Skip to main content

Fat Tissue Analysis in the Management of Patients with Systemic Amyloidosis

  • Chapter
  • First Online:
Amyloid and Related Disorders

Abstract

Aspiration of abdominal subcutaneous fat tissue is a safe, inexpensive, reliable, minimally invasive, and easy procedure with high diagnostic yield that can be done early after clinical suspicion of amyloidosis and can be repeated frequently during the course of the disease. Material obtained in this way is highly suitable for detection, typing, and quantification of amyloid and can also be used for chemical tissue analysis using proteomic techniques. The procedure has great potential to enable dynamic research of local tissue factors involved both in deposition and in removal of amyloid in vivo. In the Appendix, we describe the current practice of this procedure in our center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schilder P. Über die amyloide Entartung der Haut. Frankfurt Z Pathol. 1909;3:782–94.

    Google Scholar 

  2. Westermark P, Stenkvist B. Diagnosis of secondary generalized amyloidosis by fine needle biopsy of the skin. Acta Med Scand. 1971;190:453–4.

    Article  PubMed  CAS  Google Scholar 

  3. Westermark P, Stenkvist B. A new method for the diagnosis of systemic amyloidosis. Arch Intern Med. 1973;132:522–3.

    Article  PubMed  CAS  Google Scholar 

  4. Westermark P, Stenkvist B, Natvig JB, et al. Demonstration of protein AA in subcutaneous fat tissue obtained by fine needle biopsy. Ann Rheum Dis. 1979;38:68–71.

    Article  PubMed  CAS  Google Scholar 

  5. Libbey CA, Skinner M, Cohen AS. Use of abdominal fat tissue aspirate in the diagnosis of systemic amyloidosis. Arch Intern Med. 1983;143:1549–52.

    Article  PubMed  CAS  Google Scholar 

  6. Breedveld FC, Markusse HM, MacFarlane JD. Subcutaneous fat biopsy in the diagnosis of amyloidosis secondary to chronic arthritis. Clin Exp Rheumatol. 1989;7:407–10.

    PubMed  CAS  Google Scholar 

  7. Westermark P. Diagnosis and characterization of systemic amyloidosis by biopsy of subcutaneous abdominal fat tissue. Intern Med Spec. 1984;5:154–60.

    Google Scholar 

  8. Olsen KE, Sletten K, Westermark P. The use of subcutaneous fat tissue for amyloid typing by enzyme-linked immunosorbent assay. Am J Clin Pathol. 1999;111:355–62.

    PubMed  CAS  Google Scholar 

  9. Hazenberg BP, Limburg PC, Bijzet J, van Rijswijk MH. A quantitative method for detecting deposits of amyloid A protein in aspirated fat tissue of patients with arthritis. Ann Rheum Dis. 1999;58:96–102.

    Article  PubMed  CAS  Google Scholar 

  10. Puchtler H, Sweat F, Levine M. On the binding of Congo red by amyloid. J Histochem Cytochem. 1962;10:355–63.

    Article  CAS  Google Scholar 

  11. Picken MM. Amyloidosis-where are we now and where are we heading? Arch Pathol Lab Med. 2010;134:545–51.

    PubMed  Google Scholar 

  12. Ponce P, Carvalho F, Coelho A. Valeur de la ponction-aspiration de la graisse sous-cutanée dans le diagnostic de l’amylose. Nephrologie. 1986;7:25–7.

    PubMed  CAS  Google Scholar 

  13. Klemi PJ, Sorsa S, Happonen RP. Fine-needle aspiration biopsy from subcutaneous fat. An easy way to diagnose secondary amyloidosis. Scand J Rheumatol. 1987;16:429–31.

    Article  PubMed  CAS  Google Scholar 

  14. Gertz MA, Li CY, Shirahama T, Kyle RA. Utility of subcutaneous fat aspiration for the diagnosis of systemic amyloidosis (immunoglobulin light chain). Arch Intern Med. 1988;148:929–33.

    Article  PubMed  CAS  Google Scholar 

  15. Sorsa S, Happonen RP, Klemi P. Oral biopsy and fine needle aspiration biopsy from subcutaneous fat in diagnosis of secondary amyloidosis. Int J Oral Maxillofac Surg. 1988;17:14–6.

    Article  PubMed  CAS  Google Scholar 

  16. Duston MA, Skinner M, Meenan RF, Cohen AS. Sensitivity, specificity, and predictive value of abdominal fat aspiration for the diagnosis of amyloidosis. Arthritis Rheum. 1989;32:82–5.

    Article  PubMed  CAS  Google Scholar 

  17. Dupond JL, de Wazières B, Saile R, Closs F, Viennet G, Kantelip E, Fest T, Vuitton DA. L’amylose systémique du sujet âgé: valeur diagnostique de l’examen de la graisse sous-cutanée abdominale et des glandes salivaires accessoires. Étude prospective chez 100 patients âgés. Rev Med Interne. 1995;16:314–7.

    Article  PubMed  CAS  Google Scholar 

  18. Masouye I. Diagnostic screening of systemic amyloidosis by abdominal fat aspiration: an analysis of 100 cases. Am J Dermatopathol. 1997;19:41–5.

    Article  PubMed  CAS  Google Scholar 

  19. Guy CD, Jones CK. Abdominal fat pad aspiration biopsy for tissue confirmation of systemic amyloidosis: specificity, positive predictive value, and diagnostic pitfalls. Diagn Cytopathol. 2001;24:181–5.

    Article  PubMed  CAS  Google Scholar 

  20. Ansari-Lari MA, Ali SZ. Fine-needle aspiration of abdominal fat pad for amyloid detection: a clinically useful test? Diagn Cytopathol. 2004;30:178–81.

    Article  PubMed  Google Scholar 

  21. van Gameren II, Hazenberg BP, Bijzet J, van Rijswijk MH. Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice. Arthritis Rheum. 2006;54:2015–21.

    Article  PubMed  Google Scholar 

  22. Dhingra S, Krishnani N, Kumari N, Pandey R. Evaluation of abdominal fat pad aspiration cytology and grading for detection in systemic amyloidosis. Acta Cytol. 2007;51:860–4.

    Article  PubMed  Google Scholar 

  23. Blumenfeld W, Hildebrandt RH. Fine needle aspiration of abdominal fat for the diagnosis of amyloidosis. Acta Cytol. 1993;37:170–4.

    PubMed  CAS  Google Scholar 

  24. Lipschutz JH, Miller T, Yen TS, Vartanian RK, Graber ML, Damon L. Unreliability of the abdominal fat pad biopsy in the evaluation of nephrosis: report of 3 consecutive cases. Am J Nephrol. 1995;15:431–5.

    Article  PubMed  CAS  Google Scholar 

  25. Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid. 2010;17:101–4.

    Article  PubMed  CAS  Google Scholar 

  26. Arbustini E, Verga L, Concardi M, Palladini G, Obici L, Merlini G. Electron and immuno-electron microscopy of abdominal fat identifies and characterizes amyloid fibrils in suspected cardiac amyloidosis. Amyloid. 2002;9:108–14.

    PubMed  CAS  Google Scholar 

  27. Hazenberg AJ, Dikkers FG, Hawkins PN, et al. Laryngeal presentation of systemic AApoAI amyloidosis in patients with apolipoprotein AI variants Leu174Ser and Leu178Pro. Laryngoscope. 2009;119:608–15.

    Article  PubMed  CAS  Google Scholar 

  28. Varga J, Idelson BA, Felson D, Skinner M, Cohen AS. Lack of amyloid in abdominal fat aspirates from patients undergoing long-term hemodialysis. Arch Intern Med. 1987;147:1455–7.

    Article  PubMed  CAS  Google Scholar 

  29. Orfila C, Goffinet F, Goudable C, et al. Unsuitable value of abdominal fat tissue aspirate examination for the diagnosis of amyloidosis in long-term hemodialysis patients. Am J Nephrol. 1988;8:454–6.

    Article  PubMed  CAS  Google Scholar 

  30. Solé Arqués M, Campistol JM, Muñoz-Gómez J. Abdominal fat aspiration biopsy in dialysis-related amyloidosis. Arch Intern Med. 1988;148:988.

    Article  PubMed  Google Scholar 

  31. Sethi D, Cary NR, Brown EA, Woodrow DF, Gower PE. Dialysis-associated amyloid: systemic or local? Nephrol Dial Transplant. 1989;4:1054–9.

    PubMed  CAS  Google Scholar 

  32. Uemichi T, Liepnieks JJ, Gertz MA, Benson MD. Fibrinogen A alpha chain Leu 554: an African-American kindred with late onset renal amyloidosis. Amyloid. 1998;5:188–92.

    Article  PubMed  CAS  Google Scholar 

  33. Westermark P, Davey E, Lindbom K, Enqvist S. Subcutaneous fat tissue for diagnosis and studies of systemic amyloidosis. Acta Histochem. 2006;108:209–13.

    Article  PubMed  Google Scholar 

  34. Kiuru S. Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid. 1998;5:55–66.

    Article  PubMed  CAS  Google Scholar 

  35. Vrana JA, Theis JD, Gamez JD, et al. Diagnosis and classification of systemic amyloidosis in abdominal subcutaneous fat aspiration specimens using mass spectrometry-based proteomics. XIIth International Symposium on Amyloidosis, Rome. Abstract OP-033. Amyloid. 2010;17(S1):55–56

    Google Scholar 

  36. Sie MP, van der Wiel HE, Smedts FM, de Boer AC. Human recombinant insulin and amyloidosis: an unexpected association. Neth J Med. 2010;68:138–40.

    PubMed  CAS  Google Scholar 

  37. Shikama Y, Kitazawa J, Yagihashi N, et al. Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med. 2010;49:397–401.

    Article  PubMed  Google Scholar 

  38. Orfila C, Giraud P, Modesto A, Suc JM. Abdominal fat tissue aspirate in human amyloidosis: light, electron, and immunofluorescence microscopic studies. Hum Pathol. 1986;17:366–9.

    Article  PubMed  CAS  Google Scholar 

  39. Ihse E, Ybo A, Suhr O, Lindqvist P, Backman C, Westermark P. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J Pathol. 2008;216:253–61.

    Article  PubMed  CAS  Google Scholar 

  40. Kaplan B, Vidal R, Kumar A, Ghiso J, Gallo G. Immunochemical microanalysis of amyloid proteins in fine-needle aspirates of abdominal fat. Am J Clin Pathol. 1999;112:403–7.

    PubMed  CAS  Google Scholar 

  41. Hazenberg BP, Bijzet J, Limburg PC, et al. Diagnostic performance of amyloid A protein quantification in fat tissue of patients with clinical AA amyloidosis. Amyloid. 2007;14:133–40.

    Article  PubMed  CAS  Google Scholar 

  42. Tishler M, Pras M, Yaron M. Abdominal fat tissue aspirate in amyloidosis of familial Mediterranean fever. Clin Exp Rheumatol. 1988;6:395–7.

    PubMed  CAS  Google Scholar 

  43. El Mansoury TM, Hazenberg BP, El Badawy SA, et al. Screening for amyloid in subcutaneous fat tissue of Egyptian patients with rheumatoid arthritis: clinical and laboratory characteristics. Ann Rheum Dis. 2002;61:42–7.

    Article  PubMed  CAS  Google Scholar 

  44. Sjöholm K, Palming J, Olofsson LE, et al. A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab. 2005;90:2233–9.

    Article  PubMed  Google Scholar 

  45. Picken MM, Herrera GA. The burden of “sticky” amyloid: typing challenges. Arch Pathol Lab Med. 2007;131:850–1.

    PubMed  Google Scholar 

  46. Picken MM. New insights into systemic amyloidosis: the importance of diagnosis of specific type. Curr Opin Nephrol Hypertens. 2007;16:196–203.

    Article  PubMed  Google Scholar 

  47. Pras M, Schubert M, Zucker-Franklin D, et al. The characterization of soluble amyloid prepared in water. J Clin Invest. 1968;47:924–33.

    Article  PubMed  CAS  Google Scholar 

  48. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90.

    Article  PubMed  CAS  Google Scholar 

  49. Westermark P, Benson L, Juul J, Sletten K. Use of subcutaneous abdominal fat biopsy specimen for detailed typing of amyloid fibril protein-AL by amino acid sequence analysis. J Clin Pathol. 1989;42: 817–9.

    Article  PubMed  CAS  Google Scholar 

  50. Forsberg AH, Sletten K, Benson L, et al. Abdominal fat biopsy for characterization of the major amyloid fibril proteins by amino acid sequence. In: Natvig JB, Forre O, Husby G, et al., editors. Amyloid and amyloidosis 1990. Dordrecht/Norwell, MA: Kluwer; 1990. p. 797–800.

    Google Scholar 

  51. Kaplan B, Hrncic R, Murphy CL, Gallo G, Weiss DT, Solomon A. Microextraction and purification techniques applicable to chemical characterization of amyloid proteins in minute amounts of tissue. Methods Enzymol. 1999;309:67–81.

    Article  PubMed  CAS  Google Scholar 

  52. Kaplan B, Murphy CL, Ratner V, Pras M, Weiss DT, Solomon A. Micro-method to isolate and purify amyloid proteins for chemical characterization. Amyloid. 2001;8:22–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan B, Shtrasburg S, Pras M. Micropurification techniques in the analysis of amyloid proteins. J Clin Pathol. 2003;56:86–90.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy CL, Eulitz M, Hrncic R, et al. Chemical typing of amyloid protein contained in formalin-fixed paraffin-embedded biopsy specimens. Am J Clin Pathol. 2001;116:135–42.

    Article  PubMed  CAS  Google Scholar 

  55. Kaplan B, Martin BM, Livneh A, Pras M, Gallo GR. Biochemical subtyping of amyloid in formalin-fixed tissue samples confirms and supplements immunohistologic data. Am J Clin Pathol. 2004;121:794–800.

    Article  PubMed  CAS  Google Scholar 

  56. Murphy CL, Wang S, Williams T, Weiss DT, Solomon A. Characterization of systemic amyloid deposits by mass spectrometry. Methods Enzymol. 2006;412: 48–62.

    Article  PubMed  CAS  Google Scholar 

  57. Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen 3rd HR, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114:4957–9.

    Article  PubMed  CAS  Google Scholar 

  58. Lavatelli F, Perlman DH, Spencer B, et al. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteomics. 2008;7:1570–83.

    Article  PubMed  CAS  Google Scholar 

  59. Gómez-Casanovas E, Sanmartí R, Solé M, Cañete JD, Muñoz-Gómez J. The clinical significance of amyloid fat deposits in rheumatoid arthritis: a systematic long-term followup study using abdominal fat aspiration. Arthritis Rheum. 2001;44:66–72.

    Article  PubMed  Google Scholar 

  60. Bardarov S, Michael CW, Pu RT, Pang Y. Computer-assisted image analysis of amyloid deposits in abdominal fat pad aspiration biopsies. Diagn Cytopathol. 2009;37:30–5.

    Article  PubMed  Google Scholar 

  61. van Gameren II, Hazenberg BP, Bijzet J, et al. Amyloid load in fat tissue in patients with amyloidosis reflects disease severity and predicts survival. Arthritis Care Res (Hoboken). 2010;62:296–301.

    Article  Google Scholar 

  62. Haagsma EB, van Gameren II, Bijzet J, Posthumus MD, Hazenberg BP. Familial amyloidotic polyneuropathy: long-term follow-up of abdominal fat tissue aspirate in patients with and without liver transplantation. Amyloid. 2007;14:221–6.

    Article  PubMed  CAS  Google Scholar 

  63. Tsuchiya A, Yazaki M, Kametani F, Takei Y, Ikeda S. Marked regression of abdominal fat amyloid in patients with familial amyloid polyneuropathy during long-term follow-up after liver transplantation. Liver Transpl. 2008;14:563–70.

    Article  PubMed  Google Scholar 

  64. Tsuchiya-Suzuki A, Yazaki M, Kametani F, Sekijima Y, Ikeda S. Wild-type transthyretin significantly contributes to the formation of amyloid fibrils in familial amyloid polyneuropathy patients with amyloidogenic transthyretin Val30Met. Hum Pathol. 2011;42: 236–43.

    Article  PubMed  CAS  Google Scholar 

  65. Ihse E, Suhr OB, Hellman U, Westermark P. Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis. J Mol Med. 2011;89:171–80.

    Article  PubMed  CAS  Google Scholar 

  66. van Gameren II, van Rijswijk MH, Bijzet J, Vellenga E, Hazenberg BP. Histological regression of amyloid in AL amyloidosis is exclusively seen after normalization of serum free light chain. Haematologica. 2009;94:1094–100.

    Article  PubMed  Google Scholar 

  67. Poitou C, Viguerie N, Cancello R, et al. Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia. 2005;48:519–28.

    Article  PubMed  CAS  Google Scholar 

  68. Upragarin N, Landman WJ, Gaastra W, Gruys E. Extrahepatic production of acute phase serum amyloid A. Histol Histopathol. 2005;20:1295–307.

    PubMed  CAS  Google Scholar 

  69. Kluve-Beckerman B, Liepnieks JJ, Wang L, Benson MD. A cell culture system for the study of amyloid pathogenesis. Amyloid formation by peritoneal macrophages cultured with recombinant serum amyloid A. Am J Pathol. 1999;155:123–33.

    Article  PubMed  CAS  Google Scholar 

  70. Elimova E, Kisilevsky R, Szarek WA, Ancsin JB. Amyloidogenesis recapitulated in cell culture: a peptide inhibitor provides direct evidence for the role of heparan sulfate and suggests a new treatment strategy. FASEB J. 2004;18:1749–51.

    PubMed  CAS  Google Scholar 

  71. Magy N, Benson MD, Liepnieks JJ, Kluve-Beckerman B. Cellular events associated with the initial phase of AA amyloidogenesis: insights from a human monocyte model. Amyloid. 2007;14:51–63.

    Article  PubMed  CAS  Google Scholar 

  72. Fat aspiration procedure for the detection of ­amyloid—instruction video. http://www.amyloid.nl/investigations.htm. Accessed 16 May 2011.

  73. Jager PL, Hazenberg BP, Franssen EJ, Limburg PC, van Rijswijk MH, Piers DA. Kinetic studies with iodine-123-labeled serum amyloid P component in patients with systemic AA and AL amyloidosis and assessment of clinical value. J Nucl Med. 1998;39: 699–706.

    PubMed  CAS  Google Scholar 

  74. Commercial kit for SAA ELISA. http://www.hycultbiotech.com/acute-phase-proteins/-p11209.html. Accessed 20 May 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouke P. C. Hazenberg M.D., Ph.D. .

Editor information

Editors and Affiliations

Appendix: Fat Aspiration Technique and Tissue Analysis Currently Practiced in Groningen

Appendix: Fat Aspiration Technique and Tissue Analysis Currently Practiced in Groningen

Fat Aspiration Technique

Stepwise Description of the Procedure

Aspiration of abdominal subcutaneous fat tissue is a simple outpatient procedure and a modification of the procedure was described by Gertz [14]. It should be noted that it takes at least 10–15 min to avoid unnecessary pain and bruising, and to get adequate material. The patient should be told that bruising might occur. For a description and instruction video of the fat aspiration procedure one can visit the Web site http://www.amyloid.nl [72].

See Table 15.3 for the equipment used. A syringe of 10 ml is connected by a valve system to a 16-gauge needle (Fig. 15.5a). After closing the valve, the plunger is pulled out, fixed transiently between squeezed thumb and finger, the cap of the lidocaine needle is reused elegantly by positioning it upside down inside the plunger (“Tarek’s trick”) to fix firmly and definitely the position of the plunger, and thus maintaining negative pressure in the syringe during aspiration (Fig. 15.5b). The skin of the patient is marked and cleansed (e.g., with chlorhexidine) at both sides of the umbilicus at about 7–10 cm distance. Check first that the patient is not allergic to lidocaine. Skin and subcutaneous tissue (three directions, see below) are then anesthetized with lidocaine (each side 2 ml  =  20 mg).

Table 15.3 Equipment for the fat aspiration
Fig. 15.5
figure 5_15

(a) The closed valve; reusing the needle cap. (b) Pull and fix the plunger and position the needle cap

After inserting the needle beneath the skin, the valve is opened to start aspiration of fat tissue (Fig. 15.6a). The needle can be moved into three directions (“Northeast, East, and Southeast”) at the left side of the abdomen and mirrorwise at the right side. The aspiration procedure should be performed slowly and gently into each of the three directions, going to and fro with some rotation, and one should realize that it will take some time before the needle will be filled with fat tissue and the first fat can be seen passing the valve and entering the top of the syringe. This should be continued at both sides of the umbilicus until at least 60 mg of fat tissue has been collected (Fig. 15.6b). After the procedure has been finished, the puncture site should be covered with a band-aid and pressed for a while to prevent substantial bruising. The next step may be simple: Seal the syringe and sent it to a diagnostic center (e.g., UMC Groningen) for analysis.

Fig. 15.6
figure 6_15

(a) Insert the needle beneath the skin and open the valve. (b) Yield: about 60 mg of fat tissue

Frequently Encountered Problems During the Procedure

Two technical problems can be encountered during aspiration: no tissue at all or too much blood entering the syringe.

If no fat appears in the syringe or the aspiration has stopped completely for some time, the needle may have become obstructed. The simplest way to check this is to pull the needle out of the patient. Normally, fat tissue present in the needle is then directly and audibly forced into the syringe because of negative pressure. If this is not the case and fat tissue obstructs the needle completely, tissue in the needle can be removed by using positive pressure in the syringe. This may result in a rather explosive evacuation (“firing fat tissue”) and should therefore be carried out carefully. The needle is introduced into a clean container (e.g., sputum or urine) or empty syringe: tissue is then evacuated into this container or syringe, while fixing the needle firmly to the syringe to prevent the needle leaving the syringe (“firing needles”).

If much arterial or venous blood enters the syringe by accident, the needle should be removed out of the body. The puncture site should be pressed for at least 1 min, and the procedure can be repeated in a different direction or at different site. Pain is infrequent, localized, and seldom a real problem necessitating the use of more lidocaine. If bruising is suspected to be present at the end of the procedure, the patient him/herself may press the puncture site for a couple of minutes before rising from the supine position.

Congo Red Stain and Grading of Amyloid in Fat Tissue

Preparing Slides for Microscopy

After extracting the plunger, fat tissue can be collected from the syringe on an empty glass slide to separate fat tissue from accidentally obtained blood. At least four visible fragments of fat tissue (not fat droplets) should be put on each of three glass slides (preferably with a frosted edge which can be used to write on it with a pencil). These fragments are crushed into a single layer by squeezing a second slide placed perpendicularly to the first ones (Fig. 15.7a, b). It is important to press in the middle of the glass slides to prevent breaking of glass. The resulting six smears are marked for identification, dried in the air at room temperature for 1 h, and subsequently fixed with acetone for 10 min. After drying and fixation, all slides can be stored at room temperature until shipped to a reference laboratory for staining with Congo red and further study if positive for amyloid. Fat tissue should not be frozen before slides have been made: freezing of fresh and unfixed ­tissue may affect the quality of the tissue.

Fig. 15.7
figure 7_15

(a) Perpendicularly positioned glass slides. (b) Squeezing in the middle of the glass slides

Congo Red Stain, Microscopy, and Amyloid Grading

Staining with alkaline Congo red should be performed according to the classic method described by Puchtler [10]. See Table 15.4 for a short summary. Commercial kits for Congo red stain are also available and have been used successfully, in particular in the USA (MM Picken, personal communication).

Table 15.4 Alkaline Congo red stain according to Puchtler [10]

The affinity of tissue for Congo red can be analyzed by the apple-green birefringence in polarized light using a good microscope. In our institution we use the Olympus BX 50 microscope and a strong (100 W) light source. Two investigators score the slides blinded to the ­clinical data and in a semiquantitative grading system (Fig. 15.2): 0 (negative, no apple-green birefringence detectable), 1+ (minute, <1% of surface area), 2+ (little, between 1 and 10%), 3+ (moderate, between 10 and 60%), and 4+ (abundant, >60%). Because some deposits may be tiny and hardly visible in daylight conditions, the slides, ideally, should be read in the dark.

Immunochemical Quantification of Amyloid Proteins in Fat Tissue Extracts

Aim of the fat aspiration procedure is to first obtain an adequate quantity for microscopic analysis (3  ×  4 lumps with total weight about 30 mg) and further at least 30 mg of fat tissue for immunochemical quantification of the amyloid proteins. After extracting the plunger, fat tissue is collected from the syringe on an empty glass slide to separate fat tissue from accidentally obtained blood and the 12 lumps of fat are used for the smears (vide supra). Before quantification, the amount of fat is weighed to get the “wet weight.” The material is then first washed three times in a Tris buffer supplemented with calcium to remove possible remnants of blood still present. Subsequently, SAP is extracted from this solution by incubation for 24 h with a Tris buffer supplemented with EDTA and the SAP concentration can be measured in this extract by ELISA [73].

The washed fat tissue is then extracted in a solution of 6M guanidine hydrochloride and 0.1M Tris–HCl, pH 8.0, mixed thoroughly, and shaken overnight. The suspension is centrifuged at 10,000  ×  g for 10 min and the supernatant fat tissue extract is collected. Microtiter plates are coated with the IgG fraction of the SAA-reactive mouse monoclonal capture antibody Reu.86.5 (Hycult Biotechnology, Uden, The Netherlands). The plates are washed, followed by incubation of the samples. The plates are washed again, followed by incubation with the IgG fraction of the SAA1-reactive mouse monoclonal detection antibody Reu.86.1 (Hycult Biotechnology) coupled to horseradish peroxidase. After washing, the plates are incubated with the chromogen 3′3′5′5′-tetramethylbenzidin (TMB, Carl Roth, Karlsruhe, Germany) dissolved in acetate buffer until the reaction is stopped by adding H2SO4. The absorption at 450–575 nm is read in a Versamax microplate reader and amyloid A protein concentrations are calculated by SOFTmax® PRO software (Molecular Devices, Sunnyvale, USA) according to a standard curve of purified SAA. The intra-assay and interassay coefficients of variation are both less than 10%, and the lower limit of detection of the amyloid A protein in fat extract is 1.6 ng/mL extraction fluid. Amyloid A protein concentration reference range of patients without AA amyloidosis is <11.6 ng/mg fat tissue [9, 40]. Recently Hycult has introduced a commercial SAA ELISA kit [74].

In a similar way, concentrations of other amyloid proteins such as TTR and immunoglobulin light chains kappa and lambda are measured using ELISA and nephelometry, respectively. Table 15.2 shows the reference values that are currently being used in our center in Groningen.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Businees Media, LLC

About this chapter

Cite this chapter

Bijzet, J., van Gameren, I.I., Hazenberg, B.P.C. (2012). Fat Tissue Analysis in the Management of Patients with Systemic Amyloidosis. In: Picken MD, PhD, FASN, M., Dogan, M.D., Ph.D., A., Herrera, M.D., G. (eds) Amyloid and Related Disorders. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-389-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-389-3_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-388-6

  • Online ISBN: 978-1-60761-389-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics