Skip to main content

Having Your Omega 3 Fatty Acids and Eating Them Too: Strategies to Ensure and Improve the Long-Chain Polyunsaturated Fatty Acid Content of Farm-Raised Fish

  • Chapter
  • First Online:
Omega-6/3 Fatty Acids

Part of the book series: Nutrition and Health ((NH))

Abstract

For most of the human population, seafood represents the primary source of beneficial long-chain polyunsaturated fatty acids (LC-PUFA) (1). Historically, capture fisheries were able to meet demand, but the current state of fisheries portends a “sea change” in how we feed a seafood- and LC-PUFA-hungry world. The Food and Agriculture Organization of the United Nations (FAO) has stated that of those marine fisheries for which statistics are available, 53% are fully exploited, 28% are over exploited, and 4% are depleted or recovering from depletion; only 15% are considered under exploited, or capable of sustaining greater harvest pressure (2). Although rates of decline have been slaked in some instances, the future of many fisheries remains uncertain (3), and some researchers have gone so far as to predict the collapse of many fisheries unless significant changes are made to current resource management approaches (4–6). As capture fisheries have reached maximum sustainable yields, global demand has continued to grow: global fisheries landings including aquaculture in 1950 was approximately 20 million metric tons (MMT); landings in 2008 topped 140 MMT, of which approximately 115 MMT were used for direct human consumption (2). Increasing demand is a function of human population growth, as well as increasing per capita consumption: annual fish consumption has grown by more than 70% since the 1960s, reaching 17 kg per capita in 2007, the highest recorded to date (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Although the term “omega 3” and trivial fatty acid names are perhaps more common in some of the ­nutrition literature, we have elected to use the “n-X” terminology and numeric fatty acid nomenclature throughout.

  2. 2.

     J.T. Trushenski, unpublished data.

  3. 3.

     J. Bowzer and J. Trushenski, unpublished data.

  4. 4.

     Kanczuzewski and Trushenski, unpublished data.

References

  1. Garg ML, Wood LG, Singh H, Moughan PJ. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J Food Sci. 2006;71:R66–71.

    Article  CAS  Google Scholar 

  2. FAO (Food and Agriculture Organization). The state of world fisheries and aquaculture. Rome, Italy: Food and Agriculture Organization of the United Nations; 2010.

    Google Scholar 

  3. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jense OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D. Rebuilding global fisheries. Science. 2009;325:578–85.

    Article  PubMed  CAS  Google Scholar 

  4. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. Fishing down marine food webs. Science. 1998;279:860–3.

    Article  PubMed  CAS  Google Scholar 

  5. Pauly D, Alder J, Bennett E, Christensen V, Tyedmers P, Watson R. The future for fisheries. Science. 2003;302:1359–61.

    Article  PubMed  CAS  Google Scholar 

  6. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.

    Article  PubMed  CAS  Google Scholar 

  7. Beveridge MCM, Little DC. The history of aquaculture in traditional societies. In: Costa-Pierce BA, editor. Ecological aquaculture: the evolution of the blue revolution. Oxford: Blackwell; 2002. p. 3–29.

    Google Scholar 

  8. FAO (Food and Agriculture Organization). The state of world fisheries and aquaculture. Rome, Italy: Food and Agriculture Organization of the United Nations; 2006.

    Google Scholar 

  9. FAO (Food and Agriculture Organization). The state of world fisheries and aquaculture. Rome, Italy: Food and Agriculture Organization of the United Nations; 2008.

    Google Scholar 

  10. Halver JE, Hardy RW. Fish nutrition. 3rd ed. San Diego, CA: Academic; 2002.

    Google Scholar 

  11. Guillaume J, Kaushik S, Bergot P, Métailler R. Nutrition and feeding of fish and crustaceans. Chichester, UK: Springer-Praxis; 2001.

    Google Scholar 

  12. NRC (National Research Council). Nutrient requirements of fish and shrimp. Washington, D.C.: National Academics Press; 2011.

    Google Scholar 

  13. Trushenski JT, Kasper CS, Kohler CC. Challenges and opportunities in finfish nutrition. N Am J Aquacult. 2006;68:122–40.

    Article  Google Scholar 

  14. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res. 2007;38:551–79.

    Article  CAS  Google Scholar 

  15. Turchini GM, Torstensen BE, Ng W-K. Fish oil replacement in finfish nutrition. Rev Aquacult. 2009;1:10–57.

    Article  Google Scholar 

  16. Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 2008;285:146–58.

    Article  CAS  Google Scholar 

  17. Laporte J, Trushenski JT. Production performance, stress tolerance, and intestinal integrity of sunshine bass fed increasing levels of soybean meal. J Anim Physiol Anim Nutr. 2011;96(3):513–26.

    Article  CAS  Google Scholar 

  18. Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci. 2003;11:107–84.

    Article  CAS  Google Scholar 

  19. Krogdahl A, Hemre GI, Mommsen TP. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquacult Nutr. 2005;11:103–22.

    Article  CAS  Google Scholar 

  20. Stone DA. Carbohydrate utilization by fish. Rev Fish Sci. 2003;11:337–69.

    Article  CAS  Google Scholar 

  21. Tocher DR, Bendiksen EÅ, Campbell PJ, Bell JG. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture. 2008;280:21–34.

    Article  CAS  Google Scholar 

  22. Arts MT, Kohler CC. Health and condition in fish: the influence of lipids on membrane competency and immune response. In: Arts MT, Brett MT, Kainz MJ, editors. Lipids in aquatic ecosystems. Dordrecht: Springer; 2009. p. 237–55.

    Chapter  Google Scholar 

  23. Sargent J, Bell G, McEvoy L, Tocher D, Estevez A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture. 1999;177:191–9.

    Article  CAS  Google Scholar 

  24. Trushenski JT, Lochmann RT. Potential, implications and solutions regarding the use of rendered animal fats in aquafeeds. Am J Anim Vet Sci. 2009;4:108–28.

    Article  CAS  Google Scholar 

  25. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J Nutr. 2001;131:1535–43.

    PubMed  CAS  Google Scholar 

  26. Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie O, Sargent JR. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agric Food Chem. 2005;53:10166–78.

    Article  PubMed  CAS  Google Scholar 

  27. Wonnacott EJ, Lane RL, Kohler CC. Influence of dietary replacement of menhaden oil with canola oil on fatty acid composition of sunshine bass. N Am J Aquacult. 2004;66:243–50.

    Article  Google Scholar 

  28. Jobling M. Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash-out or dilution? Test of a dilution model and its application. Aquacult Res. 2003;34:1215–21.

    Article  CAS  Google Scholar 

  29. Robin JH, Regost C, Arzel J, Kaushik SJ. Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture. 2003;225:283–93.

    Article  CAS  Google Scholar 

  30. Bransden MP, Carter CG, Nichols PD. Replacement of fish oil with sunflower oil in feeds for Atlantic salmon (Salmo salar L.): effect on growth performance, tissue fatty acid composition and disease resistance. Comp Biochem Physiol B. 2003;135:611–25.

    Article  PubMed  CAS  Google Scholar 

  31. Glencross BD, Hawkins WE, Curnow JG. Restoration of the fatty acid composition of red seabream (Pagrus auratus) using a fish oil finishing diet after grow-out on plant oil based diets. Aquacult Nutr. 2003;9:409–18.

    Article  CAS  Google Scholar 

  32. Menoyo D, Lopez-Bote CJ, Diez A, Obach A, Bautista JM. Impact of n-3 fatty acid chain length and n-3/n-6 ratio in Atlantic salmon (Salmo salar) diets. Aquaculture. 2007;267:248–59.

    Article  CAS  Google Scholar 

  33. Trushenski JT. Saturated lipid sources in feeds for sunshine bass: alterations in production performance and tissue fatty acid compositions. N Am J Aquacult. 2009;71:363–73.

    Article  Google Scholar 

  34. Trushenski JT, Boesenberg J. Influence of dietary fish oil concentration and finishing duration on beneficial fatty acid profile restoration in sunshine bass Morone chrysops ♀  ×  M. saxatilis ♂. Aquaculture. 2009;296:277–83.

    Article  CAS  Google Scholar 

  35. Rasmussen RS. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics. Aquacult Res. 2001;32:767–86.

    Article  Google Scholar 

  36. Shah AKMA, Tokunaga C, Kurihara H, Takahashi K. Changes in lipids and their contribution to the taste of migaki-nishin (dried herring fillet) during drying. Food Chem. 2009;115:1011–8.

    Article  CAS  Google Scholar 

  37. Stéphan G, Guillaume J, Lamour F. Lipid peroxidation in turbot (Scophthalmus maximus) tissue: effects of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture. 1995;130:251–68.

    Article  Google Scholar 

  38. Liu KKM, Barrows FT, Hardy RW, Dong FM. Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin or menhaden oil. Aquaculture. 2004;238:309–28.

    Article  CAS  Google Scholar 

  39. Menoyo D, Izquierdo MS, Robaina L, Gines R, Lopez-Bote CJ, Bautista JM. Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. Br J Nutr. 2004;92:41–52.

    Article  PubMed  CAS  Google Scholar 

  40. Ng W, Wang Y, Ketchimenin P, Yuen K. Replacement of dietary fish oil with palm fatty acid distillate elevates tocopherol and tocotrienol concentrations and increases oxidative stability in the muscle of African catfish, Clarias gariepinus. Aquaculture. 2004;233:423–37.

    Article  CAS  Google Scholar 

  41. Turchini GM, Mentasti T, Caprino F, Panseri S, Moretti VM, Valfré F. Effects of dietary lipid sources on flavour volatile compounds of brown trout (Salmo trutta L.) fillet. J Appl Ichthyol. 2004;20:71–5.

    Article  CAS  Google Scholar 

  42. Koriyama T, Wongso S, Watanabe K, Abe H. Fatty acid compositions of oil species affect the five basic taste perceptions. J Food Sci. 2006;67:868–73.

    Article  Google Scholar 

  43. Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y, Place AR. Advanced DHA, EPA, and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture. 2002;213:347–62.

    Article  CAS  Google Scholar 

  44. Raghukumar S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Marine Biotechnol. 2008;10:631–40.

    Article  CAS  Google Scholar 

  45. Mendes A, Reis A, Vasconcelos R, Guerra P, Lopes da Silva T. Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol. 2009;21:199–214.

    Article  Google Scholar 

  46. Storebakken T. Krill as a potential feed source for salmonids. Aquaculture. 1988;70:193–205.

    Article  Google Scholar 

  47. Nicol S, Foster J, Kawaguchi S. The fishery for Antarctic krill—recent developments. Fish Fish. 2012;13:30–40.

    Article  Google Scholar 

  48. Hall SJ, Mainprize BM. Managing by-catch and discards: how much progress are we making and how can we do better. Fish Fish. 2005;6:134–55.

    Article  Google Scholar 

  49. Bechtel PJ. Properties of different fish processing by-products from pollock, cod, and salmon. J Food Process Preserv. 2003;27:101–16.

    Article  Google Scholar 

  50. Wijesundera C, Kitessa S, Abeywardena M, Bignell W, Nichols PD. Long-chain omega-3 oils: current and future supplies, food and feed applications, and stability. Lipid Technol. 2011;23:55–8.

    Article  CAS  Google Scholar 

  51. Li P, Wang X, Hardy RW, Gatlin DM. Nutritional value of fisheries by-catch and by-product meals in the diet of red drum (Sciaenops ocellatus). Aquaculture. 2004;236:485–96.

    Article  Google Scholar 

  52. Salze G, McLean E, Battle PR, Schwartz MH, Craig SR. Use of soy protein concentrated and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture. 2010;298:294–9.

    Article  CAS  Google Scholar 

  53. Wikfors GH, Ohno M. Impact of algal research in aquaculture. J Phycol. 2001;37:968–74.

    Article  Google Scholar 

  54. Brown MR. Nutritional value of microalgae for aquaculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N, editors. Avances en Nutrición Acuícola. VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. México: Cancún, Quintana Roo; 2002.

    Google Scholar 

  55. Reitan KI, Rainuzzo JR, Øie G, Olsen Y. A review of the nutritional effects of algae in marine fish larvae. Aquaculture. 1997;155:207–21.

    Article  Google Scholar 

  56. Nanton DA, Castell JD. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture. 1998;163:251–61.

    Article  CAS  Google Scholar 

  57. Tocher DR. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technol. 2009;21:13–6.

    Article  CAS  Google Scholar 

  58. Bimbo AP. Current and future sources of raw materials for the long-chain omega-3 fatty acid market. Lipid Technol. 2007;19:176–9.

    Article  CAS  Google Scholar 

  59. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae based fuels. J Renewable Sustain Energy. 2010;2(1):012701. doi:10.1063/1.3294480.

    Article  CAS  Google Scholar 

  60. Menoyo D, Izquierdo MS, Robaina L, Ginés R, Lopez-Bote CJ, Bautista JM. Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. Br J Nutr. 2004;92:41–52.

    Article  PubMed  CAS  Google Scholar 

  61. Benedito-Palos L, Navarro JC, Bermejo-Nogales A, Saera-Vila A, Kaushik S, Pérez-Sánchez J. The time course of fish oil wash-out follows a simple dilution model in gilthead sea bream (Sparus aurata L.) fed graded levels of vegetable oils. Aquaculture. 2009;288:98–105.

    Article  CAS  Google Scholar 

  62. Blanchard G, Makombu JG, Kestemont P. Influence of different dietary 18:3n-3/18:2n-6 ratio on growth performance, fatty acid composition, and hepatic ultrastructure in Eurasian perch, Perca fluviatilis. Aquaculture. 2008;284:144–50.

    Article  CAS  Google Scholar 

  63. Piedecausa MA, Mazón MJ, García García B, Hernández MD. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture. 2007;263:211–9.

    Article  CAS  Google Scholar 

  64. Regost C, Arzel J, Robin J, Rosenlund G, Kaushik SJ. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima): 1. growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture. 2003;217:465–82.

    Article  CAS  Google Scholar 

  65. Mourente G, Good JE, Bell JG. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E2 and F, immune function and effectiveness of a fish oil finishing diet. Aquacult Nutr. 2005;11:25–40.

    Article  CAS  Google Scholar 

  66. Mourente G, Bell JG. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comp Biochem Physiol B. 2006;145:389–99.

    Article  PubMed  CAS  Google Scholar 

  67. Francis DS, Turchini GM, Jones PL, De Silva SS. Growth performance, feed efficiency and fatty acid composition of juvenile Murray cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil. Aquacult Nutr. 2007;12:335–50.

    Article  Google Scholar 

  68. Bell JG, Tocher DR, Henderson RJ, Dick JR, Crampton VO. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J Nutr. 2003;133:2793–801.

    PubMed  CAS  Google Scholar 

  69. Bell JG, Henderson RJ, Tocher DR, Sargent JR. Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids. 2004;39:223–32.

    Article  PubMed  CAS  Google Scholar 

  70. Menoyo D, Lopez-Bote CJ, Obach A, Bautista JM. Effect of dietary fish oil substitution with linseed oil on the performance, tissue fatty acid profile, metabolism, and oxidative stability of Atlantic salmon. J Anim Sci. 2005;83:2853–62.

    PubMed  CAS  Google Scholar 

  71. Turchini GM, Francis DS, Keast RSJ, Sinclair AJ. Transforming salmonid aquaculture from a consumer to a producer of long chain omega-3 fatty acids. Food Chem. 2011;124:609–14.

    Article  CAS  Google Scholar 

  72. Visentainer JV, de Souza NE, Makoto M, Hayashi C, Franco MRB. Influence of dietsy enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chem. 2005;90:557–60.

    Article  CAS  Google Scholar 

  73. Trushenski JT, Boesenberg J, Kohler CC. Influence of grow-out feed fatty acid composition on finishing success in Nile tilapia. N Am J Aquacult. 2009;71:242–51.

    Article  Google Scholar 

  74. Owen JM, Adron JW, Middletone C, Cowey CB. Elongation and desaturation of dietary fatty acids in turbot Scophthalmus maximus L., and rainbow trout, Salmo gairdnerii rich. Lipids. 1975;10:528–31.

    Article  PubMed  CAS  Google Scholar 

  75. Hagve T-A, Christophersen BO, Dannevig BH. Desaturation and chain elongation of essential fatty acids in isolated liver cells from rat and rainbow trout. Lipids. 1986;21:202–5.

    Article  PubMed  CAS  Google Scholar 

  76. Buzzi M, Henderson RJ, Sargent JR. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta. 1996;1299:235–44.

    Article  PubMed  Google Scholar 

  77. Olsen RE, Henderson RJ, McAndrew BJ. The conversion of linoleic acid and linolenic acid to longer-chain polyunsaturated fatty acids by tilapia (Oreochromis nilotica) in vivo. Fish Physiol Biochem. 1990;8:261–70.

    Article  CAS  Google Scholar 

  78. Tocher DR, Agaba M, Hastings N, Bell JG, Dick JR, Teale AJ. Nutrition regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus). Fish Physiol Biochem. 2002;24:309–20.

    Article  Google Scholar 

  79. Sargent JR, Tocher DR, Bell JG. The lipids. In: Halver JE, Hardy RW, editors. Fish nutrition. San Diego, CA: Academic; 2002.

    Google Scholar 

  80. Glencross BD. Exploring the nutrition demand for essential fatty acids by aquaculture species. Rev Aquacult. 2009;1:71–124.

    Article  Google Scholar 

  81. Nematipour GR, Gatlin DM. Requirement of hybrid striped bass, Morone chrysops  ×  M. saxatilis, for dietary (n-3) highly unsaturated fatty acids. J Nutr. 1993;127:744–53.

    Google Scholar 

  82. Webster CD, Lovell RT. Response of striped bass larvae fed brine shrimp from different sources containing different fatty acid compositions. Aquaculture. 1990;90:49–61.

    Article  CAS  Google Scholar 

  83. Lane RL, Kohler CC. Effects of dietary lipid and fatty acids on reproductive performance, egg hatchability, and overall quality of progeny of white bass Morone chrysops. N Am J Aquacult. 2006;68:141–50.

    Article  Google Scholar 

  84. Tocher DR, Bell JG, Henderson RJ, McGhee F, Mitchell D, Morris PC. The effect of dietary linseed and rapeseed oils on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Fish Physiol Biochem. 2000;23:59–73.

    Article  CAS  Google Scholar 

  85. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ. Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar). Aquaculture. 2004;236:467–83.

    Article  CAS  Google Scholar 

  86. Zheng X, Torstensen BE, Tocher DR, Dick JR, Henderson RJ, Bell JG. Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochim Biophys Acta. 2005;1734:13–24.

    Article  PubMed  CAS  Google Scholar 

  87. Turchini GM, Francis DS, De Silva SS. Fatty acid metabolism in the freshwater fish Murray cod (Maccullochella peelii peelii) deduced by the whole-body fatty acid balance method. Comp Biochem Physiol B. 2006;144:110–8.

    Article  PubMed  CAS  Google Scholar 

  88. Miller MR, Nichols PD, Carter CG. Replacement of dietary fish oil for Altantic salmon parr (Salmo salar L.) with a stearidonic acid containing oil has no effect on omega-3 long-chain polyunsaturated fatty acid concentrations. Comp Biochem Physiol. 2007;B146:197–206.

    Google Scholar 

  89. Miller MR, Bridle AR, Nichols PD, Carter CG. Increased elongase and desaturase gene expression with stearidonic acid enriched diet does not enhance long-chain (n-3) content of seawater Atlantic salmon (Salmo salar L.). J Nutr. 2008;138:2179–85.

    Article  PubMed  CAS  Google Scholar 

  90. Bell JG, Strachan F, Good JE, Tocher DR. Effect of dietary echium oil on growth, fatty acid composition and metabolism, gill prostaglandin production and macrophage activity in Atlantic cod (Gadus morhua L.). Aquacult Res. 2006;37:606–17.

    Article  CAS  Google Scholar 

  91. Tocher DR, Dick JR, MacGlaughlin P, Bell JG. Effect of diets enriched in Δ6 desaturated fatty acids (18:3n-6 and 18:4n-3), on growth, fatty acid composition and highly unsaturated fatty acid synthesis in two populations of Arctic charr (Salvelinus alpines L.). Comp Biochem Physiol B. 2006;144:245–53.

    Article  PubMed  CAS  Google Scholar 

  92. Díaz-López M, Pérez MJ, Acosta NG, Tocher DR, Jerez S, Lorenzo A, Rodríguez C. Effect of dietary substitution of fish oil by Echium oil on growth, plasma parameters and body lipid composition in gilthead seabream (Sparus aurata L.). Aquacult Nutr. 2009;15:500–12.

    Article  CAS  Google Scholar 

  93. Bharadwaj AS, Hart SD, Brown BJ, Li Y, Watkins BA, Brown PB. Dietary source of stearidonic acid promotes higher muscle DHA concentrations that linolenic acid in hybrid striped bass. Lipids. 2010;45:21–7.

    Article  PubMed  CAS  Google Scholar 

  94. Clemente TE, Cahoon EB. Soybean oil: genetic approached for modification of functionality and total content. Plant Physiol. 2009;151:1030–40.

    Article  PubMed  CAS  Google Scholar 

  95. Robert SS. Production of eicosapentaenoic and docosahexaenoic acid-containing oils in transgenic land plants for human and aquaculture nutrition. Marine Biotechnol. 2006;8:103–9.

    Article  CAS  Google Scholar 

  96. Truksa M, Vrinten P, Qiu X. Metabolic engineering of plants for polyunsaturated fatty acid production. Mol Breed. 2009;23:1–11.

    Article  CAS  Google Scholar 

  97. Izquierdo MS, Montero D, Robaina L, Caballero MJ, Rosenlund G, Ginéz R. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture. 2005;250:431–44.

    Article  CAS  Google Scholar 

  98. Fountoulaki E, Vasilaki A, Hurtado R, Grigorakis K, Karacostas I, Nengas I, Rigos G, Kotzamanis Y, Venou B, Alexis MN. Fish oil substitution by vegetables oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality, and fillet fatty acid profile; recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture. 2009;289:317–26.

    Article  CAS  Google Scholar 

  99. Stone DAJ, Olivera ACM, Ross CF, Plante S, Smiley S, Bechtel P, Hardy RW. The effects of phase-feeding rainbow trout (Oncorhynchus mykiss) with canola oil and Alaskan Pollock fish oil on the fillet fatty acid composition and sensory attributes. Aquacult Nutr. 2001;17:521–9.

    Article  Google Scholar 

  100. Lane RL, Trushenski JT, Kohler CC. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops  ×  M. saxatilis following change in dietary lipid source. Lipids. 2006;41:1029–38.

    Article  PubMed  CAS  Google Scholar 

  101. Jobling O, Sæther Leknes B-S, Bendiksen E. Lipid and fatty acid dynamics in Atlantic cod, Gadus morhua, tissues: influence of dietary lipid concentrations and feed oil sources. Aquaculture. 2008;281:87–94.

    Article  CAS  Google Scholar 

  102. Trushenski JT, Lewis H, Kohler C. Fatty acid profile of sunshine bass: I. Profile change is affected by initial composition and differs among tissues. Lipids. 2008;43:629–41.

    Article  PubMed  CAS  Google Scholar 

  103. Trushenski JT, Lewis H, Kohler C. Fatty acid profile of sunshine bass: II. Profile change differs among fillet lipid classes. Lipids. 2008;43:643–53.

    Article  PubMed  CAS  Google Scholar 

  104. Mulligan BL, Trushenski JT. Use of standard or modified plant-derived lipids as alternatives to fish oil in feeds for juvenile Nile tilapia. J Aquat Food Prod Technol. 2011;In Press. doi:10.1080/10498850.2011.623336.

    Google Scholar 

  105. Trushenski JT, Rosenquist J, Gause BR. Growth performance, tissue fatty acid composition, and consumer appeal of rainbow trout reared on feeds containing terrestrially derived rendered fats. N Am J Aquacult. 2011;73:468–78.

    Article  Google Scholar 

  106. Trushenski JT, Blaufuss P, Mulligan B, Laporte J. Growth performance and tissue fatty acid composition of rainbow trout reared on feeds containing fish oil or equal blends of fish oil and traditional or novel alternative lipids. N Am J Aquacult. 2011;73:194–203.

    Article  Google Scholar 

  107. Laporte J, Trushenski JT. Growth performance and tissue fatty acid composition of largemouth bass fed diets containing fish oil or blends of fish oil and soy-derived lipids. N Am J Aquacult. 2011;73(4):435–44.

    Article  Google Scholar 

  108. Turchini GM, Francis DS, Senadheera SPSD, Thanuthong T, De Silva SS. Fish oil replacement with different vegetable oils in Murray cod: evidence of an “omega-3 sparing effect” by other dietary fatty acids. Aquaculture. 2011;315:250–9.

    Article  CAS  Google Scholar 

  109. Trushenski JT, Gause B, Lewis HA. Selective fatty acid metabolism, not the sequence of dietary fish oil intake, prevails in fillet fatty acid profile change in sunshine bass. N Am J Aquacult. 2011;73:204–11.

    Article  Google Scholar 

  110. Senadheera SPSD, Turchini GM, Thanuthong T, Francis DS. Effects of dietary α-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio on growth performance, fillet fatty acid profile and finishing efficiency in Murray cod. Aquaculture. 2010;309:222–30.

    Article  CAS  Google Scholar 

  111. Francis DS, Turchini GM, Smith BK, Ryan SG, De Silva SS. Effects of alternate phases of fish oil and vegetable oil-based diets in Murray cod. Aquacult Res. 2009;40:1123–34.

    Article  CAS  Google Scholar 

  112. Brown TD, Francis DS, Turchini GM. Can dietary lipid source circadian alternation improve omega-3 deposition in rainbow trout? Aquaculture. 2010;300:148–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse T. Trushenski PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trushenski, J.T., Bowzer, J.C. (2013). Having Your Omega 3 Fatty Acids and Eating Them Too: Strategies to Ensure and Improve the Long-Chain Polyunsaturated Fatty Acid Content of Farm-Raised Fish. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics