Skip to main content

The Dynamics of the Cell Signaling Network; Implications for Targeted Therapies

  • Chapter
  • First Online:
Targeted Therapies

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Molecular targeted therapies against signaling molecules that are active in ­cancer have shown only incomplete and temporary clinical benefit when used as single agents. One explanation for the limited clinical benefit is that extracellular signals are transmitted through a network of proteins rather than through hierarchical signaling pathways; a network inhibition of a single component is insufficient to have dramatic effects on the treatment of cancer since the biological outcome of signals propagated through a network is inherently more resistant to perturbations. In this chapter, we discuss the major mechanisms of resistance to targeted therapeutics using alterations in the cell signaling network. We present specific examples of redundant (intrinsic) and compensatory (acquired) signaling leading to resistance. These include the redundant mechanisms of (1) mutation in a downstream effector rendering inhibition of an upstream activator ineffective and (2) the presence of redundant signaling pathways regulating cancer cell growth as well as the compensatory resistance mechanisms including (3) the upregulation of a second signaling pathway which substitutes for the targeted pathway, and (4) loss of feedback control when inhibiting a downstream effector which facilitates activation of upstream components of the signaling pathway. We also discuss the general implications of the cell signaling network on resistance and the design of effective drug treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorre ME, Mohammed M, Ellwood K, Hsu N, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    Article  PubMed  CAS  Google Scholar 

  2. Cortot AB, Janne PA (n.d.). Resistance to targeted therapies as a result of mutation(s) in the target. In: Mechanisms of resistance to molecular targeted therapies. In Press, Springer.

    Google Scholar 

  3. Johnson KA, Brown PH. Drug development for cancer chemoprevention: focus on molecular targets. Semin Oncol. 2010;37(4):345–58.

    Article  PubMed  CAS  Google Scholar 

  4. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell. 2007;128:225–31.

    Article  PubMed  CAS  Google Scholar 

  6. Giot L, Bader JS, Brouwer C, Chaudhuri A, et al. A protein interaction map of Drosophila melanogaster. Science. 2003;302:1727–36.

    Article  PubMed  CAS  Google Scholar 

  7. Krogan NJ, Hughes TR. Signals and systems. Genome Biol. 2006;7:313.

    Article  PubMed  Google Scholar 

  8. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R. A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol. 2006;8:571–80.

    Article  PubMed  CAS  Google Scholar 

  9. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  PubMed  CAS  Google Scholar 

  10. Sjoblom T, Jones S, Wood LD, Parsons DW, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    Article  PubMed  Google Scholar 

  11. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.

    Article  PubMed  CAS  Google Scholar 

  12. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  Google Scholar 

  13. Weinstein IB. Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science. 2002;297:63–4.

    Article  PubMed  CAS  Google Scholar 

  14. Sharma SV, Gajowniczek P, Way IP, Lee DY, et al. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell. 2006;10:425–35.

    Article  PubMed  CAS  Google Scholar 

  15. Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3:448–57.

    Article  PubMed  CAS  Google Scholar 

  16. Sawyers CL. Making progress through molecular attacks on cancer. Cold Spring Harb Symp Quant Biol. 2005;70:479–82.

    Article  PubMed  CAS  Google Scholar 

  17. Tamborini E, Bonadiman L, Greco A, Albertini V, et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology. 2004;127(1):294–9.

    Article  PubMed  CAS  Google Scholar 

  18. Chen LL, Trent JC, Wu EF, Fuller GN, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004;64(17):5913–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15:7471–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma, SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21:3214–31.

    Google Scholar 

  21. Weinberg GM. An introduction to general systems thinking. New York: Dorset House; 2001.

    Google Scholar 

  22. Kitano H. Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer. 2004;4:227–35.

    Article  PubMed  CAS  Google Scholar 

  23. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    Article  PubMed  CAS  Google Scholar 

  24. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  PubMed  CAS  Google Scholar 

  25. Paez J Guillermo, Jänne PA, Lee JC, Tracy S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  26. Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol. 2005;23(22):5007–18.

    Article  PubMed  CAS  Google Scholar 

  27. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to ­gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  28. Rikova K, Guo A, Zeng Q, Possemato A, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203.

    Article  PubMed  CAS  Google Scholar 

  29. Müller-Tidow C, Diederichs S, Bulk E, Pohle T, et al. Identification of metastasis-associated receptor tyrosine kinases in non-small cell lung cancer. Cancer Res. 2005;65(5):1778–82.

    Article  PubMed  Google Scholar 

  30. Fischer H, Taylor N, Allerstorfer S, Grusch M, et al. Fibroblast growth factor receptor-mediated signals contribute to the malignant phenotype of non-small cell lung cancer cells: therapeutic implications and synergism with epidermal growth factor receptor inhibition. Mol Cancer Ther. 2008;7(10):3408–19.

    Article  PubMed  CAS  Google Scholar 

  31. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90.

    Article  PubMed  CAS  Google Scholar 

  32. Pao W, Wang TY, Riely GJ, Miller VA, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2(1):e17.

    Article  PubMed  Google Scholar 

  33. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  PubMed  CAS  Google Scholar 

  34. Amado RG, Wolf M, Peeters M, Van Cutsem E, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.

    Article  PubMed  CAS  Google Scholar 

  35. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  PubMed  CAS  Google Scholar 

  36. Bean J, Brennan C, Shih J-Y, Riely G, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA. 2007;104(52):20932–7.

    Article  PubMed  CAS  Google Scholar 

  37. Guix M, Faber AC, Wang SE, Olivares MG, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118(7):2609–19.

    PubMed  CAS  Google Scholar 

  38. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28.

    Article  PubMed  CAS  Google Scholar 

  39. Xia W, Bacus S, Hegde P, Husain I, et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci USA. 2006;103(20):7795–800.

    Article  PubMed  CAS  Google Scholar 

  40. Sergina NV, Rausch M, Wang D, Blair J, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445(7126):437–41.

    Article  PubMed  CAS  Google Scholar 

  41. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    Article  PubMed  CAS  Google Scholar 

  42. Meric-Bernstam, Funda and Gonzalez-Angulo, Ana Maria. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278–87.

    Article  Google Scholar 

  43. Haruta T, Uno T, Kawahara J, Takano A, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14(6):783–94.

    Article  PubMed  CAS  Google Scholar 

  44. Harrington LS, Findlay GM, Gray A, Tolkacheva T, et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213–23.

    Article  PubMed  CAS  Google Scholar 

  45. Tremblay F, Brûlé S, Hee Um S, Li Y, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci USA. 2007;104(35):14056–61.

    Article  PubMed  CAS  Google Scholar 

  46. Ma L, Teruya-Feldstein J, Behrendt N, Chen Z, et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev. 2005;19(15):1779–86.

    Article  PubMed  CAS  Google Scholar 

  47. Manning BD, Logsdon M Nicole, Lipovsky AI, Abbott D, et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 2005;19(15):1773–8.

    Article  PubMed  CAS  Google Scholar 

  48. O’Reilly KE, Rojo F, She QB, Solit D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  Google Scholar 

  49. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008;5(1):e8.

    Article  PubMed  Google Scholar 

  50. Tabernero J, Rojo F, Calvo E, Burris H, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10.

    Article  PubMed  CAS  Google Scholar 

  51. Sun SY, Rosenberg LM, Wang X, Zhou Z, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005;65:7052–8.

    Article  PubMed  CAS  Google Scholar 

  52. Fan Qi-Wen, Knight ZA, Goldenberg DD, Yu W, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell. 2006;9(5):341–9.

    Article  PubMed  CAS  Google Scholar 

  53. Maira S-M, Stauffer F, Brueggen J, Furet P, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–63.

    Article  PubMed  CAS  Google Scholar 

  54. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.

    Article  PubMed  CAS  Google Scholar 

  55. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7(4):295–308.

    Article  PubMed  CAS  Google Scholar 

  56. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004;5(6):441–50.

    Article  PubMed  CAS  Google Scholar 

  57. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008;27(2):253–61.

    Article  PubMed  CAS  Google Scholar 

  58. Cherniack AD, Klarlund JK, Czech MP. Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase. J Biol Chem. 1994;269(7):4717–20.

    PubMed  CAS  Google Scholar 

  59. Dougherty MK, Muller J, Ritt DA, Zhou M, et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 2005;17:215–24.

    Article  PubMed  CAS  Google Scholar 

  60. Friday BB, Yu C, Dy GK, Smith PD, et al. BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res. 2008;68(15):6145–53.

    Article  PubMed  CAS  Google Scholar 

  61. Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, et al. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res. 2009;69(2):565–72.

    Article  PubMed  CAS  Google Scholar 

  62. Pratilas CA, Solit DB. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res. 2010;16(13):3329–34.

    Article  PubMed  CAS  Google Scholar 

  63. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    Article  PubMed  CAS  Google Scholar 

  64. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5.

    Article  PubMed  CAS  Google Scholar 

  65. Heidorn SJ, Milagre C, Whittaker S, Nourry A, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  PubMed  CAS  Google Scholar 

  66. Flaherty KT, Puzanov I, Kim KB, Ribas A, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  PubMed  CAS  Google Scholar 

  67. Haura EB, Ricart AD, Larson TG, Stella PJ, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16(8):2450–7.

    Article  PubMed  CAS  Google Scholar 

  68. Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol. 2005;23:5281–93.

    Article  PubMed  CAS  Google Scholar 

  69. Davies H, Bignell GR, Cox C, Stephens P, et al. Mutations of the BRAF gene in human ­cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  70. Tsavachidou D, Coleman ML, Athanasiadis G, Li S, et al. SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 2004;64(16):5556–9.

    Article  PubMed  CAS  Google Scholar 

  71. Gupta S, Ramjaun AR, Haiko P, Wang Y, et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68.

    Article  PubMed  CAS  Google Scholar 

  72. Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM. Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras. Cancer Res. 2007;67(21):10343–50.

    Article  PubMed  CAS  Google Scholar 

  73. Guan KL, Figueroa C, Brtva TR, Zhu T, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275(35):27354–9.

    PubMed  CAS  Google Scholar 

  74. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286(5445):1741–4.

    Article  PubMed  CAS  Google Scholar 

  75. Sato S, Fujita N, Tsuruo T. Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J Biol Chem. 2004;279(32):33759–67.

    Article  PubMed  CAS  Google Scholar 

  76. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.

    PubMed  CAS  Google Scholar 

  77. Roux PP, Shahbazian D, Vu H, Holz MK, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282(19):14056–64.

    Article  PubMed  CAS  Google Scholar 

  78. Shahbazian D, Roux PP, Mieulet V, Cohen MS, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25(12):2781–91.

    Article  PubMed  CAS  Google Scholar 

  79. She Q-B, Halilovic E, Ye Q, Zhen W, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  80. Kaelin WG. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.

    Article  PubMed  CAS  Google Scholar 

  81. Pollock PM, Harper UL, Hansen KS, Yudt LM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  82. Barbie DA, Tamayo P, Boehm JS, Kim So Young, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.

    Article  PubMed  CAS  Google Scholar 

  83. Scholl C, Fröhling S, Dunn IF, Schinzel AC, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821–34.

    Article  PubMed  CAS  Google Scholar 

  84. Luo J, Emanuele MJ, Li D, Creighton CJ, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Neal Rosen for helpful discussions and input on the subject and Dr. Debra McMahon for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gioeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gioeli, D. (2011). The Dynamics of the Cell Signaling Network; Implications for Targeted Therapies. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics