Skip to main content

Oxidative Stress in Kidney Injury: Peroxisome Proliferator-Activated Receptor-γ Agonists Are in Control

  • Chapter
  • First Online:
Studies on Renal Disorders
  • 909 Accesses

Abstract

The thiazolidinediones (TZDs) are agonists for peroxisome proliferator-activated receptor-γ (PPARγ), and they promote insulin sensitization and improve dyslipidemia in patients with type 2 diabetes mellitus. PPARγ is widely expressed, both in circulating and renal parenchymal cells. The TZDs are widely used clinically to improve metabolic syndrome, but may also have beneficial effects on progressive renal damage beyond diabetes. PPARγ agonists also have direct benefits on progressive renal injury independent of altering the metabolic profile, including effects on inflammation and oxidative stress.Wewill reviewselected evidence of such actions of PPARγ agonists beyond metabolism and examine interactions with other key pro-fibrotic mediators, including transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma LJ, Marcantoni C, Linton MF, Fazio S, Fogo AB. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 2001; 59: 1899–1910.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida K, Kohzuki M, Xu HL, Wu XM, Kamimoto M, Sato T. Effects of troglitazone and temocapril in spontaneously hypertensive rats with chronic renal failure. J Hypertens 2001; 19: 503–510.

    Article  CAS  PubMed  Google Scholar 

  3. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008; 74: 867–872.

    Article  CAS  PubMed  Google Scholar 

  4. Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 2000; 58: 2351–2366.

    Article  CAS  PubMed  Google Scholar 

  5. Son D, Kojima I, Inagi R, Matsumoto M, Fujita T, Nangaku M. Chronic hypoxia aggravates renal injury via suppression of Cu/Zn-SOD: a proteomic analysis. Am J Physiol Renal Physiol 2008; 294: F62–F72.

    Article  CAS  PubMed  Google Scholar 

  6. Song YR, You SJ, Lee YM, Chin HJ, Chae DW, Oh YK, Joo KW, Han JS, Na KY. Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant 2009; 25(1): 77–85.

    Article  PubMed  Google Scholar 

  7. Li X, Kimura H, Hirota K, Sugimoto H, Kimura N, Takahashi N, Fujii H, Yoshida H. Hypoxia reduces the expression and anti-inflammatory effects of peroxisome proliferator-activated receptor-gamma in human proximal renal tubular cells. Nephrol Dial Transplant 2007; 22: 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  8. Nisbet RE, Bland JM, Kleinhenz DJ, Mitchell PO, Walp ER, Sutliff RL, Hart CM. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 2009; 42(4):482–490.

    Article  PubMed  Google Scholar 

  9. Yang HC, Ma LJ, Ma J, Fogo AB. Peroxisome proliferator-activated receptor-gamma agonist is protective in podocyte injury-associated sclerosis. Kidney Int 2006; 69: 1756–1764.

    Article  CAS  PubMed  Google Scholar 

  10. Paueksakon P, Revelo MP, Ma LJ, Marcantoni C, Fogo AB. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int 2002; 61: 2142–2148.

    Article  CAS  PubMed  Google Scholar 

  11. Revelo MP, Federspiel C, Helderman H, Fogo AB. Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma. Nephrol Dial Transplant 2005; 20: 2812–2819.

    Article  CAS  PubMed  Google Scholar 

  12. Kanjanabuch T, Ma LJ, Chen J, Pozzi A, Guan Y, Mundel P, Fogo AB. PPAR-gamma agonist protects podocytes from injury. Kidney Int 2007; 71: 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  13. Okada T, Wada J, Hida K, Eguchi J, Hashimoto I, Baba M, Yasuhara A, Shikata K, Makino H. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms. Diabetes 2006; 55: 1666–1677.

    Article  CAS  PubMed  Google Scholar 

  14. Ma LJ, Jha S, Ling H, Pozzi A, Ledbetter S, Fogo AB. Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 2004; 65: 106–115.

    Article  CAS  PubMed  Google Scholar 

  15. Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, Gagliardini E, Rottoli D, Zanchi C, Abbate M, Ledbetter S, Remuzzi G. Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 2003; 14: 1816–1824.

    Article  CAS  PubMed  Google Scholar 

  16. Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol 2007; 292: F1141–F1150.

    Article  CAS  PubMed  Google Scholar 

  17. Ohtomo S, Izuhara Y, Takizawa S, Yamada N, Kakuta T, van Ypersele de Strihou C, Miyata T. Thiazolidinediones provide better renoprotection than insulin in an obese, hypertensive type II diabetic rat model. Kidney Int 2007; 72: 1512–1519.

    Google Scholar 

  18. Maeda A, Horikoshi S, Gohda T, Tsuge T, Maeda K, Tomino Y. Pioglitazone attenuates TGF-beta(1)-induction of fibronectin synthesis and its splicing variant in human mesangial cells via activation of peroxisome proliferator-activated receptor (PPAR)gamma. Cell Biol Int 2005; 29: 422–428.

    Article  CAS  PubMed  Google Scholar 

  19. Nicholas SB, Kawano Y, Wakino S, Collins AR, Hsueh WA. Expression and function of peroxisome proliferator-activated receptor-gamma in mesangial cells. Hypertension 2001; 37: 722–727.

    CAS  PubMed  Google Scholar 

  20. Zafiriou S, Stanners SR, Saad S, Polhill TS, Poronnik P, Pollock CA. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 2005; 16: 638–645.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Wen X, Spataro BC, Hu K, Dai C, Liu Y. Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. J Am Soc Nephrol 2006; 17: 54–65.

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh AK, Bhattacharyya S, Wei J, Kim S, Barak Y, Mori Y, Varga J. Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J 2009; 23: 2968–2977.

    Article  CAS  PubMed  Google Scholar 

  23. Erbe DV, Gartrell K, Zhang YL, Suri V, Kirincich SJ, Will S, Perreault M, Wang S, Tobin JF. Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. Vascul Pharmacol 2006; 45: 154–162.

    Article  CAS  PubMed  Google Scholar 

  24. Suganuma E, Babaev VR, Fogo AB, Linton MF, Fazio S, Ichikawa I, Kon V. Macrophage deficient in peroxisome proliferator-activated receptor gamma (PPARgamma) accelarate angiotenin II (Ang II)-induced atherosclerosis. J Am Soc Nephrol 2004; 15: 5A.

    Google Scholar 

  25. Yamagishi S, Matsui T, Nakamura K, Takeuchi M, Inoue H. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation. Protein Pept Lett 2008; 15: 850–853.

    Article  CAS  PubMed  Google Scholar 

  26. Honda A, Matsuura K, Fukushima N, Tsurumi Y, Kasanuki H, Hagiwara N. Telmisartan induces proliferation of human endothelial progenitor cells via PPARgamma-dependent PI3K/Akt pathway. Atherosclerosis 2009; 205: 376–384.

    Article  CAS  PubMed  Google Scholar 

  27. Corsa B, Fogo AB, Ma LJ. Promotion of recruitment and differentiation of adipocytes are affected by both angiotensin type 1 and type 2 receptors. Diabetes 2009; 58: A450.

    Google Scholar 

  28. Janke J, Schupp M, Engeli S, Gorzelniak K, Boschmann M, Sauma L, Nystrom FH, Jordan J, Luft FC, Sharma AM. Angiotensin type 1 receptor antagonists induce human in-vitro adipogenesis through peroxisome proliferator-activated receptor-gamma activation. J Hypertens 2006; 24: 1809–1816

    Article  CAS  PubMed  Google Scholar 

  29. Zhang R, Zheng F. PPAR-gamma and aging: one link through klotho? Kidney Int 2008; 74: 702–704.

    Article  CAS  PubMed  Google Scholar 

  30. Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB. The PPAR{gamma} Agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 2009; 20(11): 2380–2388.

    Google Scholar 

  31. Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem 2008; 389: 233–241.

    Article  CAS  PubMed  Google Scholar 

  32. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M. Suppression of aging in mice by the hormone Klotho. Science 2005; 309: 1829–1833.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, Chien S, Wang N. Klotho is a target gene of PPAR-gamma. Kidney Int 2008; 74: 732–739.

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh S, Patel N, Rahn D, McAllister J, Sadeghi S, Horwitz G, Berry D, Wang KX, Swerdlow RH. The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol Pharmacol 2007; 71: 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  35. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286: 81–89.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly LJ, Vicario PP, Thompson GM, Candelore MR, Doebber TW, Ventre J, Wu MS, Meurer R, Forrest MJ, Conner MW, Cascieri MA, Moller DE. Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 1998; 139: 4920–4927.

    Article  CAS  PubMed  Google Scholar 

  37. Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S. The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 2001; 50: 3–11.

    Article  CAS  PubMed  Google Scholar 

  38. Hajnoczky G, Hoek JB. Cell signaling. Mitochondrial longevity pathways. Science 2007; 315: 607–609.

    Article  PubMed  Google Scholar 

  39. Camougrand N, Rigoulet M. Aging and oxidative stress: studies of some genes involved both in aging and in response to oxidative stress. Respir Physiol 2001; 128: 393–401.

    Article  CAS  PubMed  Google Scholar 

  40. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122: 221–233.

    Article  CAS  PubMed  Google Scholar 

  41. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 2007; 315: 659–663.

    Article  CAS  PubMed  Google Scholar 

  42. Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, Kim HK, Han JY, Cha DR. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant 2008; 23: 2750–2760.

    Article  CAS  PubMed  Google Scholar 

  43. Eddy AA. Interstitial macrophages as mediators of renal fibrosis. Exp Nephrol 1995; 3: 76–79.

    CAS  PubMed  Google Scholar 

  44. Kluth DC, Erwig LP, Rees AJ. Multiple facets of macrophages in renal injury. Kidney Int 2004; 66: 542–557.

    Article  CAS  PubMed  Google Scholar 

  45. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–964.

    Article  CAS  PubMed  Google Scholar 

  46. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    Article  CAS  PubMed  Google Scholar 

  47. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  PubMed  Google Scholar 

  48. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest 2008; 118: 3522–3530.

    Article  CAS  PubMed  Google Scholar 

  49. Kluth DC. Pro-resolution properties of macrophages in renal injury. Kidney Int 2007; 72: 234–236.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Y, Mahajan D, Tay YC, Bao S, Spicer T, Kairaitis L, Rangan GK, Harris DC. Partial depletion of macrophages by ED7 reduces renal injury in adriamycin nephropathy. Nephrology (Carlton) 2005; 10: 470–477.

    Article  CAS  Google Scholar 

  51. Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R, Bonventre JV, Hughes J. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 2005; 167: 1207–1219.

    CAS  PubMed  Google Scholar 

  52. Lim AK, Ma FY, Nikolic-Paterson DJ, Thomas MC, Hurst LA, Tesch GH. Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia 2009; 52: 1669–1679.

    Article  CAS  PubMed  Google Scholar 

  53. Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, Shikata Y, Ogawa D, Kido Y, Nagase R, Yozai K, Ohga S, Tone A, Wada J, Takeya M, Horiuchi S, Kodama T, Makino H. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 2007; 56: 363–372.

    Article  CAS  PubMed  Google Scholar 

  54. Kluth DC, Ainslie CV, Pearce WP, Finlay S, Clarke D, Anegon I, Rees AJ. Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol 2001; 166: 4728–4736.

    CAS  PubMed  Google Scholar 

  55. Wilson HM, Stewart KN, Brown PA, Anegon I, Chettibi S, Rees AJ, Kluth DC. Bone-marrow-derived macrophages genetically modified to produce IL-10 reduce injury in experimental glomerulonephritis. Mol Ther 2002; 6: 710–717.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH, Mahajan D, Coombs J, Wang YM, Alexander SI, Harris DC. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007; 72: 290–299.

    Article  CAS  PubMed  Google Scholar 

  57. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  59. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11: 327–332.

    Article  CAS  PubMed  Google Scholar 

  60. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–26749.

    Article  CAS  PubMed  Google Scholar 

  61. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10: 355–361.

    Article  CAS  PubMed  Google Scholar 

  62. Saltiel AR. You are what you secrete. Nat Med 2001; 7: 887–888.

    Article  CAS  PubMed  Google Scholar 

  63. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    Article  CAS  PubMed  Google Scholar 

  64. Loskutoff DJ. A slice of PAI. J Clin Invest 1993; 92: 2563.

    Article  CAS  PubMed  Google Scholar 

  65. Liang X, Kanjanabuch T, Mao SL, Hao CM, Tang YW, Declerck PJ, Hasty AH, Wasserman DH, Fogo AB, Ma LJ. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab 2006; 290: E103-E113.

    Article  CAS  PubMed  Google Scholar 

  66. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    CAS  PubMed  Google Scholar 

  67. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006; 116: 33–35.

    Article  CAS  PubMed  Google Scholar 

  68. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr.. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  Google Scholar 

  69. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    CAS  PubMed  Google Scholar 

  70. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  71. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  PubMed  Google Scholar 

  72. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW, Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116: 115–124.

    Article  CAS  PubMed  Google Scholar 

  73. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007; 56: 16–23.

    Article  CAS  PubMed  Google Scholar 

  74. Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ, Flier JS. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007; 56: 2242–2250.

    Article  CAS  PubMed  Google Scholar 

  75. Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol 2008; 3: 545–556.

    Article  CAS  PubMed  Google Scholar 

  76. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

    Article  CAS  PubMed  Google Scholar 

  77. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008; 57: 3239–3246.

    Article  CAS  PubMed  Google Scholar 

  78. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116–1120.

    Article  CAS  PubMed  Google Scholar 

  79. Stienstra R, Duval C, Keshtkar S, van der Laak J, Kersten S, Muller M. Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 2008; 283: 22620–22627.

    Article  CAS  PubMed  Google Scholar 

  80. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457–2471.

    Article  CAS  PubMed  Google Scholar 

  81. Doggrell SA. Does rosiglitazone increase cardiovascular outcomes? Expert Opin Pharmacother 2007; 8: 2665–2669.

    Article  CAS  PubMed  Google Scholar 

  82. Hanefeld M. Is rosiglitazone associated with increased risk for cardiovascular events? Nat Clin Pract Cardiovasc Med 2007; 4: 648–649.

    Article  PubMed  Google Scholar 

  83. Sarafidis PA, Bakris GL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 2006; 70: 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  84. Jin HM, Pan Y. Renoprotection provided by losartan in combination with pioglitazone is superior to renoprotection provided by losartan alone in patients with type 2 diabetic nephropathy. Kidney Blood Press Res 2007; 30: 203–211

    Article  CAS  PubMed  Google Scholar 

  85. Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004; 53: 336–346

    Article  CAS  PubMed  Google Scholar 

  86. Miyazaki Y, Cersosimo E, Triplitt C, DeFronzo RA. Rosiglitazone decreases albuminuria in type 2 diabetic patients. Kidney Int 2007; 72: 1367–1373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes B. Fogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, LJ., Fogo, A.B. (2011). Oxidative Stress in Kidney Injury: Peroxisome Proliferator-Activated Receptor-γ Agonists Are in Control. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_17

Download citation

Publish with us

Policies and ethics