Skip to main content

Infections in Patients with Hematologic Malignancies Treated with Monoclonal Antineoplastic Therapy

  • Chapter
  • First Online:
Principles and Practice of Cancer Infectious Diseases

Part of the book series: Current Clinical Oncology ((CCO))

  • 1463 Accesses

Abstract

The advent of monoclonal antibody therapy heralded a new era in oncology. In 1997, rituximab became the first monoclonal antibody for the treatment of cancer following its approval for patients with B-cell non-Hodgkin’s lymphoma. The potential risks of any pharmacotherapy should be considered alongside the obvious benefits. Recently, concerns have emerged over the possible increase in infectious complications associated with monoclonal antibodies compared with traditional chemotherapy. Due to the nature of the malignancies that they target, most of the monoclonal antibodies currently in use for the treatment of hematologic cancers are directed at specific surface markers on B or T cells. Consequently, the risk of infectious complications with these monoclonal antibodies is of particular concern and a comprehensive review of these complications is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26:1774–7.

    Article  PubMed  Google Scholar 

  2. Kaplan LD, Lee JY, Ambinder RF, Sparano JA, Cesarman E, Chadburn A, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106:1538–43.

    Article  PubMed  CAS  Google Scholar 

  3. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117–26.

    Article  PubMed  CAS  Google Scholar 

  4. Robak T. Alemtuzumab for B-cell chronic lymphocytic leukemia. Expert Rev Anticancer Ther. 2008;8:1033–51.

    Article  PubMed  CAS  Google Scholar 

  5. Castillo J, Winer E, Quesenberry P. Newer monoclonal antibodies for hematological malignancies. Exp Hematol. 2008;36:755–68.

    Article  PubMed  CAS  Google Scholar 

  6. Lee SJ, Zahrieh D, Agura E, MacMillan ML, Maziarz RT, McCarthy Jr PL, et al. Effect of up-front daclizumab when combined with steroids for the treatment of acute graft-versus-host disease: results of a randomized trial. Blood. 2004;104:1559–64.

    Article  PubMed  CAS  Google Scholar 

  7. Tkaczuk J, Yu CL, Baksh S, Milford EL, Carpenter CB, Burakoff SJ, et al. Effect of anti-IL-2Ralpha antibody on IL-2-induced Jak/STAT signaling. Am J Transplant. 2002;2:31–40.

    Article  PubMed  CAS  Google Scholar 

  8. Hultin LE, Hausner MA, Hultin PM, Giorgi JV. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry. 1993;14:196–204.

    Article  PubMed  CAS  Google Scholar 

  9. Sperr WR, Florian S, Hauswirth AW, Valent P. CD 33 as a target of therapy in acute myeloid leukemia: current status and future perspectives. Leuk Lymphoma. 2005;46:1115–20.

    Article  PubMed  CAS  Google Scholar 

  10. Giles F, Estey E, O’Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer. 2003;98:2095–104.

    Article  PubMed  CAS  Google Scholar 

  11. Martin SI, Marty FM, Fiumara K, Treon SP, Gribben JG, Baden LR. Infectious complications associated with alemtuzumab use for lymphoproliferative disorders. Clin Infect Dis. 2006;43:16–24.

    Article  PubMed  CAS  Google Scholar 

  12. Rituxan US Prescribing Information. http://www.fda.gov/cder/foi/label/2008/103705s5256lbl.pdf.AccessedonMay,2009.

  13. Knight DM, Trinh H, Le J, Siegel S, Shealy D, McDonough M, et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol Immunol. 1993;30:1443–53.

    Article  PubMed  CAS  Google Scholar 

  14. Charles P, Elliott MJ, Davis D, Potter A, Kalden JR, Antoni C, et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol. 1999;163:1521–8.

    PubMed  CAS  Google Scholar 

  15. Kimby E. Tolerability and safety of rituximab (MabThera). Cancer Treat Rev. 2005;31:456–73.

    Article  PubMed  CAS  Google Scholar 

  16. Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19:3244–54.

    PubMed  CAS  Google Scholar 

  17. Aksoy S, Harputluoglu H, Kilickap S, Dede DS, Dizdar O, Altundag K, et al. Rituximab-related viral infections in lymphoma patients. Leuk Lymphoma. 2007;48:1307–12.

    Article  PubMed  CAS  Google Scholar 

  18. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–33.

    PubMed  CAS  Google Scholar 

  19. van Sorge NM, van der Pol WL, van de Winkel JG. FcgammaR polymorphisms: implications for function, disease susceptibility and immunotherapy. Tissue Antigens. 2003;61:189–202.

    Article  PubMed  Google Scholar 

  20. Sanders LA, van de Winkel JG, Rijkers GT, Voorhorst-Ogink MM, de Haas M, Capel PJ, et al. Fc gamma receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J Infect Dis. 1994;170:854–61.

    Article  PubMed  CAS  Google Scholar 

  21. Yee AM, Phan HM, Zuniga R, Salmon JE, Musher DM. Association between FcgammaRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis. 2000;30:25–8.

    Article  PubMed  CAS  Google Scholar 

  22. Moens L, Van Hoeyveld E, Verhaegen J, De Boeck K, Peetermans WE, Bossuyt X. Fcgamma-receptor IIA genotype and invasive pneumococcal infection. Clin Immunol. 2006;118:20–3.

    Article  PubMed  CAS  Google Scholar 

  23. Fijen CA, Bredius RG, Kuijper EJ. Polymorphism of IgG Fc receptors in meningococcal disease. Ann Intern Med. 1993;119:636.

    Article  PubMed  CAS  Google Scholar 

  24. Forstpointner R, Dreyling M, Repp R, Hermann S, Hanel A, Metzner B, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104:3064–71.

    Article  PubMed  CAS  Google Scholar 

  25. Herold M, Haas A, Srock S, Neser S, Al Ali KH, Neubauer A, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25:1986–92.

    Article  PubMed  CAS  Google Scholar 

  26. Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106:3725–32.

    Article  PubMed  CAS  Google Scholar 

  27. Marcus R, Imrie K, Solal-Celigny P, Catalano JV, Dmoszynska A, Raposo JC, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26:4579–86.

    Article  PubMed  CAS  Google Scholar 

  28. Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9:105–16.

    Article  PubMed  CAS  Google Scholar 

  29. Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379–91.

    Article  PubMed  CAS  Google Scholar 

  30. Schulz H, Bohlius JF, Trelle S, Skoetz N, Reiser M, Kober T, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99:706–14.

    Article  PubMed  CAS  Google Scholar 

  31. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  PubMed  CAS  Google Scholar 

  32. Hallek M, Fingerle-Rowson G, Fink A, Busch R, Mayer J, Hensel M. Immunochemotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) versus fludarabine and cyclophosphamide (FC) improves response rates and progression-free survival (PFS) of previously untreated patients (pts) with advanced chronic lymphocytic leukemia (CLL). Blood. 2008;112(Suppl. 11):Abstract 325.

    Google Scholar 

  33. Robak T, Moiseev SI, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J. Rituximab, fludarabine, and cyclophosphamide (R-FC) prolongs progression-free survival in relapsed or refractory chronic lymphocytic leukemia (CLL) compared with FC alone: final results from the international randomized phase III REACH trial. Blood. 2008;112(Suppl. 11):Abstract LBA1.

    Google Scholar 

  34. Ezzat H, Filipenko D, Vickars L, Galbraith P, Li C, Murphy K, et al. Improved survival in HIV-associated diffuse large B-cell lymphoma with the addition of rituximab to chemotherapy in patients receiving highly active antiretroviral therapy. HIV Clin Trials. 2007;8:132–44.

    Article  PubMed  CAS  Google Scholar 

  35. Oertel SH, Verschuuren E, Reinke P, Zeidler K, Papp-Vary M, Babel N, et al. Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD). Am J Transplant. 2005;5:2901–6.

    Article  PubMed  CAS  Google Scholar 

  36. Rituxan US Prescribing Information. http://www.fda.gov/cder/foi/label/2008/103705s5256lbl.pdf.AccessedonMay,2009.

  37. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359:613–26.

    Article  PubMed  CAS  Google Scholar 

  38. Hilchey SP, Hyrien O, Mosmann TR, Livingstone AM, Friedberg JW, Young F, et al. Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a “vaccinal effect” of rituximab. Blood. 2009;113:3809–12.

    Article  PubMed  CAS  Google Scholar 

  39. Bello C, Sotomayor EM. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. Hematology Am Soc Hematol Educ Program. 2007;2007:233–42.

    Article  Google Scholar 

  40. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99:1038–43.

    Article  PubMed  CAS  Google Scholar 

  41. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    Article  PubMed  CAS  Google Scholar 

  42. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  PubMed  CAS  Google Scholar 

  43. Ghielmini M, Rufibach K, Salles G, Leoncini-Franscini L, Leger-Falandry C, Cogliatti S, et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer Research (SAKK). Ann Oncol. 2005;16:1675–82.

    Article  PubMed  CAS  Google Scholar 

  44. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199:1659–69.

    Article  PubMed  CAS  Google Scholar 

  45. Sidner RA, Book BK, Agarwal A, Bearden CM, Vieira CA, Pescovitz MD. In vivo human B-cell subset recovery after in vivo depletion with rituximab, anti-human CD20 monoclonal antibody. Hum Antibodies. 2004;13:55–62.

    PubMed  CAS  Google Scholar 

  46. Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6:859–66.

    Article  PubMed  CAS  Google Scholar 

  47. Dillman RO, Hendrix CS. Unique aspects of supportive care using monoclonal antibodies in cancer treatment. Support Cancer Ther. 2003;1:38–48.

    Article  PubMed  Google Scholar 

  48. Cabanillas F, Liboy I, Pavia O, Rivera E. High incidence of non-neutropenic infections induced by rituximab plus fludarabine and associated with hypogammaglobulinemia: a frequently unrecognized and easily treatable complication. Ann Oncol. 2006;17:1424–7.

    Article  PubMed  CAS  Google Scholar 

  49. Hicks LK, Woods A, Buckstein R, Mangel J, Pennell N, Zhang L, et al. Rituximab purging and maintenance combined with auto-SCT: long-term molecular remissions and prolonged hypogammaglobulinemia in relapsed follicular lymphoma. Bone Marrow Transplant. 2008;43:701–8.

    Article  PubMed  CAS  Google Scholar 

  50. Miles SA, McGratten M. Persistent panhypogammaglobulinemia after CHOP-rituximab for HIV-related lymphoma. J Clin Oncol. 2005;23:247–8.

    Article  PubMed  Google Scholar 

  51. Walker AR, Kleiner A, Rich L, Conners C, Fisher RI, Anolik J, et al. Profound hypogammaglobulinemia 7 years after treatment for indolent lymphoma. Cancer Invest. 2008;26:431–3.

    Article  PubMed  Google Scholar 

  52. van der Kolk LE, Baars JW, Prins MH, van Oers MH. Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood. 2002;100:2257–9.

    PubMed  Google Scholar 

  53. Nishio M, Fujimoto K, Yamamoto S, Endo T, Sakai T, Obara M, et al. Delayed redistribution of CD27, CD40 and CD80 positive B cells and the impaired in vitro immunoglobulin production in patients with non-Hodgkin lymphoma after rituximab treatment as an adjuvant to autologous stem cell transplantation. Br J Haematol. 2007;137:349–54.

    Article  PubMed  CAS  Google Scholar 

  54. Anolik JH, Friedberg JW, Zheng B, Barnard J, Owen T, Cushing E, et al. B cell reconstitution after rituximab treatment of lymphoma recapitulates B cell ontogeny. Clin Immunol. 2007;122:139–45.

    Article  PubMed  CAS  Google Scholar 

  55. Gordan LN, Grow WB, Pusateri A, Douglas V, Mendenhall NP, Lynch JW. Phase II trial of individualized rituximab dosing for patients with CD20-positive lymphoproliferative disorders. J Clin Oncol. 2005;23:1096–102.

    Article  PubMed  CAS  Google Scholar 

  56. Vidal L, Gafter-Gvili A, Leibovici L, Dreyling M, Ghielmini M, Hsu Schmitz SF, et al. Rituximab maintenance for the treatment of patients with follicular lymphoma: systematic review and meta-analysis of randomized trials. J Natl Cancer Inst. 2009;101:248–55.

    Article  PubMed  CAS  Google Scholar 

  57. Pfreundschuh M, Zeynalova S, Poeschel V, Haenel M, Schmitz N, Hensel M, et al. Dose-dense rituximab improves outcome of elderly patients with poor-prognosis diffuse large b-cell lymphoma (DLBCL): results of the DENSE-R-CHOP-14 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2007;110:Abstract 789.

    Google Scholar 

  58. Rueda A, Sabin P, Rifa J, Llanos M, Gomez-Codina J, Lobo F, et al. R-CHOP-14 in patients with diffuse large B-cell lymphoma younger than 70 years: a multicentre, prospective study. Hematol Oncol. 2008;26:27–32.

    Article  PubMed  CAS  Google Scholar 

  59. Tam C, Seymour JF, Brown M, Campbell P, Scarlett J, Underhill C, et al. Early and late infectious consequences of adding rituximab to fludarabine and cyclophosphamide in patients with indolent lymphoid malignancies. Haematologica. 2005;90:700–2.

    PubMed  CAS  Google Scholar 

  60. van Oers MH, Klasa R, Marcus RE, Wolf M, Kimby E, Gascoyne RD, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108:3295–301.

    Article  PubMed  CAS  Google Scholar 

  61. Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24:3121–7.

    Article  PubMed  CAS  Google Scholar 

  62. Lenz G, Dreyling M, Hoster E, Wormann B, Duhrsen U, Metzner B, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol. 2005;23:1984–92.

    Article  PubMed  CAS  Google Scholar 

  63. Aksoy S, Dizdar O, Hayran M, Harputluoglu H. Infectious complications of rituximab in patients with lymphoma during maintenance therapy: a systematic review and meta-analysis. Leuk Lymphoma. 2009;50:357–65.

    Article  PubMed  CAS  Google Scholar 

  64. van Oers MH, Glabbeke MV, Baila L, Giurgia L, Klasa R, Marcus RE. Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin’s lymphoma: long-term outcome of the EORTC 20981 phase III randomized Intergroup study. Blood. 2008;112:Abstract 836.

    Google Scholar 

  65. Srock S, Schriever F, Neubauer A, Herold M, Huhn D. Long-term treatment with rituximab is feasible in selected patients with B-CLL: response-adjusted low-dose maintenance treatment with rituximab in patients with relapsed B-CLL, who achieved a partial or minimal response to prior rituximab therapy. Leuk Lymphoma. 2007;48:905–11.

    Article  PubMed  CAS  Google Scholar 

  66. Spina M, Jaeger U, Sparano JA, Talamini R, Simonelli C, Michieli M, et al. Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: pooled results from 3 Phase 2 trials. Blood. 2005;105:1891–7.

    Article  PubMed  CAS  Google Scholar 

  67. Sandherr M, Einsele H, Hebart H, Kahl C, Kern W, Kiehl M, et al. Antiviral prophylaxis in patients with haematological malignancies and solid tumours: Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Oncology (DGHO). Ann Oncol. 2006;17:1051–9.

    Article  PubMed  CAS  Google Scholar 

  68. Perceau G, Diris N, Estines O, Derancourt C, Levy S, Bernard P. Late lethal hepatitis B virus reactivation after rituximab treatment of low-grade cutaneous B-cell lymphoma. Br J Dermatol. 2006;155:1053–6.

    Article  PubMed  CAS  Google Scholar 

  69. Yeo W, Chan TC, Leung NW, Lam WY, Mo FK, Chu MT, et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol. 2009;27:605–11.

    Article  PubMed  CAS  Google Scholar 

  70. He YF, Li YH, Wang FH, Jiang WQ, Xu RH, Sun XF, et al. The effectiveness of lamivudine in preventing hepatitis B viral reactivation in rituximab-containing regimen for lymphoma. Ann Hematol. 2008;87:481–5.

    Article  PubMed  CAS  Google Scholar 

  71. Tsutsumi Y, Tanaka J, Kawamura T, Miura T, Kanamori H, Obara S, et al. Possible efficacy of lamivudine treatment to prevent hepatitis B virus reactivation due to rituximab therapy in a patient with non-Hodgkin’s lymphoma. Ann Hematol. 2004;83:58–60.

    Article  PubMed  CAS  Google Scholar 

  72. Yeo W, Chan PK, Ho WM, Zee B, Lam KC, Lei KI, et al. Lamivudine for the prevention of hepatitis B virus reactivation in hepatitis B s-antigen seropositive cancer patients undergoing cytotoxic chemotherapy. J Clin Oncol. 2004;22:927–34.

    Article  PubMed  CAS  Google Scholar 

  73. Besson C, Canioni D, Lepage E, Pol S, Morel P, Lederlin P, et al. Characteristics and outcome of diffuse large B-cell lymphoma in hepatitis C virus-positive patients in LNH 93 and LNH 98 Groupe d’Etude des Lymphomes de l’Adulte programs. J Clin Oncol. 2006;24:953–60.

    Article  PubMed  Google Scholar 

  74. Viswanatha DS, Dogan A. Hepatitis C virus and lymphoma. J Clin Pathol. 2007;60:1378–83.

    Article  PubMed  CAS  Google Scholar 

  75. Fiorilli M, Mecucci C, Farci P, Casato M. HCV-associated lymphomas. Rev Clin Exp Hematol. 2003;7:406–23.

    PubMed  Google Scholar 

  76. Hsieh CY, Huang HH, Lin CY, Chung LW, Liao YM, Bai LY, et al. Rituximab-induced hepatitis C virus reactivation after spontaneous remission in diffuse large B-cell lymphoma. J Clin Oncol. 2008;26:2584–6.

    Article  PubMed  Google Scholar 

  77. Ennishi D, Terui Y, Yokoyama M, Mishima Y, Takahashi S, Takeuchi K, et al. Monitoring serum hepatitis C virus (HCV) RNA in patients with HCV-infected CD20-positive B-cell lymphoma undergoing rituximab combination chemotherapy. Am J Hematol. 2008;83:59–62.

    Article  PubMed  CAS  Google Scholar 

  78. Goldberg SL, Pecora AL, Alter RS, Kroll MS, Rowley SD, Waintraub SE, et al. Unusual viral infections (progressive multifocal leukoencephalopathy and cytomegalovirus disease) after high-dose chemotherapy with autologous blood stem cell rescue and peritransplantation rituximab. Blood. 2002;99:1486–8.

    Article  PubMed  CAS  Google Scholar 

  79. Vancikova Z, Dvorak P. Cytomegalovirus infection in immunocompetent and immunocompromised individuals - a review. Curr Drug Targets Immune Endocr Metabol Disord. 2001;1:179–87.

    Article  PubMed  CAS  Google Scholar 

  80. Suzan F, Ammor M, Ribrag V. Fatal reactivation of cytomegalovirus infection after use of rituximab for a post-transplantation lymphoproliferative disorder. N Engl J Med. 2001;345:1000.

    Article  PubMed  CAS  Google Scholar 

  81. Lee MY, Chiou TJ, Hsiao LT, Yang MH, Lin PC, Poh SB, et al. Rituximab therapy increased post-transplant cytomegalovirus complications in non-Hodgkin’s lymphoma patients receiving autologous hematopoietic stem cell transplantation. Ann Hematol. 2008;87:285–9.

    Article  PubMed  CAS  Google Scholar 

  82. Calabrese LH, Molloy ES, Huang D, Ransohoff RM. Progressive multifocal leukoencephalopathy in rheumatic diseases: evolving clinical and pathologic patterns of disease. Arthritis Rheum. 2007;56:2116–28.

    Article  PubMed  Google Scholar 

  83. Viallard JF, Lazaro E, Lafon ME, Pellegrin JL. Successful cidofovir therapy of progressive multifocal leukoencephalopathy preceding angioimmunoblastic T-cell lymphoma. Leuk Lymphoma. 2005;46:1659–62.

    Article  PubMed  CAS  Google Scholar 

  84. De Luca A, Ammassari A, Pezzotti P, Cinque P, Gasnault J, Berenguer J, et al. Cidofovir in addition to antiretroviral treatment is not effective for AIDS-associated progressive multifocal leukoencephalopathy: a multicohort analysis. AIDS. 2008;22:1759–67.

    Article  PubMed  CAS  Google Scholar 

  85. Kraemer C, Evers S, Nolting T, Arendt G, Husstedt IW. Cidofovir in combination with HAART and survival in AIDS-associated progressive multifocal leukoencephalopathy. J Neurol. 2008;255:526–31.

    Article  PubMed  CAS  Google Scholar 

  86. Waggoner J, Martinu T, Palmer SM. Progressive multifocal leukoencephalopathy following heightened immunosuppression after lung transplant. J Heart Lung Transplant. 2009;28:395–8.

    Article  PubMed  Google Scholar 

  87. Berger JR. Progressive multifocal leukoencephalopathy. Curr Neurol Neurosci Rep. 2007;7:461–9.

    Article  PubMed  CAS  Google Scholar 

  88. Boren EJ, Cheema GS, Naguwa SM, Ansari AA, Gershwin ME. The emergence of progressive multifocal leukoencephalopathy (PML) in rheumatic diseases. J Autoimmun. 2008;30:90–8.

    Article  PubMed  CAS  Google Scholar 

  89. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, et al. Progressive multifocal leukoencephalopathy following rituximab therapy in HIV negative patients: a report of 57 cases from the Research on Adverse Drug Event and Reports (RADAR) project. Blood. 2009;113(20):4834–40.

    Article  PubMed  CAS  Google Scholar 

  90. Bermudez A, Marco F, Conde E, Mazo E, Recio M, Zubizarreta A. Fatal visceral varicella-zoster infection following rituximab and chemotherapy treatment in a patient with follicular lymphoma. Haematologica. 2000;85:894–5.

    PubMed  CAS  Google Scholar 

  91. McIlwaine LM, Fitzsimons EJ, Soutar RL. Inappropriate antidiuretic hormone secretion, abdominal pain and disseminated varicella-zoster virus infection: an unusual and fatal triad in a patient 13 months post rituximab and autologous stem cell transplantation. Clin Lab Haematol. 2001;23:253–4.

    Article  PubMed  CAS  Google Scholar 

  92. Chang H, Yeh HC, Su YC, Lee MH. Pneumocystis jiroveci pneumonia in patients with non-Hodgkin’s lymphoma receiving chemotherapy containing rituximab. J Chin Med Assoc. 2008;71:579–82.

    Article  PubMed  Google Scholar 

  93. Kolstad A, Holte H, Fossa A, Lauritzsen GF, Gaustad P, Torfoss D. Pneumocystis jirovecii pneumonia in B-cell lymphoma patients treated with the rituximab-CHOEP-14 regimen. Haematologica. 2007;92:139–40.

    Article  PubMed  CAS  Google Scholar 

  94. Venhuizen AC, Hustinx WN, van Houte AJ, Veth G. van der GR. Three cases of Pneumocystis jirovecii pneumonia (PCP) during first-line treatment with rituximab in combination with CHOP-14 for aggressive B-cell non-Hodgkin’s lymphoma. Eur J Haematol. 2008;80:275–6.

    Article  PubMed  Google Scholar 

  95. Iyer A, Mathur R, Deepak BV, Sinard J. Fatal adenoviral hepatitis after rituximab therapy. Arch Pathol Lab Med. 2006;130:1557–60.

    PubMed  Google Scholar 

  96. Sharma VR, Fleming DR, Slone SP. Pure red cell aplasia due to parvovirus B19 in a patient treated with rituximab. Blood. 2000;96:1184–6.

    PubMed  CAS  Google Scholar 

  97. Isobe Y, Sugimoto K, Shiraki Y, Nishitani M, Koike K, Oshimi K. Successful high-titer immunoglobulin therapy for persistent parvovirus B19 infection in a lymphoma patient treated with rituximab-combined chemotherapy. Am J Hematol. 2004;77:370–3.

    Article  PubMed  Google Scholar 

  98. Biehn SE, Kirk D, Rivera MP, Martinez AE, Khandani AH, Orlowski RZ. Bronchiolitis obliterans with organizing pneumonia after rituximab therapy for non-Hodgkin’s lymphoma. Hematol Oncol. 2006;24:234–7.

    Article  PubMed  Google Scholar 

  99. Soubrier M, Jeannin G, Kemeny JL, Tournadre A, Caillot N, Caillaud D, et al. Organizing pneumonia after rituximab therapy: two cases. Joint Bone Spine. 2008;75:362–5.

    Article  PubMed  CAS  Google Scholar 

  100. Padate BP, Keidan J. Enteroviral meningoencephalitis in a patient with non-Hodgkin’s lymphoma treated previously with rituximab. Clin Lab Haematol. 2006;28:69–71.

    Article  PubMed  CAS  Google Scholar 

  101. Quartier P, Tournilhac O, Archimbaud C, Lazaro L, Chaleteix C, Millet P, et al. Enteroviral meningoencephalitis after anti-CD20 (rituximab) treatment. Clin Infect Dis. 2003;36:e47–9.

    Article  PubMed  Google Scholar 

  102. Archimbaud C, Bailly JL, Chambon M, Tournilhac O, Travade P, Peigue-Lafeuille H. Molecular evidence of persistent echovirus 13 meningoencephalitis in a patient with relapsed lymphoma after an outbreak of meningitis in 2000. J Clin Microbiol. 2003;41:4605–10.

    Article  PubMed  Google Scholar 

  103. Faderl S, Thomas DA, O’Brien S, Garcia-Manero G, Kantarjian HM, Giles FJ, et al. Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood. 2003;101:3413–5.

    Article  PubMed  CAS  Google Scholar 

  104. Hirayama Y, Kohda K, Konuma Y, Hirata Y, Kuroda H, Fujimi Y, et al. Late onset neutropenia and immunoglobulin suppression of the patients with malignant lymphoma following autologous stem cell transplantation with rituximab. Intern Med. 2009;48:57–60.

    Article  PubMed  Google Scholar 

  105. Nitta E, Izutsu K, Sato T, Ota Y, Takeuchi K, Kamijo A, et al. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: a single-institution study. Ann Oncol. 2007;18:364–9.

    Article  PubMed  CAS  Google Scholar 

  106. Fukuno K, Tsurumi H, Ando N, Kanemura N, Goto H, Tanabashi S, et al. Late-onset neutropenia in patients treated with rituximab for non-Hodgkin’s lymphoma. Int J Hematol. 2006;84:242–7.

    Article  PubMed  CAS  Google Scholar 

  107. Terrier B, Ittah M, Tourneur L, Louache F, Soumelis V, Lavie F, et al. Late-onset neutropenia following rituximab results from a hematopoietic lineage competition due to an excessive BAFF-induced B-cell recovery. Haematologica. 2007;92:e20–3.

    Article  PubMed  Google Scholar 

  108. Dunleavy K, Hakim F, Kim HK, Janik JE, Grant N, Nakayama T, et al. B-cell recovery following rituximab-based therapy is associated with perturbations in stromal derived factor-1 and granulocyte homeostasis. Blood. 2005;106:795–802.

    Article  PubMed  CAS  Google Scholar 

  109. Klepfish A, Rachmilevitch E, Schattner A. Parvovirus B19 reactivation presenting as neutropenia after rituximab treatment. Eur J Intern Med. 2006;17:505–7.

    Article  PubMed  CAS  Google Scholar 

  110. Salliot C, Dougados M, Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann Rheum Dis. 2009;68:25–32.

    Article  PubMed  CAS  Google Scholar 

  111. Bexxar (90Y-labeled ibritumomb tiuxetan) US Prescribing Information. http://www.us.gsk.com/products/assets/us_bexxar.pdf.AccessedonMay,2009.

  112. Zevalin (131I-labeled tositumomab) US Prescribing Information. http://www.zevalin.com/pdf/Zevalin_PI_website.pdf.AccessedonMay,2009.

  113. Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352:441–9.

    Article  PubMed  CAS  Google Scholar 

  114. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–9.

    Article  PubMed  CAS  Google Scholar 

  115. Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–66.

    PubMed  CAS  Google Scholar 

  116. Vose JM, Wahl RL, Saleh M, Rohatiner AZ, Knox SJ, Radford JA, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18:1316–23.

    PubMed  CAS  Google Scholar 

  117. Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10:7792–8.

    Article  PubMed  CAS  Google Scholar 

  118. Horning SJ, Younes A, Jain V, Kroll S, Lucas J, Podoloff D, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol. 2005;23:712–9.

    Article  PubMed  CAS  Google Scholar 

  119. Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, Leblanc M, et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol. 2006;24:4143–9.

    Article  PubMed  CAS  Google Scholar 

  120. Witzig TE, White CA, Gordon LI, Wiseman GA, Emmanouilides C, Murray JL, et al. Safety of yttrium-90 ibritumomab tiuxetan ­radioimmunotherapy for relapsed low-grade, follicular, or transformed non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:1263–70.

    Article  PubMed  CAS  Google Scholar 

  121. Morschhauser F, Radford J, Van Hoof A, Vitolo U, Soubeyran P, Tilly H, et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26:5156–64.

    Article  PubMed  CAS  Google Scholar 

  122. Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99:3554–61.

    Article  PubMed  CAS  Google Scholar 

  123. Lundin J, Porwit-MacDonald A, Rossmann ED, Karlsson C, Edman P, Rezvany MR, et al. Cellular immune reconstitution after subcutaneous alemtuzumab (anti-CD52 monoclonal antibody, CAMPATH-1H) treatment as first-line therapy for B-cell chronic lymphocytic leukaemia. Leukemia. 2004;18:484–90.

    Article  PubMed  CAS  Google Scholar 

  124. Peleg AY, Husain S, Kwak EJ, Silveira FP, Ndirangu M, Tran J, et al. Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin Infect Dis. 2007;44:204–12.

    Article  PubMed  CAS  Google Scholar 

  125. Hillmen P, Skotnicki AB, Robak T, Jaksic B, Dmoszynska A, Wu J, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25:5616–23.

    Article  PubMed  CAS  Google Scholar 

  126. Wendtner CM, Ritgen M, Schweighofer CD, Fingerle-Rowson G, Campe H, Jager G, et al. Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission - experience on safety and efficacy within a randomized multicenter Phase III trial of the German CLL Study Group (GCLLSG). Leukemia. 2004;18:1093–101.

    Article  PubMed  CAS  Google Scholar 

  127. O’Brien SM, Kantarjian HM, Thomas DA, Cortes J, Giles FJ, Wierda WG, et al. Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer. 2003;98:2657–63.

    Article  PubMed  CAS  Google Scholar 

  128. Ferrajoli A, O’Brien SM, Cortes JE, Giles FJ, Thomas DA, Faderl S, et al. Phase II study of alemtuzumab in chronic lymphoproliferative disorders. Cancer. 2003;98:773–8.

    Article  PubMed  CAS  Google Scholar 

  129. Fiegl M, Hopfinger G, Jaeger G. Alemtuzumab is effective in the treatment of patients with advanced, heavily pretreated B-cell chronic lymphocytic leukemia. Blood. 2003;102(Suppl. 2):Abstract 5157.

    Google Scholar 

  130. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SM, Haynes A, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005;23:2971–9.

    Article  PubMed  CAS  Google Scholar 

  131. Osuji NC, Del GI, Matutes E, Wotherspoon AC, Dearden C, Catovsky D. The efficacy of alemtuzumab for refractory chronic lymphocytic leukemia in relation to cytogenetic abnormalities of p53. Haematologica. 2005;90:1435–6.

    PubMed  CAS  Google Scholar 

  132. Rai KR, Freter CE, Mercier RJ, Cooper MR, Mitchell BS, Stadtmauer EA, et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol. 2002;20:3891–7.

    Article  PubMed  CAS  Google Scholar 

  133. Nabhan C, Patton D, Gordon LI, Riley MB, Kuzel T, Tallman MS, et al. A pilot trial of rituximab and alemtuzumab combination therapy in patients with relapsed and/or refractory chronic lymphocytic leukemia (CLL). Leuk Lymphoma. 2004;45:2269–73.

    Article  PubMed  CAS  Google Scholar 

  134. Hainsworth JD, Vazquez ER, Spigel DR, Raefsky E, Bearden JD, Saez RA, et al. Combination therapy with fludarabine and rituximab followed by alemtuzumab in the first-line treatment of patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase 2 trial of the Minnie Pearl Cancer Research Network. Cancer. 2008;112:1288–95.

    Article  PubMed  CAS  Google Scholar 

  135. Lundin J, Osterborg A, Brittinger G, Crowther D, Dombret H, Engert A, et al. CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin’s Lymphoma. J Clin Oncol. 1998;16:3257–63.

    PubMed  CAS  Google Scholar 

  136. Zinzani PL, Alinari L, Tani M, Fina M, Pileri S, Baccarani M. Preliminary observations of a Phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica. 2005;90:702–3.

    PubMed  CAS  Google Scholar 

  137. Enblad G, Hagberg H, Erlanson M, Lundin J, MacDonald AP, Repp R, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103:2920–4.

    Article  PubMed  CAS  Google Scholar 

  138. Lundin J, Hagberg H, Repp R, Cavallin-Stahl E, Freden S, Juliusson G, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003;101:4267–72.

    Article  PubMed  CAS  Google Scholar 

  139. Gallamini A, Zaja F, Patti C, Billio A, Specchia MR, Tucci A, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110:2316–23.

    Article  PubMed  CAS  Google Scholar 

  140. Lundin J, Kimby E, Bjorkholm M, Broliden PA, Celsing F, Hjalmar V, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood. 2002;100:768–73.

    Article  PubMed  CAS  Google Scholar 

  141. Kim SJ, Kim K, Kim BS, Suh C, Huh J, Ko YH, et al. Alemtuzumab and DHAP (A-DHAP) is effective for relapsed peripheral T-cell lymphoma, unspecified: interim results of a phase II prospective study. Ann Oncol. 2009;20:390–2.

    Article  PubMed  CAS  Google Scholar 

  142. Kamboj M, Louie E, Kiehn T, Papanicolaou G, Glickman M, Sepkowitz K. Mycobacterium haemophilum infection after alemtuzumab treatment. Emerg Infect Dis. 2008;14:1821–3.

    Article  PubMed  Google Scholar 

  143. Chakrabarti S, Osman H, Collingham K, Milligan DW. Polyoma viruria following T-cell-depleted allogeneic transplants using Campath-1H: incidence and outcome in relation to graft manipulation, donor type and conditioning. Bone Marrow Transplant. 2003;31:379–86.

    Article  PubMed  CAS  Google Scholar 

  144. Vo AA, Wechsler EA, Wang J, Peng A, Toyoda M, Lukovsky M, et al. Analysis of subcutaneous (SQ) alemtuzumab induction therapy in highly sensitized patients desensitized with IVIG and rituximab. Am J Transplant. 2008;8:144–9.

    PubMed  CAS  Google Scholar 

  145. Iannitto E, Minardi V, Calvaruso G, Mule A, Ammatuna E, Di Trapani R, et al. Hepatitis B virus reactivation and alemtuzumab therapy. Eur J Haematol. 2005;74:254–8.

    Article  PubMed  Google Scholar 

  146. Crowley B, Woodcock B. Red cell aplasia due to parvovirus b19 in a patient treated with alemtuzumab. Br J Haematol. 2002;119:279–80.

    Article  PubMed  Google Scholar 

  147. Herbert KE, Prince HM, Westerman DA. Pure red-cell aplasia due to parvovirus B19 infection in a patient treated with alemtuzumab. Blood. 2003;101:1654.

    Article  PubMed  CAS  Google Scholar 

  148. O’Brien S, Ravandi F, Riehl T, Wierda W, Huang X, Tarrand J, et al. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood. 2008;111:1816–9.

    Article  PubMed  CAS  Google Scholar 

  149. Leopold LH, Berger MS, Feingold J. Acute and long-term toxicities associated with gemtuzumab ozogamicin (Mylotarg) therapy of acute myeloid leukemia. Lymphoma. 2002;2 (Suppl 1): S29–34.

    Google Scholar 

  150. McKoy JM, Angelotta C, Bennett CL, Tallman MS, Wadleigh M, Evens AM, et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res. 2007;31:599–604.

    Article  PubMed  CAS  Google Scholar 

  151. Alvarado Y, Tsimberidou A, Kantarjian H, Cortes J, Garcia-Manero G, Faderl S, et al. Pilot study of Mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother Pharmacol. 2003;51:87–90.

    Article  PubMed  CAS  Google Scholar 

  152. Apostolidou E, Cortes J, Tsimberidou A, Estey E, Kantarjian H, Giles FJ. Pilot study of gemtuzumab ozogamicin, liposomal daunorubicin, cytarabine and cyclosporine regimen in patients with refractory acute myelogenous leukemia. Leuk Res. 2003;27:887–91.

    Article  PubMed  CAS  Google Scholar 

  153. Fianchi L, Pagano L, Leoni F, Storti S, Voso MT, Valentini CG, et al. Gemtuzumab ozogamicin, cytosine arabinoside, G-CSF combination (G-AraMy) in the treatment of elderly patients with poor-prognosis acute myeloid leukemia. Ann Oncol. 2008;19:128–34.

    Article  PubMed  CAS  Google Scholar 

  154. Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–52.

    Article  PubMed  CAS  Google Scholar 

  155. Pathan NI, Chu P, Hariharan K, Cheney C, Molina A, Byrd J. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood. 2008;111:1594–602.

    Article  PubMed  CAS  Google Scholar 

  156. Byrd JC, O’Brien S, Flinn IW, Kipps TJ, Weiss M, Rai K, et al. Phase 1 study of lumiliximab with detailed pharmacokinetic and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res. 2007;13:4448–55.

    Article  PubMed  CAS  Google Scholar 

  157. DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10:8620–9.

    Article  PubMed  CAS  Google Scholar 

  158. Advani A, Gine E, Gisselbrech C, Rohatiner A, Rosen S, Smith M, et al. Preliminary report of a phase I study of CMC-544, an antibody-targeted chemotherapy agent, in patients with B-cell non-Hodgkin’s lymphoma (NHL). Blood. 2005;106:Abstract 230.

    Google Scholar 

  159. Fayad L, Patel H, Verhoef G, Czuczman M, Foran J, Gine E, et al. Clinical activity of the immunoconjugate CMC-544 in B-cell malignancies: preliminary report of the expanded maximum tolerated dose (MTD) cohort of a phase I study. Blood. 2006;108:Abstract 2711.

    Google Scholar 

  160. Fayad L, Patel H, Verhoef G, Smith MR, Johnson PW, Czuczman M, et al. Safety and clinical activity of the anti-CD22 immunoconjugate inotuzumab ozogamicin (CMC-544) in combination with rituximab in follicular lymphoma or diffuse large B-cell lymphoma: preliminary report of a phase 1/2 study. Blood. 2008;112:Abstract 266.

    Google Scholar 

  161. Tobinai K, Ogura M, Hatake K, Kobayashi Y, Watanabe T, Uchida T, et al. Phase I and pharmacokinetic study of inotuzumab ozogamicin (CMC-544) as a single agent in Japanese patients with follicular lymphoma pretreated with rituximab. Blood. 2008;112:Abstract 1565.

    Google Scholar 

  162. Duvic M, Kim Y, Korman NJ, Boh E, Lerner A, Heffernan MP, et al. Zanolimumab, a fully human monoclonal antibody: early results of an ongoing trial in patients with CD4+ mycosis fungoides (MF) type CTCL (stage Ib-IVB) who are refractory or intolerant to targretin and one other standard therapy. Blood. 2006;110:Abstract 2731.

    Google Scholar 

  163. d’Amore F, Radford J, Jerkeman M, Relander T, Tilly H, Osterborg A, et al. Zanolimumab (HuMax-CD4TM), a fully human monoclonal antibody: efficacy and safety in patients with relapsed or treatment-refractory non-cutaneous CD4+ T-cell lymphoma. Blood. 2007;110:Abstract 3409.

    Google Scholar 

  164. Kim YH, Duvic M, Obitz E, Gniadecki R, Iversen L, Osterborg A, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109:4655–62.

    Article  PubMed  CAS  Google Scholar 

  165. Knop S, Hebart H, Gscheidle H, Holler E, Kolb HJ, Niederwieser D, et al. OKT3 muromonab as second-line and subsequent treatment in recipients of stem cell allografts with steroid-resistant acute graft-versus-host disease. Bone Marrow Transplant. 2005;36:831–7.

    Article  PubMed  CAS  Google Scholar 

  166. Gea-Banacloche JC, Weinberg GA. Monoclonal antibody therapeutics and risk for infection. Pediatr Infect Dis J. 2007;26:1049–52.

    Article  PubMed  Google Scholar 

  167. Brock MV, Borja MC, Ferber L, Orens JB, Anzcek RA, Krishnan J, et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant. 2001;20:1282–90.

    Article  PubMed  CAS  Google Scholar 

  168. Sevmis S, Emiroglu R, Karakayali F, Yagmurdur MC, Dalgic A, Moray G, et al. OKT3 treatment for steroid-resistant acute rejection in kidney transplantation. Transplant Proc. 2005;37: 3016–8.

    Article  PubMed  CAS  Google Scholar 

  169. Chow FY, Polkinghorne K, Saunder A, Kerr PG, Atkins RC, Chadban SJ. Historical controlled trial of OKT3 versus basiliximab induction therapy in simultaneous pancreas-renal transplantation. Nephrology (Carlton). 2003;8:212–6.

    Article  CAS  Google Scholar 

  170. Alekshun TJ, Sokol L. Diseases of large granular lymphocytes. Cancer Control. 2007;14:141–50.

    PubMed  Google Scholar 

  171. O’Mahony D, Morris JC, Stetler-Stevenson M, Matthews H, Brown MR, Fleisher T, et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15:2514–22.

    Article  PubMed  CAS  Google Scholar 

  172. Duvic M, Talpur R. Optimizing denileukin diftitox (Ontak®) therapy. Future Oncol. 2008;4:457–69.

    Article  PubMed  CAS  Google Scholar 

  173. Negro-Vilar A, Dziewanowska Z, Groves ES, Stevens V, Zhang JK, Prince M, et al. Efficacy and safety of denileeukin diftitox (Dd) in a phase II, double-blind, placebo-controlled study of CD25+ patients with cutaneous T-cell lymphoma (CTCL). J Clin Oncol. 2007;25:4475.

    Google Scholar 

  174. Negro-Vilar A, Prince HM, Duvic M, Richardson S, Sun Y, Acosta M. Efficacy and safety of denileukin diftitox (Dd) in cutaneous T-cell lymphoma (CTCL) patients: integrated analyisis of three large phase III trials. J Clin Oncol. 2008;26:4665.

    Google Scholar 

  175. Dang NH, Fayad L, McLaughlin P, Romaguara JE, Hagemeister F, Goy A, et al. Phase II trial of the combination of denileukin diftitox and rituximab for relapsed/refractory B-cell non-Hodgkin lymphoma. Br J Haematol. 2007;138:502–5.

    Article  PubMed  CAS  Google Scholar 

  176. Lilly M, Kuriakose P, Turturro F, Berdeja J, Kerr R, Surendranathan A, et al. A phase II study of denileeukin diftitox (Ontak) in patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. J Clin Oncol. 2005;23:5975.

    Google Scholar 

  177. Frankel AE, Surendranathan A, Black JH, White A, Ganjoo K, Cripe LD. Phase II clinical studies of denileukin diftitox diphtheria toxin fusion protein in patients with previously treated chronic lymphocytic leukemia. Cancer. 2006;106:2158–64.

    Article  PubMed  CAS  Google Scholar 

  178. Perales MA, Ishill N, Lomazow WA, Weinstock DM, Papadopoulos EB, Dastigir H, et al. Long-term follow-up of patients treated with daclizumab for steroid-refractory acute graft-vs-host disease. Bone Marrow Transplant. 2007;40:481–6.

    Article  PubMed  CAS  Google Scholar 

  179. Srinivasan R, Chakrabarti S, Walsh T, Igarashi T, Takahashi Y, Kleiner D, et al. Improved survival in steroid-refractory acute graft versus host disease after non-myeloablative allogeneic transplantation using a daclizumab-based strategy with comprehensive infection prophylaxis. Br J Haematol. 2004;124:777–86.

    Article  PubMed  CAS  Google Scholar 

  180. Willenbacher W, Basara N, Blau IW, Fauser AA, Kiehl MG. Treatment of steroid refractory acute and chronic graft-versus-host disease with daclizumab. Br J Haematol. 2001;112:820–3.

    Article  PubMed  CAS  Google Scholar 

  181. Teachey DT, Bickert B, Bunin N. Daclizumab for children with corticosteroid refractory graft-versus-host disease. Bone Marrow Transplant. 2006;37:95–9.

    PubMed  CAS  Google Scholar 

  182. Rodriguez V, Anderson PM, Trotz BA, Arndt CA, Allen JA, Khan SP. Use of infliximab-daclizumab combination for the treatment of acute and chronic graft-versus-host disease of the liver and gut. Pediatr Blood Cancer. 2007;49:212–5.

    Article  PubMed  Google Scholar 

  183. Funke VA, de Medeiros CR, Setubal DC, Ruiz J, Bitencourt MA, Bonfim CM, et al. Therapy for severe refractory acute graft-versus-host disease with basiliximab, a selective interleukin-2 receptor antagonist. Bone Marrow Transplant. 2006;37:961–5.

    Article  PubMed  CAS  Google Scholar 

  184. Schmidt-Hieber M, Fietz T, Knauf W, Uharek L, Hopfenmuller W, Thiel E, et al. Efficacy of the interleukin-2 receptor antagonist basiliximab in steroid-refractory acute graft-versus-host disease. Br J Haematol. 2005;130:568–74.

    Article  PubMed  CAS  Google Scholar 

  185. Park JY, Pillinger MH. Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65 Suppl 1:S4–10.

    PubMed  Google Scholar 

  186. Kudo M, Jono H, Shinriki S, Yano S, Nakamura H, Makino K, et al. Antitumor effect of humanized anti-interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. J Neurosurg. 2009;111:219–25.

    Google Scholar 

  187. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood. 2000;95:2630–6.

    PubMed  CAS  Google Scholar 

  188. Samaras V, Piperi C, Korkolopoulou P, Zisakis A, Levidou G, Themistocleous MS, et al. Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem. 2007;304:343–51.

    Article  PubMed  CAS  Google Scholar 

  189. Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, et al. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis. 2007;66:1162–7.

    Article  PubMed  CAS  Google Scholar 

  190. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J, et al. Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod Rheumatol. 2009;19:12–9.

    Article  PubMed  CAS  Google Scholar 

  191. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis. 2008;68:1580–4.

    Google Scholar 

  192. Hamadani M, Hofmeister CC, Jansak B, Phillips G, Elder P, Blum W, et al. Addition of infliximab to standard acute graft-versus-host disease prophylaxis following allogeneic peripheral blood cell transplantation. Biol Blood Marrow Transplant. 2008;14:783–9.

    Article  PubMed  Google Scholar 

  193. Patriarca F, Sperotto A, Damiani D, Morreale G, Bonifazi F, Olivieri A, et al. Infliximab treatment for steroid-refractory acute graft-versus-host disease. Haematologica. 2004;89:1352–9.

    PubMed  CAS  Google Scholar 

  194. Marty FM, Lee SJ, Fahey MM, Alyea EP, Soiffer RJ, Antin JH, et al. Infliximab use in patients with severe graft-versus-host disease and other emerging risk factors of non-Candida invasive fungal infections in allogeneic hematopoietic stem cell transplant recipients: a cohort study. Blood. 2003;102:2768–76.

    Article  PubMed  CAS  Google Scholar 

  195. Couriel D, Saliba R, Hicks K, Ippoliti C, de Lima M, Hosing C, et al. Tumor necrosis factor-α blockade for the treatment of acute GVHD. Blood. 2004;104:649–54.

    Article  PubMed  CAS  Google Scholar 

  196. Rech J, Repp R, Rech D, Stockmeyer B, Dechant M, Niedobitek G, et al. A humanized HLA-DR antibody (hu1D10, apolizumab) in combination with granulocyte colony-stimulating factor (filgrastim) for the treatment of non-Hodgkin’s lymphoma: a pilot study. Leuk Lymphoma. 2006;47:2147–54.

    Article  PubMed  CAS  Google Scholar 

  197. Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105:1417–23.

    Article  PubMed  CAS  Google Scholar 

  198. Salles G, Mounier N, de Guibert S, Morschhauser F, Doyen C, Rossi JF, et al. Rituximab combined with chemotherapy and interferon in follicular lymphoma patients: results of the GELA-GOELAMS FL2000 study. Blood. 2008;112:4824–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Goy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goy, A., O’Brien, S. (2011). Infections in Patients with Hematologic Malignancies Treated with Monoclonal Antineoplastic Therapy. In: Safdar, A. (eds) Principles and Practice of Cancer Infectious Diseases. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-644-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-644-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-643-6

  • Online ISBN: 978-1-60761-644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics