Skip to main content

Why have Ionotropic and Metabotropic Glutamate Antagonists Failed in Stroke Therapy?

  • Chapter
  • First Online:
New Strategies in Stroke Intervention

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 808 Accesses

Abstract

The concept of “excitotoxicity” was introduced in 1969 when Olney and Sharpe first demonstrated that neurons exposed to their own neurotransmitter glutamate were destined to die Later on, in 1985, glutamate toxicity was associated with anoxic cell death, since anoxic depolarization resulted in the release of glutamate into the extracellular compartments Similarly, in 1987, Choi indicated that glutamate was a remarkably potent and rapidly acting neurotoxin able to mediate neurotoxic effects by inducing Ca2+ influx through glutamate receptor activation, and he supported the theory that glutamate can be considered a key neurotransmitter in developing many neurological diseases Since then, glutamate receptors have been the most studied channels involved in ischemic stroke pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, and Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 115: 863–877, 2003.

    Article  PubMed  CAS  Google Scholar 

  2. Andreeva N, Khodorov B, Stelmashook E, Cragoe E Jr., and Victorov I. Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 548: 322–325, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Annunziato L, Cataldi M, Pignataro G, Secondo A, and Molinaro P. Glutamate-independent calcium toxicity: introduction. Stroke 38: 661–664, 2007.

    Article  PubMed  Google Scholar 

  4. Arvidsson A, Kokaia Z, and Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14: 10–18, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Back T, Kohno K, and Hossmann KA. Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J Cereb Blood Flow Metab 14: 12–19, 1994.

    PubMed  CAS  Google Scholar 

  6. Benveniste H. Brain microdialysis. J Neurochem 52: 1667–1679, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Benveniste H, Drejer J, Schousboe A, and Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Besancon E, Guo S, Lok J, Tymianski M, and Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29: 268–275, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Buchan A, Li H, and Pulsinelli WA. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci 11: 1049–1056, 1991.

    PubMed  CAS  Google Scholar 

  10. Buchan A and Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10: 311–316, 1990.

    PubMed  CAS  Google Scholar 

  11. Buchan AM. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc Brain Metab Rev 2: 1–26, 1990.

    PubMed  CAS  Google Scholar 

  12. Buchan AM, Slivka A, and Xue D. The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res 574: 171–177, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379, 1987.

    PubMed  CAS  Google Scholar 

  15. Choi DW, Maulucci-Gedde M, and Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368, 1987.

    PubMed  CAS  Google Scholar 

  16. Davis SM, Albers GW, Diener HC, Lees KR, and Norris J. Termination of acute stroke studies involving selfotel treatment. ASSIST Steering Committed. Lancet 349: 32, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, and Norris J. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31: 347–354, 2000.

    PubMed  CAS  Google Scholar 

  18. Deng W, Wang H, Rosenberg PA, Volpe JJ, and Jensen FE. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci USA 101: 7751–7756, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Djuricic B, Rohn G, Paschen W, and Hossmann KA. Protein synthesis in the hippocampal slice: transient inhibition by glutamate and lasting inhibition by ischemia. Metab Brain Dis 9: 235–247, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Fabricius M, Jensen LH, and Lauritzen M. Microdialysis of interstitial amino acids during spreading depression and anoxic depolarization in rat neocortex. Brain Res 612: 61–69, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55: 363–389, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, and Iadecola C. NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29: 2545–2552, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, and Ginsberg MD. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Globus MY, Busto R, Martinez E, Valdes I, and Dietrich WD. Ischemia induces release of glutamate in regions spared from histopathologic damage in the rat. Stroke 21: III43–46, 1990.

    PubMed  CAS  Google Scholar 

  25. Gribkoff VK and Winquist RJ. Voltage-gated cation channel modulators for the treatment of stroke. Expert Opin Investig Drugs 14: 579–592, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. Habas A, Kharebava G, Szatmari E, and Hetman M. NMDA neuroprotection against a phosphatidylinositol-3 kinase inhibitor, LY294002 by NR2B-mediated suppression of glycogen synthase kinase-3beta-induced apoptosis. J Neurochem 96: 335–348, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Hardingham GE, Arnold FJ, and Bading H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4: 565–566, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Hardingham GE and Bading H. The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26: 81–89, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Hardingham GE, Fukunaga Y, and Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405–414, 2002.

    PubMed  CAS  Google Scholar 

  30. Hetman M and Kharebava G. Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6: 787–799, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Hossmann KA. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96: 161–177, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Hossmann KA. Excitotoxic mechanisms in focal ischemia. Adv Neurol 71: 69–74, 1996.

    PubMed  CAS  Google Scholar 

  33. Hoyte L, Barber PA, Buchan AM, and Hill MD. The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med 4: 131–136, 2004.

    Article  PubMed  CAS  Google Scholar 

  34. Hoyte L, Kaur J, and Buchan AM. Lost in translation: taking neuroprotection from animal models to clinical trials. Exp Neurol 188: 200–204, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, and Olney JW. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283: 70–74, 1999.

    Article  PubMed  CAS  Google Scholar 

  36. Ikonomidou C, Stefovska V, and Turski L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc Natl Acad Sci USA 97: 12885–12890, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. Ikonomidou C and Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1: 383–386, 2002.

    Article  PubMed  CAS  Google Scholar 

  38. Kaku DA, Giffard RG, and Choi DW. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260: 1516–1518, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Li S and Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20: 1190–1198, 2000.

    PubMed  CAS  Google Scholar 

  40. Matsumoto K, Graf R, Rosner G, Taguchi J, and Heiss WD. Elevation of neuroactive substances in the cortex of cats during prolonged focal ischemia. J Cereb Blood Flow Metab 13: 586–594, 1993.

    PubMed  CAS  Google Scholar 

  41. Matute C, Alberdi E, Ibarretxe G, and Sanchez-Gomez MV. Excitotoxicity in glial cells. Eur J Pharmacol 447: 239–246, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Meldrum B. Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin Sci (Lond) 68: 113–122, 1985.

    CAS  Google Scholar 

  43. Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, Secondo A, Scorziello A, Adornetto A, Gala R, Viggiano D, Sokolow S, Herchuelz A, Schurmans S, Di Renzo G, and Annunziato L. Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28: 1179–1184, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Monnerie H and Le Roux PD. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. J Neurosci Res 83: 944–956, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Obrenovitch TP. High extracellular glutamate and neuronal death in neurological disorders. Cause, contribution or consequence? Ann N Y Acad Sci 890: 273–286, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Obrenovitch TP. Neuroprotective strategies: voltage-gated Na+-channel down-modulation versus presynaptic glutamate release inhibition. Rev Neurosci 9: 203–211, 1998.

    PubMed  CAS  Google Scholar 

  47. Obrenovitch TP, Urenjak J, Richards DA, Ueda Y, Curzon G, and Symon L. Extracellular neuroactive amino acids in the rat striatum during ischaemia: comparison between penumbral conditions and ischaemia with sustained anoxic depolarisation. J Neurochem 61: 178–186, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Obrenovitch TP, Urenjak J, Zilkha E, and Jay TM. Excitotoxicity in neurological disorders – the glutamate paradox. Int J Dev Neurosci 18: 281–287, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Olney JW and Sharpe LG. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166: 386–388, 1969.

    Article  PubMed  CAS  Google Scholar 

  50. Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, and Annunziato L. Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35: 2566–2570, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hubner C, Olney JW, Turski L, and Ikonomidou C. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA 96: 2508–2513, 1999.

    Article  PubMed  CAS  Google Scholar 

  52. Randall RD and Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12: 1882–1895, 1992.

    PubMed  CAS  Google Scholar 

  53. Riccio A, Ahn S, Davenport CM, Blendy JA, and Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286: 2358–2361, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. Rothman SM and Olney JW. Glutamate and the pathophysiology of hypoxic – ischemic brain damage. Ann Neurol 19: 105–111, 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes-Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, and Fisher PB. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433: 73–77, 2005.

    Article  PubMed  CAS  Google Scholar 

  56. Shimada N, Graf R, Rosner G, Wakayama A, George CP, and Heiss WD. Ischemic flow threshold for extracellular glutamate increase in cat cortex. J Cereb Blood Flow Metab 9: 603–606, 1989.

    PubMed  CAS  Google Scholar 

  57. Shimizu H, Graham SH, Chang LH, Mintorovitch J, James TL, Faden AI, and Weinstein PR. Relationship between extracellular neurotransmitter amino acids and energy metabolism during cerebral ischemia in rats monitored by microdialysis and in vivo magnetic resonance spectroscopy. Brain Res 605: 33–42, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Simon RP, Swan JH, Griffiths T, and Meldrum BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Syntichaki P and Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4: 672–684, 2003.

    Article  PubMed  CAS  Google Scholar 

  60. Walton MR and Dragunow I. Is CREB a key to neuronal survival? Trends Neurosci 23: 48–53, 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, and Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19: 6195–6206, 1999.

    PubMed  CAS  Google Scholar 

  62. Wollmuth LP and Sobolevsky AI. Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27: 321–328, 2004.

    Article  PubMed  CAS  Google Scholar 

  63. Wong R. NMDA receptors expressed in oligodendrocytes. Bioessays 28: 460–464, 2006.

    Article  PubMed  CAS  Google Scholar 

  64. Xiong ZG, Pignataro G, Li M, Chang SY, and Simon RP. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8: 25–32, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Young D, Lawlor PA, Leone P, Dragunow M, and During MJ. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 5: 448–453, 1999.

    Article  PubMed  CAS  Google Scholar 

  66. Zinkand WC, Thompson C, Salama AI, and Patel J. Excitatory amino acid-evoked calcium influx and calcium-dependent neurotoxicity in rat cortical cultures. Ann N Y Acad Sci 648: 355–357, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Di Renzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Di Renzo, G., Pignataro, G., Annunziato, L. (2009). Why have Ionotropic and Metabotropic Glutamate Antagonists Failed in Stroke Therapy?. In: Annunziato, L. (eds) New Strategies in Stroke Intervention. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-280-3_2

Download citation

Publish with us

Policies and ethics