed  CAS  Google Scholar 

  32. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43:1467–1472.

    PubMed  CAS  Google Scholar 

  33. Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A 1993; 90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  34. Bales KR, Verina T, Dodel RC, et al. Lack of apolipoprotein E dramatically reduces amyloid betapeptide deposition. Nat Genet 1997; 17:263–264.

    Article  PubMed  CAS  Google Scholar 

  35. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer’s-diseaselike pathology in the PDAPP mouse. Nature 1999; 400:173–177.

    Article  PubMed  CAS  Google Scholar 

  36. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer’s disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9:448–452.

    Article  PubMed  CAS  Google Scholar 

  37. Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38:547–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Small, D.H., Barrow, C.J. (2007). A Brief Introduction to the History of the β-Amyloid Protein (Aβ) of Alzheimer’s Disease. In: Barrow, C.J., Small, D.H. (eds) Abeta Peptide and Alzheimer’s Disease. Springer, London. https://doi.org/10.1007/978-1-84628-440-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-440-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-961-6

  • Online ISBN: 978-1-84628-440-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics