Skip to main content

Growth Factors for Promoting Wound Healing

  • Chapter
  • First Online:
Biomaterials for Surgical Operation
  • 1465 Accesses

Abstract

The wound-healing process requires many types of growth factors, and exogenous delivery of appropriate growth factors to the injured site leads to accelerated healing. To deliver such growth factors, carriers which are generally made of bioabsorbable polymers are employed. However, only a few release systems, including a combination of bone morphogenetic protein (BMP) and a collagen sponge, are commercially available for the delivery of growth factors. However, this collagen carrier needs a large amount of BMP due to the low efficacy of the carrier. Studies on more effective carriers for the growth factors are ongoing. Recently, technologies to concentrate the patient’s own platelets which contain a large amount of the growth factors have been developed. Since the growth factors are completely autologous, it should be safe and cost effective. This chapter offers a review of recent studies on growth factor–carrier systems, as well as emerging technologies for platelet-rich plasma (PRP). Importance of carriers is emphasized to effectively deliver growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–9

    Article  PubMed  CAS  Google Scholar 

  2. White AP, Vaccaro AR, Hall JA, Whang PG, Friel BC, McKee MD (2007) Clinical applications of BMP-7/OP-1 in fractures, non-unions and spinal fusion. Int Orthop 31:735–41

    Article  PubMed  Google Scholar 

  3. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® bone graft). Int Orthop 31:729–34

    Article  PubMed  Google Scholar 

  4. Tabata Y, Yamamoto M, Ikada Y (1998) Biodegradable hydrogels for bone regeneration through growth factor release. Pure Appl Chem 70(6):1277–82

    Article  CAS  Google Scholar 

  5. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, Gil MH (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1:164–209

    Article  Google Scholar 

  6. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–118

    Article  CAS  Google Scholar 

  7. Anitua E, Sánchez M, Orive G, Andia I (2008) Delivering growth factors for therapeutics. Trends Pharmacol Sci 29(1):37–41

    Article  PubMed  CAS  Google Scholar 

  8. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–92

    Article  PubMed  CAS  Google Scholar 

  9. Li RH, Wozney JM (2001) Delivering on the promise of bone morphogenic proteins. Trends Biotechnol 19(7):255–65

    Article  PubMed  CAS  Google Scholar 

  10. Burkus JK, Heim SE, Gornet MF, Zdeblick TA (2003) Is INFUSE® bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16(2):113–22

    Article  PubMed  Google Scholar 

  11. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A, BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group (2006) Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects A randomized, controlled trial. J Bone Joint Surg Am 88:1431–41

    Article  PubMed  Google Scholar 

  12. OP-1 Putty (2011) [updated 2011; cited 2011 08 June]; Available from: http://www.op1.com/product_op-1_putty.html

  13. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (Bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83(Suppl 1 (Pt2)):S151–S8

    PubMed  Google Scholar 

  14. Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 29(17):1885–92

    Article  PubMed  Google Scholar 

  15. Vaccaro AR, Anderson DG, Patel T, Fischgrund J, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2005) Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine (Phila Pa 1976) 30(24):2709–16

    Article  Google Scholar 

  16. Lee YM, Nam SH, Seol YJ, Kim TI, Lee SJ, Ku Y, Rhyu IC, Chung CP, Han SB, Choi SM (2003) Enhanced bone augmentation by controlled release of recombinant human bone morphogenetic protein-2 from bioabsorbable membranes. J Periodontol 74(6):865–72

    Article  PubMed  CAS  Google Scholar 

  17. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24(24):4375–83

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto T, Yamamoto Y, Gotoh M, Huang CL, Nakamura T, Shimizu Y, Tabata Y, Yokomise H (2004) Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J Thorac Cardiovasc Surg 127:329–34

    Article  PubMed  CAS  Google Scholar 

  20. Asamura S, Mochizuki Y, Yamamoto M, Tabata Y, Isogai N (2010) Bone regeneration using a bone morphogenetic protein-2 saturated slow-release gelatin hydrogel sheet: evaluation in a canine orbital floor fracture model. Ann Plast Surg 64(4):496–502

    Article  PubMed  CAS  Google Scholar 

  21. Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, García AJ, Guldberg RE (2011) Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32(22):5241–51

    Article  PubMed  CAS  Google Scholar 

  22. Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–9

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura S, Kanatani Y, Kishimoto S, Nakamura S, Ohno C, Horio T, Masanori F, Hattori H, Tanaka Y, Kiyosawa T, Maehara T, Ishihara M (2009) Controlled release of FGF-2 using ­fragmin/protamine microparticles and effect on neovascularization. J Biomed Mater Res A 91(3):814–23

    PubMed  Google Scholar 

  24. Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 107:3323–8

    Article  PubMed  CAS  Google Scholar 

  25. Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK (2011) Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32(5):1280–90

    Article  PubMed  CAS  Google Scholar 

  26. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotech 19:1029–34

    Article  CAS  Google Scholar 

  27. Branco MC, Pochan DJ, Wagner NJ, Schneider JP (2010) The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials 31(36):9527–34

    Article  PubMed  CAS  Google Scholar 

  28. Shen H, Hu X, Yang F, Bei J, Wang S (2011) Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials 32(13):3404–12

    Article  PubMed  CAS  Google Scholar 

  29. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–96

    Article  PubMed  Google Scholar 

  30. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte and platelet-rich fibrin (L-PRF). Trends Biotechnol 27(3):158–67

    Article  PubMed  CAS  Google Scholar 

  31. Willoughby S, Holmesa A, Loscalzo J (2002) Review: platelets and cardiovascular disease. Eur J Cardiovasc Nurs 1(4):273–88

    Article  PubMed  Google Scholar 

  32. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJJ, Mouhyi J, Gogly B (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 101:E37–44

    Article  Google Scholar 

  33. Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. PRS 114(6):1502–8

    Google Scholar 

  34. Chouhan VD, De La Cadena RA, Nagaswami C, Weisel JW, Kagani M, Rao AK (1997) Simultaneous occurrence of human antibodies directed against fibrinogen, thrombin, and factor V following exposure to bovine thrombin: effects on blood coagulation, protein C activation and platelet function. Thrombisus Haenistasis 77(2):343–9

    CAS  Google Scholar 

  35. Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 10(4):225–8

    Article  PubMed  CAS  Google Scholar 

  36. Fufa D, Shealy B, Jacobson M, Kevy S, Murray MM (2008) Activation of platelet-rich plasma using soluble type I collagen. J Oral Maxillofac Surg 66(4):684–90

    Article  PubMed  Google Scholar 

  37. Thorn JJ, Sørensen H, Weis-Fogh U, Andersen M (2004) Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery. Int J Oral Maxillofac Surg 33(1):95–100

    Article  PubMed  CAS  Google Scholar 

  38. Lacoste E, Martineau I, Gagnon G (2003) Platelet concentrates: effects of calcium and thrombin on endothelial cell proliferation and growth factor release. J Periodontol 74(10):1498–507

    Article  PubMed  CAS  Google Scholar 

  39. Weibrich G, Kleis WKG, Hafner G, Hitzler WE (2002) Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Cranio Maxillofac Surg 30(2):97–102

    Article  Google Scholar 

  40. Weibrich G, Kleis WK, Hafner G (2002) Growth factor levels in the platelet-rich plasma produced by 2 different methods: curasan-type PRP kit versus PCCS PRP system. Int J Oral Maxillofac Implants 17(2):184–90

    PubMed  Google Scholar 

  41. Harrison S, Vavken P, Kevy S, Jacobson M, Zurakowski D, Murray MM (2011) Platelet activation by collagen provides sustained release of anabolic cytokines. Am J Sports Med 39(4):729–34

    Article  PubMed  Google Scholar 

  42. Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K (2008) Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 122(5):1352–60

    Article  PubMed  CAS  Google Scholar 

  43. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M (2006) The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 17(2):212–9

    Article  PubMed  Google Scholar 

  44. Choi BH, Zhu SJ, Kim BY, Huh JY, Lee SH, Jung JH (2005) Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg 34(4):420–4

    Article  PubMed  Google Scholar 

  45. Liu Y, Kalén A, Risto O, Wahlström O (2002) Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair Regen 10(5):336–40

    Article  PubMed  Google Scholar 

  46. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91(1):4–15

    PubMed  CAS  Google Scholar 

  47. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE (2004) Effect of platelet concentration in plattelet-rich plasma on peri-implant bone regeneration. Bone 34:665–71

    Article  PubMed  CAS  Google Scholar 

  48. Phillips GD, Stone AM, Whitehead RA, Knighton DR (1994) Platelet derived wound healing factors (PDWHF) accelerate and augment wound healing angiogenesis in the rat. In Vivo 8(2):167–71

    PubMed  CAS  Google Scholar 

  49. Cho JM, Lee YH, Baek RM, Lee SW (2011) Effect of platelet-rich plasma on ultraviolet b-induced skin wrinkles in nude mice. J Plast Reconstr Aesthet Surg 64(2):e31–9

    Article  PubMed  Google Scholar 

  50. Oh DS, Cheon YW, Jeon YR, Lew DH (2011) Activated platelet-rich plasma improves fat graft survival in nude mice: a pilot study. Dermatol Surg 37(5):619–25

    Google Scholar 

  51. Zechner W, Tangl S, Tepper G, Fürst G, Bernhart T, Haas R, Mailath G, Watzek G (2003) Influence of platelet-rich plasma on osseous healing of dental implants: a histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants 18(1):15–22

    PubMed  Google Scholar 

  52. Kim SG, Chung CH, Kim YK, Park JC, Lim SC (2002) Use of particulate dentin-plaster of Paris combination with/without platelet-rich plasma in the treatment of bone defects around implants. Int J Oral Maxillofac Implants 17:86–94

    PubMed  Google Scholar 

  53. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 85:638–46

    Article  CAS  Google Scholar 

  54. Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnoli LG, Orlandi A (2009) Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng C 15:1–10

    Google Scholar 

  55. Saad Setta H, Elshahat A, Elsherbiny K, Massoud K, Safe I (2011) Platelet-rich plasma versus platelet-poor plasma in the management of chronic diabetic foot ulcers: a comparative study. Int Wound J 8(3):307–12

    Google Scholar 

  56. Chen TM, Tsai JC, Burnouf T (2010) A novel technique combining platelet gel, skin graft, and fibrin glue for healing recalcitrant lower extremity ulcers. Dermatol Surg 36(4):453–60

    Article  PubMed  CAS  Google Scholar 

  57. Messora MR, Nagata MJ, Dornelles RC, Bomfim SR, Furlaneto FA, de Melo LG, Deliberador TM, Bosco AF, Garcia VG, Fucini SE (2008) Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria. J Periodontal Res 43(6):723–9

    Article  PubMed  CAS  Google Scholar 

  58. Rodriguez A, Anastassov GE, Lee H, Buchbinder D, Wettan H (2003) Maxillary sinus augmentation with deproteinated bovine bone and platelet rich plasma with simultaneous insertion of endosseous implants. J Oral Maxillofac Surg 61(2):157–63

    Article  PubMed  Google Scholar 

  59. Choi BH, Im CJ, Huh JY, Suh JJ, Lee SH (2004) Effect of platelet-rich plasma on bone regeneration in autogenous bone graft. Int J Oral Maxillofac Surg 33(1):56–9

    Article  PubMed  Google Scholar 

  60. Man D, Plosker H, Winland-Brown JE (2001) The use of autologous platelet-rich plasma (platelet gel) and autologous platelet-poor plasma (fibrin glue) in cosmetic surgery. Plast Reconstr Surg 107(1):229–37

    Article  PubMed  CAS  Google Scholar 

  61. Thor A, Franke-Stenport V, Johansson CB, Rasmusson L (2007) Early bone formation in human bone grafts treated with platelet-rich plasma: preliminary histomorphometric results. Int J Oral Maxillofac Surg 36(12):1164–71

    Article  PubMed  CAS  Google Scholar 

  62. Mazor Z, Horowitz RA, Del Corso M, Prasad HS, Rohrer MD, Dohan Ehrenfest DM (2009) Sinus floor augmentation with simultaneous implant placement using Choukroun’s platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months. J Periodontol 80(12):2056–64

    Article  PubMed  Google Scholar 

  63. Dohan Ehrenfest DM, de Peppo GM, Doglioli P, Sammartino G (2009) Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 27(1):63–9

    Article  PubMed  CAS  Google Scholar 

  64. Kang YH, Jeon SH, Park JY, Chung JH, Choung YH, Choung HW, Kim ES, Choung PH (2011) Platelet-rich fibrin is a Bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A 17(3–4):349–59

    Article  PubMed  CAS  Google Scholar 

  65. Huang FM, Yang SF, Zhao JH, Cgang YC (2010) Platelet-rich fibrin increases proliferation and differentiation of human dental pulp cells. J Endod 36(10):1628–32

    Article  PubMed  Google Scholar 

  66. Gassling V, Douglas T, Warnke PH, Açil Y, Wiltfang J, Becker ST (2010) Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin Oral Implants Res 21(5):543–9

    Article  PubMed  Google Scholar 

  67. Lucarelli E, Beretta R, Dozza B, Tazzari PL, O’Connel SM, Ricci F, Pierini M, Squarzoni S, Pagliaro PP, Oprita EI, Donati D (2010) A recently developed bifacial platelet-rich fibrin matrix. Eur Cell Mate 20:13–23

    CAS  Google Scholar 

  68. Tsay RC, Vo J, Burke A, Eisig SB, Lu HH, Landesberg R (2005) Differential growth factor retention by platelet-rich plasma composites. J Oral Maxillofac Surg 63:521–8

    Article  PubMed  Google Scholar 

  69. Coughlin SR (1999) Protease-activated receptors and platelet function. Thromb Haemost 82(2):353–6

    PubMed  CAS  Google Scholar 

  70. Stiernberg J, Redin WR, Warner WS, Carney DH (1993) The role of thrombin and thrombin receptor activating peptide (TRAP-508) in initiation of tissue repair. Thromb Haemost 70(1):158–62

    PubMed  CAS  Google Scholar 

  71. Lu HH, Vo JM, Chin HS, Lin J, Cozin M, Tsay R, Eisig S, Landesberg R (2008) Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J Biomed Mater Res A 86(4):1128–36

    PubMed  Google Scholar 

  72. Bir SC, Esaki J, Marui A, Yamahara K, Tsubota H, Ikeda T, Sakata R (2009) Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse. J Vasc Surg 50(4):870–9

    Article  PubMed  Google Scholar 

  73. Takikawa M, Nakamura S, Nakamura S, Nambu M, Ishihara M, Fujita M, Kishimoto S, Doumoto T, Yanagibayashi S, Azuma R, Yamamoto N, Kiyosawa T (2011) Enhancement of vascularization and granulation tissue formation by growth factors in human platelet-rich plasma-containing fragmin/protamine microparticles. J Biomed Mater Res B Appl Biomater 97(2):373–80

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuko Suzuki .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suzuki, S., Ikada, Y. (2012). Growth Factors for Promoting Wound Healing. In: Biomaterials for Surgical Operation. Humana Press. https://doi.org/10.1007/978-1-61779-570-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-570-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-569-5

  • Online ISBN: 978-1-61779-570-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics