Skip to main content

Targeted Inhibition of B-Raf

  • Chapter
  • First Online:
Targeted Therapeutics in Melanoma

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

The hunt for mutated and activated kinases in cancer has proceeded at an accelerated pace since the successful treatment of chronic myelogenous leukemia with imatinib and with the development of new genomic sequencing technologies. The identification of activating mutations in B-Raf in a major subset of melanomas was first reported in 2002. Basic laboratory experiments confirmed the ability of mutant B-Raf to function as a driver oncogene in vivo. Relatively rapidly, inhibitors that preferentially target the mutated kinase were developed and tested clinically, and these studies revealed that the majority of patients bearing V600E B-Raf mutant melanomas showed a clinical response. Positive results of a randomized phase III clinical trial were released in early 2011. The current phase of this remarkable story is focused upon understanding mechanisms of primary and secondary resistance to B-Raf inhibitors in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu J, Rosenbaum E, Begum S, Westra WH. Distribution of BRAF T1799A(V600E) mutations across various types of benign nevi: implications for melanocytic tumorigenesis. Am J Dermatopathol. 2007;29(6):534–7.

    Article  PubMed  Google Scholar 

  2. Poynter JN, Elder JT, Fullen DR, et al. BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 2006;16(4):267–73.

    Article  PubMed  Google Scholar 

  3. Dankort D, Curley DP, Cartlidge RA, et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41(5):544–52.

    Article  PubMed  CAS  Google Scholar 

  4. Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61(9):3595–8.

    PubMed  CAS  Google Scholar 

  5. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature. 2009;461(7263):542–5.

    Article  PubMed  CAS  Google Scholar 

  6. Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol. 2006;26(6):2262–72.

    Article  PubMed  CAS  Google Scholar 

  7. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5.

    Article  PubMed  CAS  Google Scholar 

  8. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    Article  PubMed  CAS  Google Scholar 

  9. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21–44.

    Article  PubMed  CAS  Google Scholar 

  10. Pratilas, Solit. Clin Cancer Res. 2010 (in press).

    Google Scholar 

  11. Dougherty MK, Muller J, Ritt DA, et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 2005;17(2):215–24.

    Article  PubMed  CAS  Google Scholar 

  12. Tsavachidou D, Coleman ML, Athanasiadis G, et al. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 2004;64(16):5556–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004;5(6):441–50.

    Article  PubMed  CAS  Google Scholar 

  14. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008;27(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  15. Brady SC, Coleman ML, Munro J, Feller SM, Morrice NA, Olson MF. Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation. Cancer Res. 2009;69(17):6773–81.

    Article  PubMed  CAS  Google Scholar 

  16. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  17. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  PubMed  CAS  Google Scholar 

  18. Cohen Y, Rosenbaum E, Begum S, et al. Exon 15 BRAF mutations are uncommon in melanomas arising in nonsun-exposed sites. Clin Cancer Res. 2004;10(10):3444–7.

    Article  PubMed  CAS  Google Scholar 

  19. Edwards RH, Ward MR, Wu H, et al. Absence of BRAF mutations in UV-protected mucosal melanomas. J Med Genet. 2004;41(4):270–2.

    Article  PubMed  CAS  Google Scholar 

  20. Edmunds SC, Cree IA, Di Nicolantonio F, Hungerford JL, Hurren JS, Kelsell DP. Absence of BRAF gene mutations in uveal melanomas in contrast to cutaneous melanomas. Br J Cancer. 2003;88(9):1403–5.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar R, Angelini S, Czene K, et al. BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res. 2003;9(9):3362–8.

    PubMed  CAS  Google Scholar 

  22. Houben R, Becker JC, Kappel A, et al. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog. 2004;3(1):6.

    Article  PubMed  Google Scholar 

  23. Chang D, Panageas K, Osman I, Polsky D, Busam K, Chapman P. Clinical significance of BRAF mutations in metastatic melanoma. J Transl Med. 2004;2(1):46.

    Article  PubMed  Google Scholar 

  24. Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  PubMed  CAS  Google Scholar 

  25. Pratilas CA, Taylor BS, Ye Q, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106(11):4519–24.

    Article  PubMed  CAS  Google Scholar 

  26. Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA. Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res. 2003;63(17):5198–202.

    PubMed  CAS  Google Scholar 

  27. Karasarides M, Chiloeches A, Hayward R, et al. B-RAF is a therapeutic target in melanoma. Oncogene. 2004;23(37):6292–8.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai J, Lee JT, Wang W, et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA. 2008;105(8):3041–6.

    Article  PubMed  CAS  Google Scholar 

  29. Heidorn SJM C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  Google Scholar 

  30. Puzanov I, Nathason KL, Chapman PB, Xu X, Sosman JA, McArthur GA, Ribas A, Kim KB, Grippo JF, Flaherty KT. PLX4032, a highly selective V600EBRAF kinase inhibitor: clinical correlation of activity with pharmacokinetic and pharmacodynamic parameters in a phase I trial. J Clin Oncol. 2009;27(15s).

    Google Scholar 

  31. Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95(5):581–6.

    Article  PubMed  CAS  Google Scholar 

  32. Hauschild A, Agarwala SS, Trefzer U, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27(17):2823–30.

    Article  PubMed  CAS  Google Scholar 

  33. McDermott DF, Sosman JA, Gonzalez R, et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol. 2008;26(13):2178–85.

    Article  PubMed  CAS  Google Scholar 

  34. Kefford R, Arkenau H, Brown MP, Millward M, Infante JR, Long GV, Ouellet D, Curtis M, Lebowitz PF, Falchook GS. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol. 2010;28(7s).

    Google Scholar 

  35. Dummer RR C, Chapman PB, Sosman JA, Middleton M, Bastholt L, Kemsley K, et al. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study. J Clin Oncol. 2008;26(May 20 suppl):9033.

    Google Scholar 

  36. Infante JR, Fecher LA, Nallapareddy S, Gordon MS, Flaherty KT, Cox DS, DeMarini DJ, Morris SR, Burris HA, Messersmith WA. Safety and efficacy results from the first-in-human study of the oral MEK 1/2 inhibitor GSK1120212. J Clin Oncol. 2010;28(7s).

    Google Scholar 

  37. Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature. 2006;439(7074):358–62.

    Article  PubMed  CAS  Google Scholar 

  38. Adjei AA, Cohen RB, Franklin W, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26(13):2139–46.

    Article  PubMed  CAS  Google Scholar 

  39. Montagut C, Sharma SV, Shioda T, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68(12):4853–61.

    Article  PubMed  CAS  Google Scholar 

  40. Nazarian et al. Nature 2010.

    Google Scholar 

  41. Villanueva J et al. Cancer Cell 2010.

    Google Scholar 

  42. Dumaz N, Hayward R, Martin J, et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 2006;66(19):9483–91.

    Article  PubMed  CAS  Google Scholar 

  43. Johannesen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition throught MAP Kinase pathway reactivation. Nature 2010;468:968–72.

    Google Scholar 

  44. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med.2010; 363:711–23.

    Google Scholar 

  45. Boni A, Cogdill AP, Dang P, et al. Selective BRAFV600E inhibition enhances T-Cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010;70(13):5213–9.

    Article  PubMed  CAS  Google Scholar 

  46. O’Day SJ, Kim KB, Sosman JA, et al. 23LBA BEAM: A randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated Advanced Melanoma. 2009;7:13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chapman, P.B., Flaherty, K. (2012). Targeted Inhibition of B-Raf. In: Gajewski, T., Hodi, F. (eds) Targeted Therapeutics in Melanoma. Current Clinical Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-407-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-407-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-406-3

  • Online ISBN: 978-1-61779-407-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics