Skip to main content
Log in

Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In mammals, paternal and maternal pronuclei undergo profound chromatin reorganisation upon fertilisation. How these events are orchestrated within centromeric regions to ensure proper chromosome segregation in the following cellular divisions is unknown. In this study, we followed the dynamic unfolding of the centromeric regions, i.e. the centric and pericentric satellite repeats, by DNA fluorescent in situ hybridization (FISH) during the first cell cycle up to the two-cell stage. The distinct chromatin from female and male gametes both undergo rapid remodelling and reach a zygotic organisation in which the satellites occupy restricted spatial domains surrounding the nucleolar precursor body. A transition from this zygotic to a somatic cell-like organisation takes place during the two-cell stage. Using 3D immuno-FISH, we find that, whereas maternal pericentric regions are marked with H3K9me3, H4K20me3 and HP1β, paternal ones only showed HP1β marking. Thus, despite different chromatin features, male and female pronuclei organise their centromeric regions in the same way within the nuclei to align chromosomes on the metaphase plate and segregate them appropriately. Our findings highlight the importance of ensuring a proper centromere function while preserving the distinction of parental genome origin during the return to totipotency in the zygote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625

    PubMed  CAS  Google Scholar 

  • Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296–307

    Article  PubMed  CAS  Google Scholar 

  • Arney KL, Fisher AG (2004) Epigenetic aspects of differentiation. J Cell Sci 117:4355–4363

    Article  PubMed  CAS  Google Scholar 

  • Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46:317–320

    PubMed  CAS  Google Scholar 

  • Baird DM, Farr CJ (2006) The organization and function of chromosomes. EMBO Rep 7:372–376

    PubMed  CAS  Google Scholar 

  • Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szollosi MS, Debey P (1999) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60:580–587

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  CAS  Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28:10–12

    Article  PubMed  CAS  Google Scholar 

  • Choo KH (2000) Centromerization. Trends Cell Biol 10:182–188

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • De La Fuente R, Viveiros MM, Wigglesworth K, Eppig JJ (2004) ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes. Dev Biol 272:1–14

    Article  CAS  Google Scholar 

  • Dozortsev D, Coleman A, Nagy P, Diamond MP, Ermilov A, Weier U, Liyanage M, Reid T (2000) Nucleoli in a pronuclei-stage mouse embryo are represented by major satellite DNA of interconnecting chromosomes. Fertil Steril 73:366–371

    Article  PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    Article  PubMed  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    Article  PubMed  CAS  Google Scholar 

  • Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Methods Enzymol 225:153–164

    Article  PubMed  CAS  Google Scholar 

  • Longo F, Garagna S, Merico V, Orlandini G, Gatti R, Scandroglio R, Redi CA, Zuccotti M (2003) Nuclear localization of NORs and centromeres in mouse oocytes during folliculogenesis. Mol Reprod Dev 66:279–290

    Article  PubMed  CAS  Google Scholar 

  • Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    Article  PubMed  Google Scholar 

  • Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24:800–812

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P (2006) Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 292:317–332

    Article  PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    PubMed  CAS  Google Scholar 

  • McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Spector DL (1998) The cellular organization of gene expression. Curr Opin Cell Biol 10:323–331

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58

    Article  PubMed  CAS  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez–Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G (2004) A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 23:3516–3526

    Article  PubMed  CAS  Google Scholar 

  • Ram PT, Schultz RM (1993) Reporter gene expression in G2 of the 1-cell mouse embryo. Dev Biol 156:552–556

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Straub T (2003) Heterochromatin dynamics. PLoS Biol 1:E14

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  PubMed  CAS  Google Scholar 

  • Summers MC, Bhatnagar PR, Lawitts JA, Biggers JD (1995) Fertilization in vitro of mouse ova from inbred and outbred strains: complete preimplantation embryo development in glucose-supplemented KSOM. Biol Reprod 53:431–437

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Worrad DM, Ram PT, Schultz RM (1994) Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development 120:2347–2357

    PubMed  CAS  Google Scholar 

  • Wu R, Singh PB, Gilbert DM (2006) Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J Cell Biol 174:185–194

    Article  PubMed  CAS  Google Scholar 

  • Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA (1995) Chromatin organization during mouse oocyte growth. Mol Reprod Dev 41:479–485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Peter Fraser and Daniella Dimitrova for the critical reading of the manuscript and Christele Maison for the characterization of the H3K9me3 antibody. We are indebted to Pat Hunt for the fibrin clot technique. AP is supported by SNF and EMBO fellowships. The work of A.P. and G.A. was supported by la Ligue Nationale contre le Cancer (Equipe labellisée la Ligue), the Commissariat à l’Energie Atomique (LRC no. 26), European Contract RTN (HPRN-CT-2002-00238), Collaborative Programme between the Curie Institute and the Commissariat à l'Energie Atomique (PIC Paramètres Epigénétiques), Network of Excellence Epigenome (LSHG-CT-2004-503433), ACI-DRAB (no. 04393), Cancéropôle IdF and ANR (2005-005396). W.R. and W.D. acknowledge grants from MRC, BBSRC and EU Network of Excellence, the Epigenome.

Aline V. Probst and Fátima Santos have contributed equally to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Dean.

Additional information

Communicated by D. Bazett-Jones

Electronic supplementary material

Below is the image is a link to a high resoultion version.

Fig. S1

Epigenetic marks immediately after fertilisation. Epifluorescence images of epigenetic highlights immediately after fertilisation (PN0). DNA methylation (5MeC) is present in both maternal and paternal chromatin. HP1β is visible initially only in the female chromatin and absent in the sperm nucleus. H3K9me1 is present in both maternal and paternal chromatin, although initially at very different levels. H3K9me2 is undetectable in the sperm chromatin as are H3K9me3 and H4K20me3, and all are always present in the female chromatin. Insets show DNA staining for the same fertilised oocytes (GIF 49 kb)

412_2007_106_Fig1_ESM.tif

Fig. S2

Replication-independent organisation of centromeric satellite repeats in fertilised oocytes. Confocal scanning microscopy Z-stack projections of major (red) and minor (green) satellite repeats of early IVF oocytes. DNA was visualised with DAPI (blue in merge) Same embryos as Fig. 2 for telophase II, PN1 and PN2. pb Second polar body. Scale bar, 10 μm (GIF 150 kb)

412_2007_106_Fig2_ESM.tif

Fig. S3

Comparison of the organisation of centromeric satellites between male and female pronuclei in an early G1 (PN1) fertilised oocyte. Isorendering 3D reconstruction of complete Z-stack (90° turn around the X-axis view) corresponding to PN1 in Fig. 2 and Fig. S2. DNA was visualised with DAPI (blue). a Major (red) and minor (green) satellites. b Major and minor satellites overlaid into DAPI (blue). pb Second polar body; ♀ maternal and ♂ paternal pronucleus. Arrows indicate minor satellite signals localising between (♀) and on either side (♂) of the major satellites (GIF 62 kb)

412_2007_106_Fig3_ESM.tif

Fig. S4

Heterochromatic modifications of satellite domains in pronuclear-staged fertilised oocytes maternal chromatin. Additional examples of colocalisation analysis between chromatin modifications (green in merge) and either the major (left, red in merge) or minor satellites (right, red in merge) can be seen as white (ImageJ 1.37 software). Only the female pronucleus of PN3- to PN5-staged fertilised oocytes is shown (GIF 332 kb)

412_2007_106_Fig4_ESM.tif

Fig. S5

Re-organisation of major and minor satellite repeats in two-cell stage embryos and heterochromatic epigenetic modifications analysis. Additional examples of a double DNA FISH of major (red) and minor (green) satellite repeats on natural mating produced 48(h post-hCG (∼36 h post fertilisation) two-cell embryos (Z projection of 18 0.46-μm thick optical slices). DNA was visualised with DAPI (blue). pb Second polar body. b Double immuno-FISH. Natural-mating-produced two-cell embryos were simultaneously stained for HP1β, H3K9me3 and major satellite repeats. RGB profiling was performed on 0.46-μm thick single optical slices. DNA was visualised with DAPI. Scale bar, 10 μm (GIF 145 kb)

412_2007_106_Fig5_ESM.tif

412_2007_106_MOESM1_ESM.mpg

412_2007_106_MOESM2_ESM.mpg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Probst, A.V., Santos, F., Reik, W. et al. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116, 403–415 (2007). https://doi.org/10.1007/s00412-007-0106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0106-8

Keywords

Navigation