Skip to main content

Central Mineralocorticoid Receptors and Cardiovascular Disease

  • Chapter
  • First Online:
Endocrine Hypertension

Part of the book series: Contemporary Endocrinology ((COE))

  • 2454 Accesses

Abstract

This chapter briefly summarizes the history of the study of mineralocorticoid receptors (MR) in the CVO of the brain, hypothalamus, amygdala, and nucleus tractus solitarius, that modulate inflammatory response to injury and oxidative stress in the heart and vessels, as well as homeostatic control of the hemodynamic ­systems, including blood pressure, water and electrolyte balance, sodium appetite, and ­sympathetic drive to the heart and kidney. Unfortunately, much of our current knowledge is based on pathological functions. Though the currently available MR antagonists are valuable additions to the therapy for cardiovascular and renal ­disease, MR are expressed in specific neurons in other areas of the brain where they mediate diverse functions unrelated to the cardiovascular system, only some of which are well understood. The greatest expression of MR in the body is in the hippocampus where the receptors mediate trophic functions important to memory and cognition. Because of the crucial need to discover targets for the development of selective therapy for specific MR-mediated functions, the biology of the MR, transcriptional and non-transcriptional activity, and mechanisms conferring ligand specificity to aldosterone is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steiger M, Reichstein T. Desoxy-corticosterone (21-oxy-progesterone). Aus d-3-oxo-­etiocholensäure. Helv Chim Acta. 1937;20:1164.

    Article  CAS  Google Scholar 

  2. Kuhlman D, Ragan C, Ferrebee JW, Atchley DW, Loeb RF. Toxic effects of deoxycorticosterone esters in dogs. Science. 1939;90:496–7.

    Article  Google Scholar 

  3. Rodbard S, Freed SC. The effect of desoxycorticosterone acetate on the blood pressure of the dog. Endocrinology. 1942;30:365–8.

    Article  CAS  Google Scholar 

  4. Luft R, Sjogren B. The effect of desoxycorticosterone acetate and sodium chloride on blood pressure and renal function. Acta Endocrinol (Copenh). 1949;3(1):56–70.

    CAS  Google Scholar 

  5. Knowlton AI, Loeb EN, et al. Desoxycorticosterone acetate studies on the reversibility of its effect on blood pressure and renal damage in rats. Endocrinology. 1949;45(4):435–45.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Sanchez EP. Brain mineralocorticoid receptors: orchestrators of hypertension and end-organ disease. Curr Opin Nephrol Hypertens. 2004;13(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  7. Pitt B, Zannad F, Cody R, Castaigne APA, Palensky J, Wittes J. The effect of spironolactone on mobidity and mortality in patients with severe heart failure. Randomized Aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  8. Gomez-Sanchez CE, Rossi GP, Fallo F, Mannelli M. Progress in primary aldosteronism: present challenges and perspectives. Horm Metab Res. 2010;42(6):374–81.

    Article  CAS  PubMed  Google Scholar 

  9. Vasan RS, Evans JC, Larson MG, et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med. 2004;351(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  10. Newton-Cheh C, Guo CY, Gona P, et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension. 2007;49(4):846–56.

    Article  CAS  PubMed  Google Scholar 

  11. Vasan RS, Evans JC, Benjamin EJ, et al. Relations of serum aldosterone to cardiac structure: gender-related differences in the Framingham Heart Study. Hypertension. 2004;43(5):957–62.

    Article  CAS  PubMed  Google Scholar 

  12. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension. 2007;49(3):432–8.

    Article  CAS  PubMed  Google Scholar 

  13. Osmond JM, Rigsby CS, Dorrance AM. Is the mineralocorticoid receptor a potential target for stroke prevention? Clin Sci (Lond). 2008;114(1):37–47.

    Article  CAS  Google Scholar 

  14. Anderson E, Kinsell LW, et al. The treatment of Addison’s disease by the intraoral administration of desoxycorticosterone acetate tablets. J Clin Endocrinol Metab. 1949;9(12):1324–32.

    Article  CAS  PubMed  Google Scholar 

  15. Raab W, Humphreys RJ, Lepeschkin E. Potentiation of pressor effects of nor-epinephrine and epinephrine in man by desoxycorticosterone acetate. J Clin Invest. 1950;29(10):1397–404.

    Article  CAS  PubMed  Google Scholar 

  16. Grundy HM, Simpson SA, Tait JF. Isolation of a highly active mineralocorticoid from beef adrenal extract. Nature. 1952;169(4306):795–6.

    Article  CAS  PubMed  Google Scholar 

  17. Simpson SA, Tait JF, Wettstein A, et al. Konstitution des aldosterons, des neuen mineralocorticoids. Experientia. 1953;10:132–3.

    Article  Google Scholar 

  18. Tait JF, Tait SAS. A steroid memoir: a decade (or more) of electrocortin (aldosterone). Steroids. 1988;51:213–50.

    Article  CAS  PubMed  Google Scholar 

  19. Tait SA, Tait JF, Coghlan JP. The discovery, isolation and identification of aldosterone: reflections on emerging regulation and function. Mol Cell Endocrinol. 2004;217(1–2): 1–21.

    Article  CAS  PubMed  Google Scholar 

  20. Conn JW. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45:3–7.

    CAS  PubMed  Google Scholar 

  21. Vanatta JC, Cottle KE. Effect of desoxycorticosterone acetate on the peripheral vascular reactivity of dogs. Am J Physiol. 1955;151:119–22.

    Google Scholar 

  22. Jones AW, Hart RG. Altered ion transport in aortic smooth muscle during deoxycorticosterone acetate hypertension in rats. Circ Res. 1975;37:333–41.

    Article  CAS  PubMed  Google Scholar 

  23. Langford HG, Snavely JR. Effect of DCA on development of renoprival hypertension. Am J Physiol. 1959;196:449–50.

    CAS  PubMed  Google Scholar 

  24. Coleman TG, Grange HJ, Guyton AC. Whole-body autoregulation and hypertension. Circ Res. 1971;28(29):11–76.

    Google Scholar 

  25. Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens. 1989;2:575–85.

    CAS  PubMed  Google Scholar 

  26. Labadie P. [Osmo- and tenso-receptors; neuro-hormonal reflex arcs regulating fluid volume]. Rev Prat. 1964;14:1507–16.

    CAS  PubMed  Google Scholar 

  27. Anderson ND, Fanestil DD. Corticoid receptors in rat brain: evidence for an aldosterone receptor. Endocrinology. 1976;98:676–84.

    Article  CAS  PubMed  Google Scholar 

  28. Stumpf WE, Sar M. Glucocorticosteroids and mineralocorticosteroid hormone target sites in the brain. Autoradiographic studies with corticosterone, aldosterone, deoxycorticosterone: in interaction within the brain-pituitary-adrenocortical system. In: Lones MT, Gillham B, Dallman MF, Chattopadhyay S, editors. Within the brain–pituitary–adrenocortical system. London: Academic; 1979. p. 137–47.

    Google Scholar 

  29. Birmingham MD, Stumpf WE, Sar M. Nuclear localization of aldosterone in rat brain cells assessed by autoradiography. Experientia. 1979;35:1240–1.

    Article  CAS  PubMed  Google Scholar 

  30. De Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol. 1991;12:95–164.

    Google Scholar 

  31. Gomez-Sanchez CE, de Rodriguez AF, Romero DG, et al. Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology. 2006;147(3):1343–8.

    Article  CAS  PubMed  Google Scholar 

  32. Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci. 2006;26(2):411–7.

    Article  CAS  PubMed  Google Scholar 

  33. Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol. 2009;297(3):F559–76.

    Article  CAS  PubMed  Google Scholar 

  34. Shekhtman E, Geerling JC, Loewy AD. Aldosterone-sensitive neurons of the nucleus of the solitary tract: multisynaptic pathway to the nucleus accumbens. J Comp Neurol. 2007;501(2):274–89.

    Article  CAS  PubMed  Google Scholar 

  35. Sanders BJ, Johnson AK. Lesions of the anteroventral third ventricle prevent salt-induced hypertension in the borderline hypertensive rat. Hypertension. 1989;14:619–22.

    Article  CAS  PubMed  Google Scholar 

  36. Tramposch AF, Lopes OU, Chernicky CL, Ferrario CM. Alternative mechanism for attenuated pressor responses in AV3V-lesioned dogs. Am J Physiol. 1989;257:R431–8.

    CAS  PubMed  Google Scholar 

  37. Brody MJ, Fink GD, Buggy J, Haywood JR, Gordon FJ, Johnson AK. The role of the anteroventral third ventrical (AV3V) region in experimental hypertension. Circ Res. 1978;43:2–13.

    Google Scholar 

  38. Buggy J, Fink GD, Haywood JR, Johnson AK, Brody MJ. Interruption of the maintenance phase of established hypertension by ablation of the anteroventral third ventricle (AV3V) in rats. Clin Exp Hypertens. 1978;1(3):337–53.

    Article  PubMed  Google Scholar 

  39. Brody MJ, Haywood JR, Touw KB. Neural mechanisms in hypertension. Annu Rev Physiol. 1978;42:441–53.

    Article  Google Scholar 

  40. Songu-Mize E, Bealer SL, Caldwell RW. Effect of AV3V lesions on development of DOCA-salt hypertension and vascular Na+-pump activity. Hypertension. 1982;4(5):575–80.

    Article  CAS  PubMed  Google Scholar 

  41. Moreira TS, Takakura AC, Colombari E, Menani JV. Antihypertensive effects of central ablations in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1797–806.

    Article  CAS  PubMed  Google Scholar 

  42. Brody MJ, Varner KJ, Vasquez EC, Lewis SJ. Central nervous system and the pathogenesis of hypertension. Sites and mechanisms. Hypertension. 1991;18(5 Suppl):III7–12.

    Article  CAS  PubMed  Google Scholar 

  43. Whalen EJ, Beltz TG, Lewis SJ, Johnson AK. AV3V lesions attenuate the cardiovascular responses produced by blood-borne excitatory amino acid analogs. Am J Physiol. 1999;276(5 Pt 2):H1409–15.

    CAS  PubMed  Google Scholar 

  44. Whalen EJ, Schoorlemmer GH, Beltz TG, Johnson AK, Lewis SJ. Effects of chronic lesions of the anteroventral region of the third ventricle on cardiac beta-adrenoceptor function in conscious rats. Brain Res. 2001;913(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  45. Lewis SJ, Whalen EJ, Beltz TG, Johnson AK. Role of the anterior region of the third ventricle in the cardiovascular responses produced by systemic injection of a nitric oxide synthase inhibitor. Brain Res. 1999;830(1):191–4.

    Article  CAS  PubMed  Google Scholar 

  46. Brooks VL, Haywood JR, Johnson AK. Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin Exp Pharmacol Physiol. 2005;32(5–6):426–32.

    Article  CAS  PubMed  Google Scholar 

  47. Gomez-Sanchez EP. Central hypertensive effects of aldosterone. Front Neuroendocrinol. 1997;18:440–62.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Sanchez EP, Gomez-Sanchez CE. Central regulation of blood pressure by the mineralocorticoid receptor. Mol Cell Endocrinol. 2012;350(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  49. Janiak P, Brody MJ. Central interactions between aldosterone and vasopressin on cardiovascular system. Am J Physiol. 1988;255(1 Pt 2):R166–73.

    CAS  PubMed  Google Scholar 

  50. Janiak PC, Lewis SJ, Brody MJ. Role of central mineralocorticoid binding sites in development of hypertension. Am J Physiol. 1990;259(5 Pt 2):R1025–34.

    CAS  PubMed  Google Scholar 

  51. Bealer SL. Anteroventral third ventricle periventricular tissue contributes to cardiac baroreflex responses. Clin Exp Pharmacol Physiol. 2000;27(5–6):460–4.

    Article  CAS  PubMed  Google Scholar 

  52. Wei SG, Felder RB. Forebrain renin-angiotensin system has a tonic excitatory influence on renal sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2002;282(3):H890–5.

    CAS  PubMed  Google Scholar 

  53. Kontak AC, Wang Z, Arbique D, et al. Reversible sympathetic overactivity in hypertensive patients with primary aldosteronism. J Clin Endocrinol Metab. 2010;95(10):4756–61.

    Article  CAS  PubMed  Google Scholar 

  54. Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol. 1986;251:R762–8.

    CAS  PubMed  Google Scholar 

  55. Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology. 1996;64:425–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sakai RR, McEwen BS, Fluharty SJ, Ma LY. The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int. 2000;57:1337–45.

    Article  CAS  PubMed  Google Scholar 

  57. Miyajima E, Yamada Y, Yoshida Y, et al. Muscle sympathetic nerve activity in renovascular hypertension and primary aldosteronism. Hypertension. 1991;17(6 Pt 2):1057–62.

    Article  CAS  PubMed  Google Scholar 

  58. Felder RB, Francis J, Weiss RM, Zhang ZH, Wei SG, Johnson AK. Neurohumoral regulation in ischemia-induced heart failure. Role of the forebrain. Ann N Y Acad Sci. 2001;940:444–53.

    Article  CAS  PubMed  Google Scholar 

  59. Francis J, Weiss RM, Wei SG, et al. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol. 2001;281(5):H2241–51.

    CAS  PubMed  Google Scholar 

  60. Francis J, Wei SG, Weiss RM, Beltz T, Johnson AK, Felder RB. Forebrain-mediated adaptations to myocardial infarction in the rat. Am J Physiol Heart Circ Physiol. 2002;282(5):H1898–906.

    CAS  PubMed  Google Scholar 

  61. Zhang ZH, Francis J, Weiss RM, Felder RB. The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure. Am J Physiol Heart Circ Physiol. 2002;283(1):H423–33.

    CAS  PubMed  Google Scholar 

  62. Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R259–76.

    CAS  PubMed  Google Scholar 

  63. Huang BS, Leenen FH. The brain renin-angiotensin-aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr Heart Fail Rep. 2009;6(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  64. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374–81.

    Article  CAS  PubMed  Google Scholar 

  65. DeRijk RH, de Kloet ER. Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience. Eur J Pharmacol. 2008;583(2–3):303–11.

    Article  CAS  PubMed  Google Scholar 

  66. Klok MD, Vreeburg SA, Penninx BWJH, Zitman FG, de Kloet ER, DeRijk RH. Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response: interactions with SSRIs. Psychoneuroendocrinology. 2011;36:484–94.

    Article  CAS  PubMed  Google Scholar 

  67. Tarazi RC, Ibrahim MM, Bravo EL, Dustan HP. Hemodynamic characteristics of primary aldosteronism. N Engl J Med. 1973;289(25):1330–5.

    Article  CAS  PubMed  Google Scholar 

  68. Tanabe A, Naruse M, Naruse K, et al. Left ventricular hypertrophy is more prominent in patients with primary aldosteronism than in patients with other types of secondary hypertension. Hypertens Res. 1997;20:85–90.

    Article  CAS  PubMed  Google Scholar 

  69. Rossi GP, Di Bello V, Ganzaroli C, et al. Excess aldosterone is associated with alterations of myocardial texture in primary aldosteronism. Hypertension. 2002;40(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  70. Luft FC. Workshop: mechanisms and cardiovascular damage in hypertension. Hypertension. 2001;37(2 Pt 2):594–8.

    Article  CAS  PubMed  Google Scholar 

  71. Brilla CG, Murphy RL, Smits JF, Struijker Boudier HA. The concept of cardioreparation: part 1. Pathophysiology of remodelling. J Cardiovasc Risk. 1996;3:281–5.

    Article  CAS  PubMed  Google Scholar 

  72. Brilla CG, Rupp H, Funck R, Maisch B. The renin-angiotensin-aldosterone system and myocardial collagen matrix remodelling in congestive heart failure. Eur Heart J. 1995;16(Suppl O):107–9.

    Article  CAS  PubMed  Google Scholar 

  73. Gerling IC, Sun Y, Ahokas RA, et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol. 2003;285(2): H813–21.

    CAS  PubMed  Google Scholar 

  74. Ahokas RA, Warrington KJ, Gerling IC, et al. Aldosteronism and peripheral blood mononuclear cell activation: a neuroendocrine-immune interface. Circ Res. 2003;93(10):e124–35.

    Article  CAS  PubMed  Google Scholar 

  75. Weber KT. Aldosteronism revisited: perspectives on less well-recognized actions of aldosterone. J Lab Clin Med. 2003;142(2):71–82.

    Article  CAS  PubMed  Google Scholar 

  76. Chander PN, Rocha R, Ranaudo J, Singh G, Zuckerman A, Stier Jr CT. Aldosterone plays a pivotal role in the pathogenesis of thrombotic microangiopathy in SHRSP. J Am Soc Nephrol. 2003;14(8):1990–7.

    Article  CAS  PubMed  Google Scholar 

  77. Brilla CG. The cardiac structure-function relationship and the renin-angiotensin-aldosterone system in hypertension and heart failure. Curr Opin Cardiol. 1994;9 Suppl 1:2–10.

    Google Scholar 

  78. Brilla CG, Reams GP, Maisch B, Weber KT. Renin-angiotensin system and myocardial fibrosis in hypertension: regulation of the myocardial collagen matrix. Eur Heart J. 1993;14(Suppl J):57–61.

    CAS  PubMed  Google Scholar 

  79. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of ­myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Card. 1993;25:563–75.

    Article  CAS  Google Scholar 

  80. Yu Y, Wei SG, Zhang ZH, Gomez-Sanchez E, Weiss RM, Felder RB. Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? Hypertension. 2008;51(3):727–33.

    Article  CAS  PubMed  Google Scholar 

  81. Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci. 2002;970:89–100.

    Article  CAS  PubMed  Google Scholar 

  82. Young MJ. Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr Opin Nephrol Hypertens. 2008;17(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  83. Rocha R, Stier CT, Kifor I, et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology. 2000;141:3871–8.

    Article  CAS  PubMed  Google Scholar 

  84. Rocha R, Rudolph AE, Frierdich GE, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol. 2002;283(5):H1802–10.

    CAS  PubMed  Google Scholar 

  85. Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63(5): 1791–800.

    Article  CAS  PubMed  Google Scholar 

  86. Weber KT. The proinflammatory heart failure phenotype: a case of integrative physiology. Am J Med Sci. 2005;330(5):219–26.

    Article  PubMed  Google Scholar 

  87. Quinkler M, Zehnder D, Eardley KS, et al. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation. 2005;112(10): 1435–43.

    Article  CAS  PubMed  Google Scholar 

  88. Joffe HV, Adler GK. Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation. Heart Fail Rev. 2005;10(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  89. Funder JW. RALES, EPHESUS and redox. J Steroid Biochem Mol Biol. 2005;93(2–5):121–5.

    Article  CAS  PubMed  Google Scholar 

  90. Godfrey V, Farquharson CA, Macdonald JE, Yee KM, Struthers AD. Effect of spironolactone on C-reactive protein levels in patients with heart disease. Int J Cardiol. 2007;117(2):282–4.

    Article  PubMed  Google Scholar 

  91. Fiebeler A, Nussberger J, Shagdarsuren E, et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 2005;111(23):3087–94.

    Article  CAS  PubMed  Google Scholar 

  92. Brown NJ. Aldosterone and end-organ damage. Curr Opin Nephrol Hypertens. 2005;14(3): 235–41.

    Article  CAS  PubMed  Google Scholar 

  93. Gilbert KC, Brown NJ. Aldosterone and inflammation. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  94. Brown NJ. Aldosterone and vascular inflammation. Hypertension. 2008;51(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  95. Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci (Lond). 2007;113(6):267–78.

    Article  CAS  Google Scholar 

  96. Luther JM, Gainer JV, Murphey LJ, et al. Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension. 2006;48(6):1050–7.

    Article  CAS  PubMed  Google Scholar 

  97. Kraus D, Jager J, Meier B, Fasshauer M, Klein J. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res. 2005;37(7):455–9.

    Article  CAS  PubMed  Google Scholar 

  98. Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB. Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1734–45.

    CAS  PubMed  Google Scholar 

  99. Francis GS. Aldosterone inhibition and heart failure: too good to be true? Am Heart J. 2001;141(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang ZH, Wei SG, Francis J, Felder RB. Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R916–27.

    CAS  PubMed  Google Scholar 

  101. Francis J, Beltz T, Johnson AK, Felder RB. Mineralocorticoids act centrally to regulate blood-borne tumor necrosis factor-alpha in normal rats. Am J Physiol Regul Integr Comp Physiol. 2003;285(6):R1402–9.

    CAS  PubMed  Google Scholar 

  102. Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R328–35.

    CAS  PubMed  Google Scholar 

  103. Francis J, Zhang ZH, Weiss RM, Felder RB. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol. 2004;287(2):H791–7.

    Article  CAS  PubMed  Google Scholar 

  104. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol. 2004;286(6):H2264–71.

    Article  CAS  PubMed  Google Scholar 

  105. Ota K, Katafuchi T, Takaki A, Hori T. AV3V neurons that send axons to hypothalamic nuclei respond to the systemic injection of IL-1beta. Am J Physiol. 1997;272(2 Pt 2):R532–40.

    CAS  PubMed  Google Scholar 

  106. Kang YM, Zhang ZH, Johnson RF, et al. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res. 2006;99(7):758–66.

    Article  CAS  PubMed  Google Scholar 

  107. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension. 2005;46(6):1227–35.

    Article  CAS  PubMed  Google Scholar 

  108. Funder JW. The nongenomic actions of aldosterone. Endocr Rev. 2005;26(3):313–21.

    Article  CAS  PubMed  Google Scholar 

  109. Grossmann C, Benesic A, Krug AW, et al. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol. 2005;19(7):1697–710.

    Article  CAS  PubMed  Google Scholar 

  110. Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A. 2005;102(52):19204–7.

    Article  CAS  PubMed  Google Scholar 

  111. Mihailidou AS, Funder JW. Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system. Steroids. 2005;70(5–7):347–51.

    Article  CAS  PubMed  Google Scholar 

  112. Connell JM, Davies E. The new biology of aldosterone. J Endocrinol. 2005;186(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  113. Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  114. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal. 2007;5:e012.

    PubMed  Google Scholar 

  115. Hellal-Levy C, Fagart J, Souque A, Rafestin-Oblin ME. Mechanistic aspects of mineralocorticoid receptor activation. Kidney Int. 2000;57:1250–5.

    Article  CAS  PubMed  Google Scholar 

  116. Pearce D, Verrey F, Chen SY, et al. Role of SGK in mineralocorticoid-regulated sodium transport. Kidney Int. 2000;57:1283–9.

    Article  CAS  PubMed  Google Scholar 

  117. Bratton MR, Gomez-Sanchez EP, Gomez-Sanchez CE, Subauste JS. The myosin binding protein is a novel mineralocorticoid receptor binding partner. Mol Cell Endocrinol. 2004;217(1–2):221–7.

    Article  CAS  PubMed  Google Scholar 

  118. Echeverria PC, Mazaira G, Erlejman A, Gomez-Sanchez C, Pilipuk GP, Galigniana MD. Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Mol Cell Biol. 2009;29(17):4788–97.

    Article  CAS  PubMed  Google Scholar 

  119. Savory JG, Prefontaine GG, Lamprecht C, et al. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol Cell Biol. 2001;21(3):781–93.

    Article  CAS  PubMed  Google Scholar 

  120. Nishi M, Tanaka M, Matsuda K, Sunaguchi M, Kawata M. Visualization of glucocorticoid receptor and mineralocorticoid receptor interactions in living cells with GFP-based fluorescence resonance energy transfer. J Neurosci. 2004;24(21):4918–27.

    Article  CAS  PubMed  Google Scholar 

  121. Tsugita M, Iwasaki Y, Nishiyama M, et al. Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro. Mol Cell Endocrinol. 2009;302(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  122. Trapp T, Rupprecht R, Castren M, Reul JM, Holsboer F. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron. 1994;13:1457–62.

    Article  CAS  PubMed  Google Scholar 

  123. Rossol-Haseroth K, Zhou Q, Braun S, et al. Mineralocorticoid receptor antagonists do not block rapid ERK activation by aldosterone. Biochem Biophys Res Commun. 2004;318(1):281–8.

    Article  CAS  PubMed  Google Scholar 

  124. Haseroth K, Gerdes D, Berger S, et al. Rapid nongenomic effects of aldosterone in ­mineralocorticoid-receptor-knockout mice. Biochem Biophys Res Commun. 1999;266(1): 257–61.

    Article  CAS  PubMed  Google Scholar 

  125. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007;282(31):22278–88.

    Article  CAS  PubMed  Google Scholar 

  126. Pietranera L, Saravia FE, McEwen BS, Lucas LL, Johnson AK, De Nicola AF. Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor. Neuroendocrinology. 2001;74(6):396–406.

    Article  CAS  PubMed  Google Scholar 

  127. Grossmann C, Gekle M. Nongenotropic aldosterone effects and the EGFR: interaction and biological relevance. Steroids. 2008;73(9–10):973–8.

    Article  CAS  PubMed  Google Scholar 

  128. Grossmann C, Gekle M. New aspects of rapid aldosterone signaling. Mol Cell Endocrinol. 2009;308(1–2):53–62.

    Article  CAS  PubMed  Google Scholar 

  129. Petty KJ, Kokko JP, Marver D. Secondary effect of aldosterone on Na-KATPase activity in the rabbit cortical collecting tubule. J Clin Invest. 1981;68(6):1514–21.

    Article  CAS  PubMed  Google Scholar 

  130. Marver D. Models of aldosterone action on sodium transport: emerging concepts. Adv Exp Med Biol. 1986;196:153–71.

    Article  CAS  PubMed  Google Scholar 

  131. Horisberger J-D, Canessa C, Rossier BC. The epithelial sodium channel: recent developments. Cell Physiol Biochem. 1993;3:283–94.

    Article  CAS  Google Scholar 

  132. Zhang W, Xia X, Reisenauer MR, et al. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117(3): 773–83.

    Article  CAS  PubMed  Google Scholar 

  133. Pearce D, Kleyman TR. Salt, sodium channels, and SGK1. J Clin Invest. 2007;117(3):592–5.

    Article  CAS  PubMed  Google Scholar 

  134. Michlig S, Mercier A, Doucet A, et al. ERK1/2 controls Na, K-ATPase activity and transepithelial sodium transport in the principal cell of the cortical collecting duct of the mouse kidney. J Biol Chem. 2004;279(49):51002–12.

    Article  CAS  PubMed  Google Scholar 

  135. Mihailidou AS, Mardini M, Funder JW. Rapid, nongenomic effects of aldosterone in the heart mediated by epsilon protein kinase C. Endocrinology. 2004;145(2):773–80.

    Article  CAS  PubMed  Google Scholar 

  136. Summa V, Camargo SM, Bauch C, Zecevic M, Verrey F. Isoform specificity of human Na(+), K(+)-ATPase localization and aldosterone regulation in mouse kidney cells. J Physiol. 2004;555(Pt 2):355–64.

    CAS  PubMed  Google Scholar 

  137. Nielsen J, Kwon TH, Frokiaer J, Knepper MA, Nielsen S. Maintained ENaC trafficking in aldosterone-infused rats during mineralocorticoid and glucocorticoid receptor blockade. Am J Physiol Renal Physiol. 2007;292(1):F382–94.

    Article  CAS  PubMed  Google Scholar 

  138. Musch MW, Lucioni A, Chang EB. Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G909–19.

    Article  CAS  PubMed  Google Scholar 

  139. Gomez-Sanchez EP, Gomez-Sanchez CE. Effect of central amiloride infusion on mineralocorticoid hypertension. Am J Physiol. 1994;267:E754–8.

    CAS  PubMed  Google Scholar 

  140. Gomez-Sanchez EP, Gomez-Sanchez CE. The effect of the central infusion of benzamil on Dahl S rat hypertension. Am J Physiol. 1995;269:H1044–7.

    CAS  PubMed  Google Scholar 

  141. Gomez-Sanchez EP, Foecking MF, Sellers D, Blankenship MS, Gomez-Sanchez CE. Is the circulating ouabain-like compound ouabain? Am J Hypertens. 1994;7:647–50.

    CAS  PubMed  Google Scholar 

  142. Gomez-Sanchez EP, Gomez-Sanchez CE, Fort C. Immunization of Dahl SS/jr rats with a ouabain conjugate mitigates salt-induced hypertension. Am J Hypertens. 1994;7:591–6.

    CAS  PubMed  Google Scholar 

  143. Lichtstein D, Samuelov S. Endogenous digitalis-like activity in rat brain. Biochem Biophys Res Commun. 1980;96:1518–23.

    Article  CAS  PubMed  Google Scholar 

  144. Takahashi H, Matsuzawa M, Okabayashi H, et al. Evidence for a digitalis-like substance in the hypothalamopituitary axis in rats: implications in the central cardiovascular regulation associated with an excess intake of sodium. Jap Circ J. 1987;51:1199–207.

    Article  CAS  PubMed  Google Scholar 

  145. Buckalew VM, Haddy FJ. The role of digitalis-like factor in the pathophysiology of hypertension. In: Laragh JH, Brenner BM, editors. Endocrine mechanism in hypertension. 2nd ed. New York: Raven; 1989. p. 307–34.

    Google Scholar 

  146. Hamlyn JM, Manunta P. Ouabain, digitalis-like factors and hypertension. J Hypertens. 1992;10:S99–111.

    Article  CAS  Google Scholar 

  147. Lichtstein D, Samuelov S. Endogenous ouabain like activity in rat brain. Biochem Biophys Res Commn. 1991;96:1518–23.

    Article  Google Scholar 

  148. Wang H, Huang BS, Leenen FH. Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. Am J Physiol Heart Circ Physiol. 2003;285(6):H2516–23.

    CAS  PubMed  Google Scholar 

  149. Blaustein MP, Hamlyn JM. Pathogenesis of essential hypertension. A link between dietary salt and high blood pressure. Hypertension. 1991;18:III184–95.

    Article  CAS  PubMed  Google Scholar 

  150. Blaustein MP, Hamlyn JM. Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim Biophys Acta. 2010;1802(12):1219–29.

    Article  CAS  PubMed  Google Scholar 

  151. Manunta P, Hamlyn JM, Simonini M, et al. Endogenous ouabain and the renin-angiotensin-aldosterone system: distinct effects on Na handling and blood pressure in human hypertension. J Hypertens. 2011;29(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  152. Hamlyn JM, Laredo J, Shah JR, Lu ZR, Hamilton BP. 11-Hydroxylation in the biosynthesis of endogenous ouabain: multiple implications. Ann N Y Acad Sci. 2003;986:685–93.

    Article  CAS  PubMed  Google Scholar 

  153. Tripodi G, Citterio L, Kouznetsova T, et al. Steroid biosynthesis and renal excretion in human essential hypertension: association with blood pressure and endogenous ouabain. Am J Hypertens. 2009;22(4):357–63.

    Article  CAS  PubMed  Google Scholar 

  154. Arriza JW, Weinberger C, Cerelli G, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    Article  CAS  PubMed  Google Scholar 

  155. Zennaro MC, Farman N, Bonvalet JP, Lombes M. Tissue-specific expression of alpha and beta messenger ribonucleic acid isoforms of the human mineralocorticoid receptor in normal and pathological states. J Clin Endocrinol Metab. 1997;82:1345–52.

    Article  CAS  PubMed  Google Scholar 

  156. Zhou M-Y, Gomez-Sanchez CE, Gomez-Sanchez EP. An alternatively spliced mineralocorticoid receptor mRNA causing truncation of the steroid binding domain. Mol Cell Endocrinol. 2000;159:125–31.

    Article  CAS  PubMed  Google Scholar 

  157. Stewart PM, Corrie JET, Shackleton CHL, Edwards CRW. Syndrome of apparent mineralocorticoid excess. A defect in the cortisol-cortisone shuttle. J Clin Invest. 1988;82:340–9.

    Article  CAS  PubMed  Google Scholar 

  158. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242:583–5.

    Article  CAS  PubMed  Google Scholar 

  159. Naray-Fejes-Toth A, Fejes-Toth G. Subcellular localization of the type 2 11beta-hydroxysteroid dehydrogenase. A green fluorescent protein study. J Biol Chem. 1996;271: 15436–42.

    Article  CAS  PubMed  Google Scholar 

  160. Naray-Fejes-Toth A, Fejes-Toth G. Extranuclear localization of endogenous 11beta-hydroxysteroid dehydrogenase-2 in aldosterone target cells. Endocrinology. 1998;139:2955–9.

    Article  CAS  PubMed  Google Scholar 

  161. Odermatt A, Arnold P, Frey FJ. The intracellular localization of the mineralocorticoid receptor is regulated by 11beta-hydroxysteroid dehydrogenase type 2. J Biol Chem. 2001;276(30):28484–92.

    Article  CAS  PubMed  Google Scholar 

  162. White PC. 11beta-Hydroxysteroid dehydrogenase and its role in the syndrome of apparent mineralocorticoid excess. Am J Med Sci. 2001;322(6):308–15.

    Article  CAS  PubMed  Google Scholar 

  163. Ulick S, Levine LS, Gunczler P. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49:757–64.

    Article  CAS  PubMed  Google Scholar 

  164. Funder JW, Pearce PT, Myles K, Roy LP. Apparent mineralocorticoid excess, pseudohypoaldosteronism, and urinary electrolyte excretion: toward a redefinition of mineralocorticoid action. FASEB J. 1990;4:3234–8.

    CAS  PubMed  Google Scholar 

  165. De Kloet ER, Versteeg DHG, Kovacs GL. Aldosterone blocks the response to corticosterone in the raphe-hippocampal serotonin system. Brain Res. 1983;264:323–7.

    Article  PubMed  Google Scholar 

  166. Reul JMHM, van den Bosch FR, De Kloet ER. Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol. 1987;115:459–67.

    Article  CAS  PubMed  Google Scholar 

  167. Gomez-Sanchez EP, Venkataraman MT, Thwaites D. ICV infusion of Corticosterone ­antagonizes ICV-aldosterone hypertension. Am J Physiol. 1990;258:E649–53.

    CAS  PubMed  Google Scholar 

  168. van den Berg DTWM, De Kloet ER, van Dijken HH, de Jong W. Differential central effects of mineralocorticoid and glucocorticoid agonists and antagonists on blood pressure. Endocrinology. 1990;126:118–24.

    Article  PubMed  Google Scholar 

  169. Oitzl MS, van Haarst AD, Sutanto W, De Kloet ER. Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology. 1995;20:655–75.

    Article  CAS  PubMed  Google Scholar 

  170. van Acker SA, Oitzl MS, Fluttert MF, de Kloet ER. Centrally regulated blood pressure response to vasoactive peptides is modulated by corticosterone. J Neuroendocrinol. 2002;14(1):56–63.

    Article  PubMed  Google Scholar 

  171. Wilson P, Morgan J, Funder JW, Fuller PJ, Young MJ. Mediators of mineralocorticoid receptor-induced profibrotic inflammatory responses in the heart. Clin Sci (Lond). 2009;116(9): 731–9.

    Article  CAS  Google Scholar 

  172. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  173. Funder JW. Mineralocorticoid receptor activation and oxidative stress. Hypertension. 2007;50(5):840–1.

    Article  CAS  PubMed  Google Scholar 

  174. Frey FJ, Odermatt A, Frey BM. Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Curr Opin Nephrol Hypertens. 2004;13(4):451–8.

    Article  CAS  PubMed  Google Scholar 

  175. Mihailidou AS, Le Loan TY, Mardini M, Funder JW. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54(6): 1306–12.

    Article  CAS  PubMed  Google Scholar 

  176. Gomez-Sanchez EP. The mammalian mineralocorticoid receptor: tying down a promiscuous receptor. Exp Physiol. 2010;95(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  177. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Eddleman FC, Gomez-Sanchez EP. Corticosteroid synthesis in the central nervous system. Endocr Res. 1996;22:463–70.

    CAS  PubMed  Google Scholar 

  178. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Foecking MF, Gomez-Sanchez EP. Aldosterone biosynthesis in the rat brain. Endocrinology. 1997;138:3369–73.

    Article  CAS  PubMed  Google Scholar 

  179. Gomez-Sanchez EP, Gomez-Sanchez CE. Central hypertensinogenic effects of glycyrrhizic acid and carbenoxolone. Am J Physiol. 1992;263:E1125–30.

    CAS  PubMed  Google Scholar 

  180. Gomez-Sanchez EP, Gomez-Sanchez CE. Maternal hypertension and progeny blood pressure: role of aldosterone and 11β-HSD. Hypertension. 1999;33:1369–73.

    Article  CAS  PubMed  Google Scholar 

  181. Roland BL, Li KX, Funder JW. Hybridization histochemical localization of 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology. 1995;136(10):4697–700.

    Article  CAS  PubMed  Google Scholar 

  182. De Kloet ER, Van Acker SA, Sibug RM, et al. Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int. 2000;57:1329–36.

    Article  PubMed  Google Scholar 

  183. Karssen AM, Meijer O, Pons D, De Kloet ER. Localization of mRNA expression of P-glycoprotein at the blood-brain barrier and in the hippocampus. Ann N Y Acad Sci. 2004;1032:308–11.

    Article  CAS  PubMed  Google Scholar 

  184. Karssen AM, Meijer OC, van der Sandt IC, et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology. 2001;142(6):2686–94.

    Article  CAS  PubMed  Google Scholar 

  185. Karssen AM, Meijer OC, van der Sandt IC, De Boer AG, De Lange EC, De Kloet ER. The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J Endocrinol. 2002;175(1):251–60.

    Article  CAS  PubMed  Google Scholar 

  186. Gomez-Sanchez EP, Gomez-Sanchez CE. Is aldosterone synthesized in the CNS regulated and functional? Trends Endocrinol Metab. 2003;14(10):444–6.

    Article  CAS  PubMed  Google Scholar 

  187. Selye H. The anesthetic effect of steroid hormones. Proc Soc Exp Biol Med. 1941;46:116–21.

    CAS  Google Scholar 

  188. Le Goascogne C, Robel P, Gouézou M, Sananes N, Baulieu E, Waterman M. Neurosteroids: cytochrome P-450scc in Rat Brain. Science. 1987;237:1212–5.

    Article  PubMed  Google Scholar 

  189. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res. 1993;629:283–92.

    Article  CAS  PubMed  Google Scholar 

  190. MacKenzie SM, Clark CJ, Ingram MC, et al. Corticosteroid production by fetal rat hippocampal neurons. Endocr Res. 2000;26(4):531–5.

    Article  CAS  PubMed  Google Scholar 

  191. Yu L, Romero DG, Gomez-Sanchez CE, Gomez-Sanchez EP. Steroidogenic enzyme gene expression in the human brain. Mol Cell Endocrinol. 2002;190(1–2):9–17.

    Article  CAS  PubMed  Google Scholar 

  192. King SR, Manna PR, Ishii T, et al. An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci. 2002;22(24):10613–20.

    CAS  PubMed  Google Scholar 

  193. Gomez-Sanchez EP, Ahmad N, Romero DG, Gomez-Sanchez CE. Is aldosterone synthesized within the rat brain? Am J Physiol Endocrinol Metab. 2005;288(2):E342–6.

    Article  CAS  PubMed  Google Scholar 

  194. MacKenzie SM, Clark CJ, Fraser R, Gomez-Sanchez CE, Connell JMC, Davies E. Expression of 11b-hydroxylase and aldosterone synthase genes in rat brain. J Mol Endocrinol. 2000;24:321–8.

    Article  CAS  PubMed  Google Scholar 

  195. Gomez-Sanchez EP, Fort C, Thwaites D. Central mineralocorticoid receptor antagonism blocks hypertension in Dahl S/JR rats. Am J Physiol. 1992;262:E96–9.

    CAS  PubMed  Google Scholar 

  196. Gomez-Sanchez EP, Samuel J, Vergara G, Ahmad N. Effect of 3{beta}-hydroxysteroid dehydrogenase inhibition by trilostane on blood pressure in the Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R389–93.

    Article  CAS  PubMed  Google Scholar 

  197. Sandberg K, Ji H, Catt KJ. Regulation of angiotensin II receptors in rat brain during dietary sodium changes. Hypertension. 1994;23:I137–41.

    Article  CAS  PubMed  Google Scholar 

  198. Jo H, Yang EK, Lee WJ, Park KY, Kim HJ, Park JS. Gene expression of central and peripheral renin-angiotensin system components upon dietary sodium intake in rats. Regul Pept. 1996;67:115–21.

    Article  CAS  PubMed  Google Scholar 

  199. Ye P, Kenyon CJ, MacKenzie SM, et al. Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensin II. Endocrinology. 2003;144(8):3321–8.

    Article  CAS  PubMed  Google Scholar 

  200. Huang BS, White RA, Jeng AY, Leenen FH. Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R994–1000.

    Article  CAS  PubMed  Google Scholar 

  201. Hochberg RB, Pahuja SL, Zielinski JE, Larner JM. Steroidal fatty acid esters. J Steroid Biochem Mol Biol. 1991;40:577–85.

    Article  CAS  PubMed  Google Scholar 

  202. Borg W, Shackleton CH, Pahuja SL, Hochberg RB. Long-lived testosterone esters in the rat. Proc Natl Acad Sci U S A. 1995;92(5):1545–9.

    Article  CAS  PubMed  Google Scholar 

  203. Hochberg RB. Biological esterification of steroids. Endocr Rev. 1998;19(3):331–48.

    Article  CAS  PubMed  Google Scholar 

  204. Pahuja SL, Zielinski JE, Giordano G, McMurray WJ, Hochberg RB. The biosynthesis of d-ring fatty acid esters of estriol. J Biol Chem. 1991;266(12):7410–6.

    CAS  PubMed  Google Scholar 

  205. Petrazzuoli M, Pahuja SL, Larner JM, Hochberg RB. Biological activity of the fatty acid ester metabolites of corticoids. Endocrinology. 1990;127:555–9.

    Article  CAS  PubMed  Google Scholar 

  206. Lockett MF, Retallack RW. The influence of heart rate on the secretion of a substance closely resembling the 18-monoacetate of D-aldosterone by the hearts of cats under chloralose anaesthesia. J Physiol. 1970;208:21–32.

    CAS  PubMed  Google Scholar 

  207. Lockett MF. Changes in the flow and composition of the urine induced by the 18 monoacetate of D-aldosterone, in cats. J Physiol. 1969;202:671–82.

    CAS  PubMed  Google Scholar 

  208. Lockett MF. Hormonal actions of the heart and of lungs on the isolated kidney. J Physiol. 1967;193:661–79.

    CAS  PubMed  Google Scholar 

  209. Gomez-Sanchez CE, Foecking MF, Gomez-Sanchez EP. Aldosterone esters and the heart. Am J Hypertens. 2001;14:200S–5.

    Article  CAS  PubMed  Google Scholar 

  210. Pearce D, Naray-Fejes-Toth A, Fejes-Toth G. Determinants of subnuclear organization of mineralocorticoid receptor characterized through analysis of wild type and mutant receptors. J Biol Chem. 2002;277(2):1451–6.

    Article  CAS  PubMed  Google Scholar 

  211. Lombes M, Farman N, Oblin ME. Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci. 1990;87:1086–8.

    Article  CAS  PubMed  Google Scholar 

  212. Couette B, Fagart J, Jalaguier S, Lombes M, Souque A, Rafestin-Oblin ME. Ligand-induced conformational change in the human mineralocorticoid receptor occurs within its hetero-oligomeric structure. Biochem J. 1996;315:421–7.

    CAS  PubMed  Google Scholar 

  213. Fejes-Toth G, Pearce D, Naray-Fejes-Toth A. Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists. Proc Natl Acad Sci USA. 1998;95:2973–8.

    Article  CAS  PubMed  Google Scholar 

  214. Pilipuk GP, Vinson GP, Gomez-Sanchez CE, Galigniana MD. Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor. Biochemistry. 2007;46(5):1389–97.

    Article  CAS  Google Scholar 

  215. Trapp T, Holsboer F. Ligand-induced conformational changes in the mineralocorticoid receptor analyzed by protease mapping. Biochem Biophys Res Commun. 1995;215:286–91.

    Article  CAS  PubMed  Google Scholar 

  216. Rupprecht R, Arriza J, Spengler D, et al. Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol. 1993;7:597–603.

    Article  CAS  PubMed  Google Scholar 

  217. Meijer OC, Steenbergen PJ, De Kloet ER. Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology. 2000;141(6):2192–9.

    Article  CAS  PubMed  Google Scholar 

  218. Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol Endocrinol. 2005;19(9):2211–21.

    Article  CAS  PubMed  Google Scholar 

  219. Stanisic V, Lonard DM, O’Malley BW. Modulation of steroid hormone receptor activity. Prog Brain Res. 2010;181:153–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Merit Review Medical Research funds from the Department of Veterans Affairs and NIH grants HL27255, HL27737 and HL75321. We are grateful to Dr. Eugen Melcescu who helped with the illustrations.

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise P. Gomez-Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomez-Sanchez, E.P. (2013). Central Mineralocorticoid Receptors and Cardiovascular Disease. In: Koch, C., Chrousos, G. (eds) Endocrine Hypertension. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-548-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-548-4_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-547-7

  • Online ISBN: 978-1-60761-548-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics