Skip to main content

Epigenetic Reprogramming with Oocyte Molecules

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1203 Accesses

Abstract

Following the demonstration that somatic cells can be fully reprogrammed to totipotency after transfer into enucleated eggs, the prospect of developing methods of cellular reprogramming for autologous cell therapies has come a little closer. How the egg reprogrammes somatic cells is little understood, and much work has been devoted towards elucidating the basis of these reprogramming events. Here, we have reviewed the current knowledge of reprogramming after nuclear transplantation and we present an experimental approach using the axolotl oocyte as a tool to broaden our understanding of the basic mechanisms of oocyte-mediated nuclear reprogramming, many of which, we assume, are shared by other approaches, such as transcription factor-mediated reversal to pluripotency. We expect that a combination of approaches aimed at understanding the mechanisms of reprogramming will contribute to the development of safe and efficient methods for generating autologous cells for transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberio R, Johnson AD, Stick R, Campbell KH (2005) Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 307:131–141

    Article  PubMed  CAS  Google Scholar 

  • Allegrucci C, Rushton MD, Dixon JD, Sottile V, Shah M, Kumari R, Watson S, Alberio R, Johnson AD (2011) Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer 10:7. doi:10.1186/1476-4598-10-7

    PubMed  Google Scholar 

  • Bachvarova RF, Masi T, Drum M, Parker N, Mason K, Patient R, Johnson AD (2004) Gene expression in the axolotl germ line: Axdazl, Axvh, Axoct-4, and Axkit. Dev Dyn 231:871–880

    Article  PubMed  CAS  Google Scholar 

  • Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA ­demethylation. Nature 445:671–675

    Article  PubMed  CAS  Google Scholar 

  • Betthauser JM, Pfister-Genskow M, Xu H, Golueke PJ, Lacson JC, Koppang RW, Myers C, Liu B, Hoeschele I, Eilertsen KJ et al (2006) Nucleoplasmin facilitates reprogramming and in vivo development of bovine nuclear transfer embryos. Mol Reprod Dev 73:977–986

    Article  PubMed  CAS  Google Scholar 

  • Bian Y, Alberio R, Allegrucci C, Campbell KH, Johnson AD (2009) Epigenetic marks in somatic chromatin are remodelled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics 4:194–202

    Article  PubMed  CAS  Google Scholar 

  • Bui HT, Wakayama S, Kishigami S, Kim JH, Van Thuan N, Wakayama T (2008) The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development 135:3935–3945

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Simonsson S, Western PS, Gurdon JB (2003) Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Carlson LL, Page AW, Bestor TH (1992) Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev 6:2536–2541

    Article  PubMed  CAS  Google Scholar 

  • Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734–13738

    Article  PubMed  CAS  Google Scholar 

  • Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, Chatfield J, Chen Y, Sottile V, Voss SR, Alberio R, Johnson AD (2010) Axolotl nanog activity in mouse embryonic stem cells demonstrates ground state pluripotency is conserved from urodele amphibians to mammals. Development 137:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Engel N, Tront JS, Erinle T, Nguyen N, Latham KE, Sapienza C, Hoffman B, Liebermann DA (2009) Conserved DNA methylation in Gadd45a(−/−) mice. Epigenetics 4:98–99

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PJ, Blow JJ (2000) Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res 28:472–480

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (2006) From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu Rev Cell Dev Biol 22:1–22

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82

    Article  PubMed  CAS  Google Scholar 

  • Halley-Stott RP, Pasque V, Astrand C, Miyamoto K, Simeoni I, Jullien J, Gurdon JB (2010) Mammalian nuclear transplantation to germinal vesicle stage Xenopus oocytes – a method for quantitative transcriptional reprogramming. Methods 51:56–65

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Ogonuki N, Miki H, Hirose M, Noda S, Kim JM, Aoki F, Miyoshi H, Ogura A (2006) Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J Cell Sci 119:1985–1991

    Article  PubMed  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion. ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133. doi:10.1038/nature09303

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Liu H, Tazaki M, Nagata M, Aoki F (2003) Changes in histone acetylation during mouse oocyte meiosis. J Cell Biol 162:37–46

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290. doi:10.1038/nature09342

    Article  PubMed  CAS  Google Scholar 

  • Kishigami S, Wakayama S, Nguyen VT, Wakayama T (2004) Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production. Biol Reprod 70:1863–1869

    Article  PubMed  CAS  Google Scholar 

  • Kishigami S, Bui HT, Wakayama S, Tokunaga K, Van Thuan N, Hikichi T, Mizutani E, Ohta H, Suetsugu R, Sata T et al (2007) Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J Reprod Dev 53:165–170

    Article  PubMed  Google Scholar 

  • Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12

    Article  PubMed  Google Scholar 

  • Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J (2008) Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1:8

    Article  PubMed  Google Scholar 

  • Maalouf WE, Alberio R, Campbell KH (2008) Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3:199–209

    Article  PubMed  Google Scholar 

  • Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340–345

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Furusawa T, Ohnuki M, Goel S, Tokunaga T, Minami N, Yamada M, Ohsumi K, Imai H (2007) Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol Reprod Dev 74:1268–1277

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279:52353–52360

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–R58

    Google Scholar 

  • Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558

    Article  PubMed  CAS  Google Scholar 

  • Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Polanski Z, Motosugi N, Tsurumi C, Hiiragi T, Hoffmann S (2008) Hypomethylation of paternal DNA in the late mouse zygote is not essential for development. Int J Dev Biol 52:295–298

    Article  PubMed  Google Scholar 

  • Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493

    Article  PubMed  CAS  Google Scholar 

  • Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–5

    Article  PubMed  CAS  Google Scholar 

  • Prather RS, Sims MM, First NL (1990) Nuclear transplantation in the pig embryo: nuclear swelling. J Exp Zool 255:355–358

    Article  PubMed  CAS  Google Scholar 

  • Probst AV, Santos F, Reik W, Almouzni G, Dean W (2007) Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116:403–415

    Article  PubMed  Google Scholar 

  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Rybouchkin A, Kato Y, Tsunoda Y (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod 74:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814

    Article  PubMed  CAS  Google Scholar 

  • Shao GB, Ding HM, Gong AH, Xiao DS (2008) Inheritance of histone H3 methylation in reprogramming of somatic nuclei following nuclear transfer. J Reprod Dev 54:233–238

    Article  PubMed  CAS  Google Scholar 

  • Simonsson S, Gurdon J (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 6:984–990

    Article  PubMed  CAS  Google Scholar 

  • Stewart MD, Sommerville J, Wong J (2006) Dynamic regulation of histone modifications in Xenopus oocytes through histone exchange. Mol Cell Biol 26:6890–6901

    Article  PubMed  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, Wakayama T, Kikyo N (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26:1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  Google Scholar 

  • Wakayama S, Jakt ML, Suzuki M, Araki R, Hikichi T, Kishigami S, Ohta H, Van Thuan N, Mizutani E, Sakaide Y et al (2006) Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24:2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, Reinhardt R, Scholer H, Walter J (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29:1877–1888

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Alberio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alberio, R., Johnson, A.D. (2011). Epigenetic Reprogramming with Oocyte Molecules. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_5

Download citation

Publish with us

Policies and ethics