Skip to main content

Progenitor Cell Tissue Engineering

Scaffold Design and Fabrication

  • Chapter
  • First Online:
Progenitor Cell Therapy for Neurological Injury

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 501 Accesses

Abstract

A critical aspect of cell and tissue engineering is the design of non-cellular constructs that closely interact with cells to provide the necessary conditions for intended function. Properties such as surface chemistry, mechanical strength, porosity, and rates of degradation are important elements of a cellular support system and can deeply influence the fate of progenitor cells. To achieve the goal of successful implantation and proliferation of cells in a particular region, various biomaterials and fabrication processes have been explored. Lately, techniques with origins outside the field of biology or medicine have been used to create highly controlled morphologies. This chapter will review the fundamentals of scaffold design as it relates to brain-based therapies and give some examples of fabrication techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3DP:

Three-dimensional printing

BDNF:

Brain-derived neurotrophic factor

CAD:

Computer-aided design

CNS:

Central nervous system

DCM:

Dichloromethane

ECM:

Extracellular matrix

ESC:

Embryonic stem cell

FDM:

Fused deposition modeling

GMP:

Good manufacturing practices

HFIP:

Hexafluoro-2-propanol

MSC:

Mesenchymal stromal cell

NGF:

Nerve growth factor

P(LLA-CL):

Poly(l-lactic acid-co-caprolactone)

PCL:

Poly(caprolactone)

PGA:

Poly(glycolic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PNS:

Peripheral nervous system

PVDF:

Poly(vinylidene fluoride)

RGD:

Arginine-glycine-aspartic acid

RP:

Rapid prototyping

SLA:

Stereolithography

SLS:

Selective laser sintering

THF:

Tetrahydrofuran

TIPS:

Thermally induced phase separation

References

  • Aplin AE, Howe AK, Juliano RL (1999) Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11:737–744

    Article  PubMed  CAS  Google Scholar 

  • Bertsch A (1999) 3D microfabrication by combining microstereolithography and thick resist UV lithography. Sens Actuators A 73:10

    Google Scholar 

  • Bini TB (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:7

    Article  CAS  Google Scholar 

  • Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68

    Article  PubMed  CAS  Google Scholar 

  • Blaschke RJ, Howlett AR, Desprez PY, Petersen OW, Bissell MJ (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535–556

    Article  PubMed  CAS  Google Scholar 

  • Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272:497–502

    Article  PubMed  Google Scholar 

  • Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422–1432

    Article  PubMed  CAS  Google Scholar 

  • Brannvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K (2007) Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res 85:2138–2146

    Article  PubMed  CAS  Google Scholar 

  • Calonder C, Matthew HW, Van Tassel PR (2005) Adsorbed layers of oriented fibronectin: a strategy to control cell-surface interactions. J Biomed Mater Res A 75:316–323

    PubMed  Google Scholar 

  • Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG (2009) Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater 4:45004

    Article  CAS  Google Scholar 

  • Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15:467–480

    Article  PubMed  CAS  Google Scholar 

  • Chen G (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77

    Article  CAS  Google Scholar 

  • Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Cumpston BH (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Lett Nat 398:4

    Google Scholar 

  • Davis KA, Burdick JA, Anseth KS (2003) Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials 24:2485–2495

    Article  PubMed  CAS  Google Scholar 

  • Dawson E, Mapili G, Erickson K, Taqvi S, Roy K (2008) Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 60:215–228

    Article  PubMed  CAS  Google Scholar 

  • Deguchi K, Tsuru K, Hayashi T, Takaishi M, Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H, Hayakawa S, Shoji M, Miyazaki M, Osaka A, Huh NH, Abe K (2006) Implantation of a new porous gelatin-siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. J Cereb Blood Flow Metab 26:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Deitzel JM (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:12

    Google Scholar 

  • Deitzel JM, Kleinmeyer JK, Hirvonen JK, Tan NC (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170

    Article  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  • Engstrom M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordstrom CH (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102:460–469

    Article  PubMed  Google Scholar 

  • Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13:1905–1925

    Article  PubMed  CAS  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS, Jr. (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  PubMed  CAS  Google Scholar 

  • Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147

    Article  PubMed  CAS  Google Scholar 

  • Geng L (2004) Direct writing of chitosan scaffolds using a robotic system. J Rapid Prototyping 11:8

    Google Scholar 

  • Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–3018

    Article  PubMed  CAS  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 8:63–75

    Article  PubMed  CAS  Google Scholar 

  • Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  PubMed  CAS  Google Scholar 

  • Graham K (2003) Incorporation of Electrospun Nanofibers into functional structures. International nonwoven technical conference, Baltimore, MD

    Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Guillot PV, Cui W, Fisk NM, Polak DJ (2007) Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 11:935–944

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Baumgartner JE, Worth LL, Ewing-Cobbs L, Gee AP, Day MC, Cox CS, Jr. (2008) Cell therapies for traumatic brain injury. Neurosurg Focus 24:E18

    Article  PubMed  Google Scholar 

  • Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009a) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS, Jr. (2009b) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153:188–194

    Article  PubMed  CAS  Google Scholar 

  • Hung CH, Lin YL, Young TH (2006) The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. Biomaterials 27:4461–4469

    Article  PubMed  CAS  Google Scholar 

  • Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385

    Article  PubMed  CAS  Google Scholar 

  • Ito U, Kuroiwa T, Nagasao J, Kawakami E, Oyanagi K (2006) Temporal profiles of axon terminals, synapses and spines in the ischemic penumbra of the cerebral cortex: ultrastructure of neuronal remodeling. Stroke 37:2134–2139

    Article  PubMed  Google Scholar 

  • Khorasani MT (2008) Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic) films for improvement of nerve cells adhesion. Radiat Phys Chem 77:8

    Article  CAS  Google Scholar 

  • Kim JY (2008) Fabrication of a SFF-based three-dimensional scaffold using a precision deposition system in tissue engineering. J Micromech Microeng 18:7

    Google Scholar 

  • Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574–3582

    Article  PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197

    Article  PubMed  CAS  Google Scholar 

  • Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94S

    Article  PubMed  CAS  Google Scholar 

  • Landers R (2002) Fabrication of soft-tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci Mater Med 37:10

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  • Laurencin CT, Nair LS (2008) Nanotechnology and tissue engineering: the scaffold. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lee J (2007) Scaffold fabrication with biodegradable poly(propylene fumarate) using microstereolithography. Key Eng Mater 342:4

    Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009a) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS (2009b) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20:798–803

    Article  PubMed  Google Scholar 

  • Lelievre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ (1998) Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA 95:14711–14716

    Article  PubMed  CAS  Google Scholar 

  • Lewandowska K, Pergament E, Sukenik CN, Culp LA (1992) Cell-type-specific adhesion mechanisms mediated by fibronectin adsorbed to chemically derivatized substrata. J Biomed Mater Res 26:1343–1363

    Article  PubMed  CAS  Google Scholar 

  • Li D (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:5

    Google Scholar 

  • Little L, Healy KE, Schaffer D (2008) Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev 108:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Sun S, Singha S, Cho MR, Gordon RJ (2005) 3D femtosecond laser patterning of collagen for directed cell attachment. Biomaterials 26:4597–4605

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Won Y, Ma PX (2006) Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials 27:3980–3987

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77:396–405

    PubMed  Google Scholar 

  • Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    Article  PubMed  Google Scholar 

  • Mahoney MJ, Saltzman WM (1999) Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc Natl Acad Sci USA 96:4536–4539

    Article  PubMed  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1991) Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res 25:223–242

    Article  PubMed  CAS  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  • Meiners S (2007) Engineering electrospun nanofibrillar surfaces for spinal cord repair: a discussion. Polym Int 56:1340–1348

    Article  CAS  Google Scholar 

  • Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12:631–634

    Article  PubMed  Google Scholar 

  • Mizutani M, Matsuda T (2002) Liquid acrylate-endcapped biodegradable poly(epsilon-­caprolactone-co-trimethylene carbonate). I. Preparation and visible light-induced photocuring characteristics. J Biomed Mater Res 62:387–394

    Article  PubMed  CAS  Google Scholar 

  • Neff JA, Caldwell KD, Tresco PA (1998) A novel method for surface modification to promote cell attachment to hydrophobic substrates. J Biomed Mater Res 40:511–519

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C (2004) Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys 64:70

    Google Scholar 

  • Nie H, He A, Zheng J, Xu S, Li J, Han CC (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • Nisbet DR, Pattanawong S, Ritchie NE, Shen W, Finkelstein DI, Horne MK, Forsythe JS (2007) Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering. J Neural Eng 4:35–41

    Article  PubMed  CAS  Google Scholar 

  • Nishimura I, Garrell RL, Hedrick M, Iida K, Osher S, Wu B (2003) Precursor tissue analogs as a tissue-engineering strategy. Tissue Eng 9 Suppl 1:S77–S89

    Article  PubMed  CAS  Google Scholar 

  • Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS (2009) Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 30:757–762

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa K (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:6

    Article  CAS  Google Scholar 

  • Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39

    Article  PubMed  CAS  Google Scholar 

  • Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Peltola SM, Melchels FP, Grijpma DW, Kellomaki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280

    Article  PubMed  CAS  Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Philips MF, Mattiasson G, Wieloch T, Bjorklund A, Johansson BB, Tomasevic G, Martinez-Serrano A, Lenzlinger PM, Sinson G, Grady MS, McIntosh TK (2001) Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 94:765–774

    Article  PubMed  CAS  Google Scholar 

  • Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  PubMed  CAS  Google Scholar 

  • Recknor JB, Recknor JC, Sakaguchi DS, Mallapragada SK (2004) Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 25:2753–2767

    Article  PubMed  CAS  Google Scholar 

  • Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27:4098–4108

    Article  PubMed  CAS  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  • Roitbak T, Sykova E (1999) Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28:40–48

    Article  PubMed  CAS  Google Scholar 

  • Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ (2000) Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66:11–17

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492

    Article  PubMed  CAS  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40

    PubMed  CAS  Google Scholar 

  • Schieker M (2007) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32:11

    Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  PubMed  CAS  Google Scholar 

  • Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 30:449–461

    Article  PubMed  CAS  Google Scholar 

  • Soria JM, Martinez Ramos C, Salmeron Sanchez M, Benavent V, Campillo Fernandez A, Gomez Ribelles JL, Garcia Verdugo JM, Pradas MM, Barcia JA (2006) Survival and differentiation of embryonic neural explants on different biomaterials. J Biomed Mater Res A 79:495–502

    PubMed  Google Scholar 

  • Stankus JJ, Guan J, Wagner WR (2004) Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A 70:603–614

    Article  PubMed  CAS  Google Scholar 

  • Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27:735–744

    Article  PubMed  CAS  Google Scholar 

  • Stratakis E (2009) Laser-based micro/nanoengineering for biological applications Prog Quantum Electron 33:37

    Article  Google Scholar 

  • Sun W, Lal P (2002) Recent development on computer aided tissue engineering – a review. Comput Methods Programs Biomed 67:85–103

    Article  PubMed  Google Scholar 

  • Tan S-H (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46:6128–6134

    Article  CAS  Google Scholar 

  • Tek P, Chiganos TC, Mohammed JS, Eddington DT, Fall CP, Ifft P, Rousche PJ (2008) Rapid prototyping for neuroscience and neural engineering. J Neurosci Methods 172:263–269

    Article  PubMed  Google Scholar 

  • Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029

    Article  PubMed  CAS  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    Article  PubMed  CAS  Google Scholar 

  • Theron SA (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:14

    Article  CAS  Google Scholar 

  • Thomson RC (1995) Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 122:245–274

    Article  CAS  Google Scholar 

  • Vaz CM, van Tuijl S, Bouten CV, Baaijens FP (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1:575–582

    Article  PubMed  CAS  Google Scholar 

  • von Burkersroda F, Schedl L, Gopferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231

    Article  PubMed  CAS  Google Scholar 

  • Wang M (2006) Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2:4

    Article  Google Scholar 

  • Wang X, Yan Y, Zhang R (2007) Rapid prototyping as a tool for manufacturing bioartificial livers. Trends Biotechnol 25:505–513

    Article  PubMed  CAS  Google Scholar 

  • Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27:5990–6003

    Article  PubMed  CAS  Google Scholar 

  • Willits RK, Skornia SL (2004) Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym Ed 15:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Wilson WC, Jr., Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272:491–496

    Article  PubMed  Google Scholar 

  • Wnek GE (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:4

    Article  CAS  Google Scholar 

  • Wong DY, Krebsbach PH, Hollister SJ (2008) Brain cortex regeneration affected by scaffold architectures. J Neurosurg 109:715–722

    Article  PubMed  Google Scholar 

  • Wu BM (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40:11

    Article  Google Scholar 

  • Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588

    PubMed  CAS  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004a) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004b) Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 15:1483–1497

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5:957–975

    Article  PubMed  CAS  Google Scholar 

  • Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19:2535–2540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Aroom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aroom, K.R., Gill, B.S. (2011). Progenitor Cell Tissue Engineering. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_2

Download citation

Publish with us

Policies and ethics