Skip to main content

Advertisement

Log in

Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glioblastoma, (grade IV astrocytoma), is characterized by rapid growth and resistance to treatment. Identification of markers of aggressiveness in this tumor could represent new therapeutic targets. Interleukins (IL)-6 and IL-10 may be considered as possible candidates, regulating cell growth, resistance to chemotherapy and angiogenesis. ELISPOT method provides a useful tool for the determination of the exact cell number of peripheral lymphocytes secreting a specific cytokine. IL-6 and IL-10 secretion levels were determined using ELISPOT methodology in peripheral blood mononuclear cells of 18 patients with astrocytic neoplasms (3 grade II and 15 grade IV), in parallel with 18 healthy controls. Additionally, immunohistochemical expression of these two cytokines was performed in paraffin-embedded neoplastic tissue in 12 of these patients. The secretion of IL-6 from peripheral monocytes was significantly higher in glioma patients compared to controls (P = 0.0003). In addition, IL-10 secretion from peripheral mononuclear and tumor cells of glioma patients was also higher as compared to healthy controls (P = 0.0002). Based on immunohistochemical staining, IL-6 expression was localized in tumor cells and macrophages as well as in areas of large ischemic necrosis, while the major source of IL-10 expression in glioblastomas was the microglia/macrophage cells. It is suggested that IL-10 contributes to the progression of astrocytomas by suppressing the patient’s immune response, whereas IL-6 provides an additional growth advantage. This study demonstrates for the first time the usefulness of ELISPOT in estimating the secretion of IL-6 and IL-10 from peripheral blood and the correlation of their expression in neoplastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cavenee WK, Furnari FB, Nagane M, Huang H-JS, Newcomb EW, Bigner DD, Weller M, Berens ME, Plate KH, Israel MA, Noble MD, Kleihues P (2000) Diffusely infiltrating astrocytomas. In: Kleihues P, Cavenee WK (eds) International Agency for Research on Cancer. Pathology and genetics of tumours of the nervous system. IARC, Lyon, pp 10–21

    Google Scholar 

  2. Prados MD, Levin V (2000) Biology and treatment of malignant glioma. Semin Oncol 27:1–10

    PubMed  CAS  Google Scholar 

  3. Schneider J, Hofman FM, Apuzzo ML et al (1992) Cytokines and immunoregulatory molecules in malignant glial neoplasms. J Neurosurg 77:265–273

    Article  PubMed  CAS  Google Scholar 

  4. Rolhion C, Penault-Llorca F, Kemeny JL et al (2001) Interleukin-6 overexpression as a marker of malignancy in human gliomas. J Neurosurg 94:97–101

    PubMed  CAS  Google Scholar 

  5. Chang CY, Li MC, Liao SL et al (2005) Prognostic and clinical implication of IL-6 expression in glioblastoma multiforme. J Clin Neurosci 12:930–933

    Article  PubMed  CAS  Google Scholar 

  6. Aloisi F, Gare A, Borsellino G et al (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 149:2358–2366

    PubMed  CAS  Google Scholar 

  7. Tchirkov A, Rolhion C, Bertrand S et al (2001) IL-6 gene amplification and expression in human glioblastomas. Br J Cancer 85:518–522

    Article  PubMed  CAS  Google Scholar 

  8. Loeffler S, Fayard B, Weis J et al (2005) Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115:202–213

    Article  PubMed  CAS  Google Scholar 

  9. Lichtor T, Liberman TA (1994) Coexpression of interleukin-1 beta and interleukin-6 in human brain tumors. Neurosurgery 34:669–673

    Article  PubMed  CAS  Google Scholar 

  10. Huettner C, Paulus W, Roggendorf W (1995) Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146:317–322

    PubMed  CAS  Google Scholar 

  11. Book AA, Fielding KE, Kundu N et al (1998) IL-10 gene transfer to intracranial 9L glioma: tumor inhibition and cooperation with IL-2. J Neuroimmunol 92:50–59

    Article  PubMed  CAS  Google Scholar 

  12. Hishii M, Nitta T, Ishida H et al (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37:1160–1167

    Article  PubMed  CAS  Google Scholar 

  13. Wagner S, Stegen C, Bouterfa H et al (1998) Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10. J Neurooncol 40:113–122

    Article  PubMed  CAS  Google Scholar 

  14. Wagner S, Czub S, Greif M et al (1999) Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 82:12–16

    Article  PubMed  CAS  Google Scholar 

  15. Huettner C, Czub S, Kerkau S et al (1997) Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17:3217–3224

    PubMed  CAS  Google Scholar 

  16. Frei K, Lins H, Schwerdel C et al (1994) Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol 152:2720–2728

    PubMed  CAS  Google Scholar 

  17. de Waal Malefyt R, Haanen J, Spits H et al (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174:915–924

    Article  PubMed  Google Scholar 

  18. Ding L, Shevach EM (1992) IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol 148:3133–3139

    PubMed  CAS  Google Scholar 

  19. Bogdan C, Nathan C (1993) Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci 685:713–739

    Article  PubMed  CAS  Google Scholar 

  20. Chomarat P, Rissoan MC, Banchereau J et al (1993) Interferon gamma inhibits interleukin 10 production by monocytes. J Exp Med 177:523–527

    Article  PubMed  CAS  Google Scholar 

  21. Taga K, Tosato G (1992) IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol 148:1143–1148

    PubMed  CAS  Google Scholar 

  22. Czerkinsky C, Moldoveanu Z, Mestecky J et al (1988) A novel two color ELISPOT assay. I. Simultaneous detection of distinct types of antibody-secreting cells. J Immunol Methods 115:31–37

    Article  PubMed  CAS  Google Scholar 

  23. McCutcheon M, Wehner N, Wensky A et al (1997) A sensitive ELISPOT assay to detect low-frequency human T-lymphocytes. J Immunol Methods 210:149–166

    Article  PubMed  CAS  Google Scholar 

  24. Mashishi T, Gray CM (2002) The ELISPOT assay: an easily transferable method for measuring cellular responses and identifying T cell epitopes. Clin Chem Lab Med 40:903–910

    Article  PubMed  CAS  Google Scholar 

  25. Van Meir E, Sawamura Y, Diserens AC et al (1990) Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50:6683–6688

    PubMed  Google Scholar 

  26. Terreni L, De Simoni MG (1998) Role of the brain in interleukin-6 modulation. Neuroimmunomodulation 5:214–219

    Article  PubMed  CAS  Google Scholar 

  27. Gonswami S, Gupta A, Sharma SK (1998) Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem 71:1837–1845

    Article  Google Scholar 

  28. Cadman ED, Witte DG, Lee CM (1994) Regulation of the release of interleukin-6 from human astrocytoma cells. J Neurochem 63:980–987

    Article  PubMed  CAS  Google Scholar 

  29. Dubost JJ, Rolhion C, Tchirkov A et al (2002) Interleukin-6-producing cells in a human glioblastoma cell line are not affected by ionizing radiation. J Neurooncol 56:29–34

    Article  PubMed  Google Scholar 

  30. Weissenberger J, Loeffler S, Kappeler A et al (2004) IL-6 is required for glioma development in a mouse model. Oncogene 23:3308–3316

    Article  PubMed  CAS  Google Scholar 

  31. Graf MR, Prins RM, Merchant RE (2001) IL-6 secretion by a rat T9 glioma clone induces a neutrophil-dependent antitumor response with resultant cellular, antiglioma immunity. J Immunol 166:121–129

    PubMed  CAS  Google Scholar 

  32. Graf M, Blaeker H, Otto HF (1999) Extraneural metastasizing ependymoma of the spinal cord. Pathol Oncol Res 5:56–60

    Article  PubMed  CAS  Google Scholar 

  33. Mullen CA, Coale MM, Levy AT et al (1992) Fibrosarcoma cells transduced with the IL-6 gene exhibited reduced tumorigenicity, increased immunogenicity, and decreased metastatic potential. Cancer Res 52:6020–6024

    PubMed  CAS  Google Scholar 

  34. Martin-Achard A, de Tribolet N, Louis JA et al (1980) Immune complexes associated with brain tumors: correlation with prognosis. Surg Neurol 13:161–163

    PubMed  CAS  Google Scholar 

  35. Hao C, Parney IF, Roa WH et al (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171–178

    Article  PubMed  CAS  Google Scholar 

  36. Zou JP, Morford LA, Chougnet C et al (1999) Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J Immunol 162:4882–4892

    PubMed  CAS  Google Scholar 

  37. Nitta T, Hishii M, Sato K et al (1994) Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 649:122–128

    Article  PubMed  CAS  Google Scholar 

  38. Howard M, O’Garra A, Ishida H et al (1992) Biological properties of interleukin 10. J Clin Immunol 12:239–247

    Article  PubMed  CAS  Google Scholar 

  39. Naldini A, Carraro F, Silvestri S et al (1997) Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol 173:335–342

    Article  PubMed  CAS  Google Scholar 

  40. Yan SF, Tritto I, Pinsky D et al (1995) Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem 270:11463–11471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Piperi.

Additional information

Christina Piperi and Penelope Korkolopoulou have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaras, V., Piperi, C., Korkolopoulou, P. et al. Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 304, 343–351 (2007). https://doi.org/10.1007/s11010-007-9517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9517-3

Keywords

Navigation