Skip to main content

Advertisement

Log in

Effect of Aldosterone and Mineralocorticoid Receptor Blockade on Vascular Inflammation

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Aldosterone, the final product of the renin-angiotensin-aldosterone system, is classically viewed as a regulator of renal sodium and potassium handling, blood volume, and blood pressure. Recent studies suggest that aldosterone can cause microvascular damage, vascular inflammation, oxidative stress and endothelial dysfunction. In animal models, aldosterone-mediated vascular injury in the brain, heart, and kidneys leads to stroke, myocardial injury, and proteinuria. These effects may be modified by dietary salt intake; aldosterone-mediated vascular damage is increased in susceptible animals fed a high-salt diet compared to a low-salt diet despite lower plasma aldosterone levels on the high-salt diet. In humans, there is a growing literature supporting the adverse effects of aldosterone in heart failure, hypertension, left ventricular hypertrophy, and renal disease. Aldosterone receptor antagonists are beneficial even in patients on angiotensin converting enzyme inhibitors and attenuate aldosterone-mediated vascular injury by mechanisms that appear to be independent of changes in systolic blood pressure. This review focuses on the adverse effects of aldosterone on the vascular system and describes our current understanding of the underlying mechanisms for this injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946;6:117–230.

    CAS  Google Scholar 

  2. Williams JS, Williams GH. 50th anniversary of aldosterone. J Clin Endocrinol Metab 2003;88(6):2364–2372.

    CAS  PubMed  Google Scholar 

  3. Rocha R, Stier CT, Jr., Kifor I, et al. Aldosterone: A mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000;141(10):3871–3878.

    CAS  PubMed  Google Scholar 

  4. Oestreicher EM, Martinez-Vasquez D, Stone JR, et al. Aldosterone and not plasminogen activator inhibitor-1 is a critical mediator of early angiotensin II/NG-nitro-L-arginine methyl ester-induced myocardial injury. Circulation 2003;108(20):2517–2523.

    CAS  PubMed  Google Scholar 

  5. Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani J, McMahon E. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002;143(12):4828–4836.

    CAS  PubMed  Google Scholar 

  6. Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003;63(5):1791–1800.

    CAS  PubMed  Google Scholar 

  7. Rocha R, Rudolph AE, Frierdich GE, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002;283(5):H1802–H1810.

    CAS  PubMed  Google Scholar 

  8. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart: Role of oxidative stress. Am J Pathol 2002;161(5):1773–1781.

    CAS  PubMed  Google Scholar 

  9. Young M, Head G, Funder J. Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol 1995;269(4 Pt 1):E657–E662.

    CAS  PubMed  Google Scholar 

  10. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: Functional significance and regulatory factors. Cardiovasc Res 1993;27(3):341–348.

    CAS  PubMed  Google Scholar 

  11. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998;31(1 Pt 2):451–458.

    CAS  PubMed  Google Scholar 

  12. Fiebeler A, Schmidt F, Muller DN, et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension 2001;37(2 Part 2):787–793.

    CAS  PubMed  Google Scholar 

  13. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol 2002;90(10C):40L–48L.

    CAS  PubMed  Google Scholar 

  14. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 2002;40(4):504–510.

    CAS  PubMed  Google Scholar 

  15. Bauersachs J, Heck M, Fraccarollo D, et al. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: Role of vascular superoxide anion formation and endothelial nitric oxide synthase expression. J Am Coll Cardiol 2002;39(2):351–358.

    Article  CAS  PubMed  Google Scholar 

  16. Rajagopalan S, Duquaine D, King S, Pitt B, Patel P. Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 2002;105(18):2212–2216.

    CAS  PubMed  Google Scholar 

  17. Keidar S, Hayek T, Kaplan M, et al. Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2003;41(6):955–963.

    CAS  PubMed  Google Scholar 

  18. Keidar S, Kaplan M, Pavlotzky E, et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: A possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation 2004;109(18):2213–2220.

    CAS  PubMed  Google Scholar 

  19. Arima S, Kohagura K, Xu HL, et al. Endothelium-derived nitric oxide modulates vascular action of aldosterone in renal arteriole. Hypertension 2004;43(2):352–357.

    CAS  PubMed  Google Scholar 

  20. Martinez DV, Rocha R, Matsumura M, et al. Cardiac damage prevention by eplerenone: Comparison with low sodium diet or potassium loading. Hypertension 2002;39(2 Pt 2):614–618.

    CAS  PubMed  Google Scholar 

  21. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341(10):709–717.

    Article  CAS  PubMed  Google Scholar 

  22. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: The 4E-left ventricular hypertrophy study. Circulation 2003;108(15):1831–1838.

    CAS  PubMed  Google Scholar 

  23. White WB, Duprez D, St Hillaire R, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension 2003;41(5):1021–1026.

    CAS  PubMed  Google Scholar 

  24. Kerins DM, Hao Q, Vaughan DE. Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 1995;96(5):2515–2520.

    CAS  PubMed  Google Scholar 

  25. Brown NJ, Kim KS, Chen YQ, et al. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 2000;85(1):336–344.

    CAS  PubMed  Google Scholar 

  26. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000;342(24):1792–1801.

    CAS  PubMed  Google Scholar 

  27. Katoh M, Egashira K, Mitsui T, Chishima S, Takeshita A, Narita H. Angiotensin-converting enzyme inhibitor prevents plasminogen activator inhibitor-1 expression in a rat model with cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis. J Mol Cell Cardiol 2000;32(1):73–83.

    CAS  PubMed  Google Scholar 

  28. Gavras I, Gavras H. Angiotensin II as a cardiovascular risk factor. J Hum Hypertens 2002;16(Suppl 2): S2–S6.

    CAS  PubMed  Google Scholar 

  29. Dzau VJ, Bernstein K, Celermajer D, et al. The relevance of tissue angiotensin-converting enzyme: Manifestations in mechanistic and endpoint data. Am J Cardiol 2001;88(9A):1L–20L.

    CAS  PubMed  Google Scholar 

  30. Nishimura M, Uzu T, Fujii T, et al. Cardiovascular complications in patients with primary aldosteronism. Am J Kidney Dis 1999;33(2):261–266.

    CAS  PubMed  Google Scholar 

  31. Rossi GP, Sacchetto A, Pavan E, et al. Remodeling of the left ventricle in primary aldosteronism due to Conn’s adenoma. Circulation 1997;95(6):1471–1478.

    CAS  PubMed  Google Scholar 

  32. Halimi JM, Mimran A. Albuminuria in untreated patients with primary aldosteronism or essential hypertension. J Hypertens 1995;13(12 Pt 2):1801–1802.

    CAS  PubMed  Google Scholar 

  33. Rossi GP, Sacchetto A, Visentin P, et al. Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hypertension 1996;27(5):1039–1045.

    CAS  PubMed  Google Scholar 

  34. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348(14):1309–1321.

    Article  CAS  PubMed  Google Scholar 

  35. Burgess E, Niegowksa J, Tan KW, et al. Antihypertensive effects of eplerenone and enalapril in patients with essential hypertension. Amer J Hypert 2002;15(4 (Part 2)): 23A.

    Google Scholar 

  36. Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med 2001;345(12):925–926.

    CAS  PubMed  Google Scholar 

  37. Epstein M, Buckalew JV, Martinez F, et al. Antiproteinuric efficacy of eplerenone, enalapril, and eplerenone/enalapril combination therapy in diabetic hypertensives with microalbuminuria. Amer J Hypert 2002;15(4 (Part 2)):24A.

    Google Scholar 

  38. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003;41(1):64–68.

    CAS  PubMed  Google Scholar 

  39. Farquharson CA, Struthers AD. Aldosterone induces acute endothelial dysfunction in vivo in humans: Evidence for an aldosterone-induced vasculopathy.Clin Sci (Lond) 2002;103(4):425–431.

    CAS  Google Scholar 

  40. Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101(6):594–597.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail K. Adler MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joffe, H.V., Adler, G.K. Effect of Aldosterone and Mineralocorticoid Receptor Blockade on Vascular Inflammation. Heart Fail Rev 10, 31–37 (2005). https://doi.org/10.1007/s10741-005-2346-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-005-2346-0

Key words

Navigation