Skip to main content

Cholangiocyte Cilia and Basal Bodies

  • Chapter
  • First Online:
Fibrocystic Diseases of the Liver

Summary

Primary cilia are nonmotile, tubular organelles extending from the cell plasma membrane. They are important in maintaining normal cell physiology and in many clinical disorders (i.e., cilia-related diseases or ciliopathies) associated with abnormalities in ciliary structure and/or function.

In the intrahepatic bile ducts, primary cilia extend from the cholangiocyte apical plasma membrane into the ductal lumen. Cholangiocyte cilia are sensory organelles that recognize the current state of bile, i.e., its flow, chemical composition, and osmolality, and transmit the related information into intracellular signaling, i.e., function as mechano-, chemo-, and osmosensors. In contrast, in ciliopathies, the structural and/or functional abnormalities of these organelles in cholangiocytes lining liver cysts are associated with activation or down-regulation of several intracellular signaling pathways, in particular, cAMP and [Ca2+]i, leading to hepatic cystogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 2007;8, 97–109.

    Article  CAS  PubMed  Google Scholar 

  2. Pan J. Cilia and ciliopathies: From Chlamydomonas and beyond. Sci China C Life Sci 2008;51, 479–486.

    Article  CAS  PubMed  Google Scholar 

  3. Marshall WF, Nonaka S. Cilia: Tuning in to the cell’s antenna. Curr Biol 2006;16, R604–R614.

    Article  CAS  PubMed  Google Scholar 

  4. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007;69, 377–400.

    Article  CAS  PubMed  Google Scholar 

  5. Dawe HR, Farr H, Gull K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 2007;120(Pt 1), 7–15.

    CAS  PubMed  Google Scholar 

  6. Marshall WF. The cell biological basis of ciliary disease. J Cell Biol 2008;180, 17–21.

    Article  CAS  PubMed  Google Scholar 

  7. Reiter JF. A cilium is not a cilium is not a cilium: Signaling contributes to ciliary morphological diversity. Dev Cell 2008;14, 635–636.

    Article  CAS  PubMed  Google Scholar 

  8. Singla V, Reiter JF. The primary cilium as the cell’s antenna: Signaling at a sensory organelle. Science 2006;313, 629–633.

    Article  CAS  PubMed  Google Scholar 

  9. Bisgrove BW, Yost HJ. The roles of cilia in developmental disorders and disease. Development 2006;133, 4131–4143.

    Article  CAS  PubMed  Google Scholar 

  10. Menco BP. Ultrastructural aspects of olfactory transduction and perireceptor events. Semin Cell Biol 1994;5, 11–24.

    Article  CAS  PubMed  Google Scholar 

  11. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95, 829–837.

    Article  CAS  PubMed  Google Scholar 

  12. Davenport JR, Yoder BK. An incredible decade for the primary cilium: A look at a once-forgotten organelle. Am J Physiol Renal Physiol 2005;289, F1159–F1169.

    Article  CAS  PubMed  Google Scholar 

  13. Sorokin SP. Centriole formation and ciliogenesis. Aspen Emphysema Conf 1968;11, 213–216.

    CAS  PubMed  Google Scholar 

  14. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: An emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006;7, 125–148.

    Article  CAS  PubMed  Google Scholar 

  15. Fliegauf M, Benzing T, Omran H. When cilia go bad: Cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007;8, 880–893.

    Article  CAS  PubMed  Google Scholar 

  16. Yoder BK. Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 2007;18, 1381–1388.

    Article  CAS  PubMed  Google Scholar 

  17. Siroky BJ, Guay-Woodford LM. Renal cystic disease: The role of the primary cilium/centrosome complex in pathogenesis. Adv Chronic Kidney Dis 2006;13, 131–137.

    Article  PubMed  Google Scholar 

  18. Adams M, Smith UM, Logan CV, Johnson CA. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet 2008;45, 257–267.

    Article  CAS  PubMed  Google Scholar 

  19. Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn 2008;237, 2007–2012.

    Article  PubMed  CAS  Google Scholar 

  20. Hagiwara H, Ohwada N, Takata K. Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol 2004;234, 101–141.

    Article  PubMed  Google Scholar 

  21. Jensen CG, Poole CA, McGlashan SR, et al. Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 2004;28, 101–110.

    Article  CAS  PubMed  Google Scholar 

  22. Haimo LT, Rosenbaum JL. Cilia, flagella, and microtubules. J Cell Biol 1981;91(3 Pt 2), 125s–130s.

    Article  CAS  PubMed  Google Scholar 

  23. Eley L, Yates LM, Goodship JA. Cilia and disease. Curr Opin Genet Dev 2005;15, 308–314.

    Article  CAS  PubMed  Google Scholar 

  24. Raychowdhury MK, McLaughlin M, Ramos AJ, et al. Characterization of single channel currents from primary cilia of renal epithelial cells. J Biol Chem 2005;280, 34718–34722.

    Article  CAS  PubMed  Google Scholar 

  25. Gradilone SA, Masyuk AI, Splinter PL, et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 2007;104, 19138–19143.

    Article  CAS  PubMed  Google Scholar 

  26. Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 2005;71, 444–452.

    Article  CAS  PubMed  Google Scholar 

  27. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006;131, 911–920.

    Article  CAS  PubMed  Google Scholar 

  28. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002;13, 2508–2516.

    Article  CAS  PubMed  Google Scholar 

  29. Masyuk TV, Huang BQ, Ward CJ, et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003;125, 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  30. Handel M, Schulz S, Stanarius A, et al. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 1999;89, 909–926.

    Article  CAS  PubMed  Google Scholar 

  31. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate smoothened functions at the primary cilium. Nature 2005;437, 1018–1021.

    Article  CAS  PubMed  Google Scholar 

  32. Masyuk AI, Gradilone SA, Banales JM, et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008;295, G725–G734.

    Article  CAS  PubMed  Google Scholar 

  33. Michaud EJ, Yoder BK. The primary cilium in cell signaling and cancer. Cancer Res 2006;66, 6463–6467.

    Article  CAS  PubMed  Google Scholar 

  34. Sloboda RD, Rosenbaum JL. Making sense of cilia and flagella. J Cell Biol 2007;179, 575–582.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002;3, 813–825.

    Article  CAS  PubMed  Google Scholar 

  36. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1, 31–39.

    Article  CAS  PubMed  Google Scholar 

  37. Jenkins PM, Hurd TW, Zhang L, et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr Biol 2006;16, 1211–1216.

    Article  CAS  PubMed  Google Scholar 

  38. Geng L, Okuhara D, Yu Z, et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 2006;119(Pt 7), 1383–1395.

    Article  CAS  PubMed  Google Scholar 

  39. Schermer B, Hopker K, Omran H, et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J 2005;24, 4415–4424.

    Article  CAS  PubMed  Google Scholar 

  40. Grisham JW. Ciliated epithelial cells in normal murine intrahepatic bile ducts. Proc Soc Exp Biol Med 1963;114, 318–320.

    CAS  PubMed  Google Scholar 

  41. Tobe K, Tsuchiya T, Itoshima T, Nagashima H, Kobayashi T. Electron microscopy of fat-storing cells in liver diseases with special reference to cilia and cytoplasmic cholesterol crystals. Arch Histol Jpn 1985;48, 435–441.

    Article  CAS  PubMed  Google Scholar 

  42. Huang BQ, Masyuk TV, Muff MA, Tietz PS, Masyuk AI, Larusso NF. Isolation and characterization of cholangiocyte primary cilia. Am J Physiol Gastrointest Liver Physiol 2006;291, G500–G509.

    Article  CAS  PubMed  Google Scholar 

  43. Strazzabosco M, Fabris L, Spirli C. Pathophysiology of cholangiopathies. J Clin Gastroenterol 2005;39(4 Suppl 2), S90–S102.

    Article  PubMed  Google Scholar 

  44. Masyuk T, Masyuk A, LaRusso N. Cholangiociliopathies: Mechanisms of development and therapeutic targets. Kerala, India: Transworld Research Network; 2008.

    Google Scholar 

  45. Salisbury JL, D’Assoro AB, Lingle WL. Centrosome amplification and the origin of chromosomal instability in breast cancer. J Mammary Gland Biol Neoplasia 2004;9, 275–283.

    Article  PubMed  Google Scholar 

  46. Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2001;2, 688–698.

    Article  CAS  PubMed  Google Scholar 

  47. Rieder CL, Faruki S, Khodjakov A. The centrosome in vertebrates: More than a microtubule-organizing center. Trends Cell Biol 2001;11, 413–419.

    Article  CAS  PubMed  Google Scholar 

  48. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 1962;15, 363–377.

    Article  CAS  PubMed  Google Scholar 

  49. Fukasawa K. Centrosome amplification, chromosome instability and cancer development. Cancer Lett 2005;230, 6–19.

    Article  CAS  PubMed  Google Scholar 

  50. Pelletier L. Centrioles: Duplicating precariously. Curr Biol 2007;17, R770–R773.

    Article  CAS  PubMed  Google Scholar 

  51. Ishikawa H, Kubo A, Tsukita S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 2005;7, 517–524.

    Article  CAS  PubMed  Google Scholar 

  52. Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 2005;21, 411–434.

    Article  CAS  PubMed  Google Scholar 

  53. Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol 2005;15, 303–311.

    Article  CAS  PubMed  Google Scholar 

  54. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet 2005;6, 194–205.

    Article  CAS  PubMed  Google Scholar 

  55. Burakov A, Nadezhdina E, Slepchenko B, Rodionov V. Centrosome positioning in interphase cells. J Cell Biol 2003;162, 963–969.

    Article  CAS  PubMed  Google Scholar 

  56. Marshall WF. Centriole assembly: The origin of nine-ness. Curr Biol 2007;17, R1057–R1059.

    Article  CAS  PubMed  Google Scholar 

  57. Basto R, Lau J, Vinogradova T, et al. Flies without centrioles. Cell 2006;125, 1375–1386.

    Article  CAS  PubMed  Google Scholar 

  58. Pelletier L. Centrosomes: Keeping tumors in check. Curr Biol 2008;18, R702–R704.

    Article  CAS  PubMed  Google Scholar 

  59. Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell 2004;7, 815–829.

    Article  CAS  PubMed  Google Scholar 

  60. Jensen CG, Jensen LC, Rieder CL. The occurrence and structure of primary cilia in a subline of Potorous tridactylus. Exp Cell Res 1979;123, 444–449.

    Article  CAS  PubMed  Google Scholar 

  61. Rieder CL, Jensen CG, Jensen LC. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J Ultrastruct Res 1979;68, 173–185.

    Article  CAS  PubMed  Google Scholar 

  62. Collier S, Gubb D. Drosophila tissue polarity requires the cell-autonomous activity of the fuzzy gene, which encodes a novel transmembrane protein. Development 1997;124, 4029–4037.

    CAS  PubMed  Google Scholar 

  63. Blatt EN, Yan XH, Wuerffel MK, Hamilos DL, Brody SL. Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol 1999;21, 168–176.

    CAS  PubMed  Google Scholar 

  64. Brody SL, Yan XH, Wuerffel MK, Song SK, Shapiro SD. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 2000;23, 45–51.

    CAS  PubMed  Google Scholar 

  65. Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet 2006;38, 303–311.

    Article  CAS  PubMed  Google Scholar 

  66. Li G, Vega R, Nelms K, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet 2007;3, e8.

    Article  PubMed  CAS  Google Scholar 

  67. Torkko JM, Manninen A, Schuck S, Simons K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J Cell Sci 2008;121(Pt 8), 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  68. Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 2007;178, 363–369.

    Article  CAS  PubMed  Google Scholar 

  69. Town T, Breunig JJ, Sarkisian MR, et al. The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 2008;105, 2853–2858.

    Article  CAS  PubMed  Google Scholar 

  70. Lutz MS, Burk RD. Primary cilium formation requires von Hippel-Lindau gene function in renal-derived cells. Cancer Res 2006;66, 6903–6907.

    Article  CAS  PubMed  Google Scholar 

  71. Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WL, Simons K. FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci USA 2006;103, 18556–18561.

    Article  CAS  PubMed  Google Scholar 

  72. Tamakoshi T, Itakura T, Chandra A, et al. Roles of the Foxj1 and Inv genes in the left-right determination of internal organs in mice. Biochem Biophys Res Commun 2006;339, 932–938.

    Article  CAS  PubMed  Google Scholar 

  73. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 1993;90, 5519–5523.

    Article  CAS  PubMed  Google Scholar 

  74. Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000;151, 709–718.

    Article  CAS  PubMed  Google Scholar 

  75. Scholey JM. Intraflagellar transport. Annu Rev Cell Dev Biol 2003;19, 423–443.

    Article  CAS  PubMed  Google Scholar 

  76. Cole DG. Kinesin-II, the heteromeric kinesin. Cell Mol Life Sci 1999;56, 217–226.

    Article  CAS  PubMed  Google Scholar 

  77. Bossinger O, Bachmann A. Ciliogenesis: Polarity proteins on the move. Curr Biol 2004;14, R844–R846.

    Article  CAS  PubMed  Google Scholar 

  78. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998;141, 993–1008.

    Article  CAS  PubMed  Google Scholar 

  79. Pazour GJ, Rosenbaum JL. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 2002;12, 551–555.

    Article  CAS  PubMed  Google Scholar 

  80. Jurczyk A, Gromley A, Redick S, et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol 2004;166, 637–643.

    Article  CAS  PubMed  Google Scholar 

  81. Masyuk TV, Huang BQ, Masyuk AI, et al. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am J Pathol 2004;165, 1719–1730.

    PubMed  Google Scholar 

  82. Battini L, Macip S, Fedorova E, et al. Loss of polycystin-1 causes centrosome amplification and genomic instability. Hum Mol Genet 2008;17, 2819–2833.

    Article  CAS  PubMed  Google Scholar 

  83. Simons M, Walz G. Polycystic kidney disease: Cell division without a c(l)ue? Kidney Int 2006;70, 854–864.

    Article  CAS  PubMed  Google Scholar 

  84. de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG. Centrosome localization determines neuronal polarity. Nature 2005;436, 704–708.

    Article  PubMed  CAS  Google Scholar 

  85. Schwartz EA, Leonard ML, Bizios R, Bowser SS. Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 1997;272(1 Pt 2), F132–F138.

    CAS  PubMed  Google Scholar 

  86. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 2001;184, 71–79.

    Article  CAS  PubMed  Google Scholar 

  87. Praetorius HA, Spring KR. Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 2003;191, 69–76.

    Article  CAS  PubMed  Google Scholar 

  88. Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003;33, 129–137.

    Article  CAS  PubMed  Google Scholar 

  89. Nauli SM, Zhou J. Polycystins and mechanosensation in renal and nodal cilia. Bioessays 2004;26, 844–856.

    Article  CAS  PubMed  Google Scholar 

  90. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003;285, F998–F1012.

    CAS  PubMed  Google Scholar 

  91. Liu W, Murcia NS, Duan Y, et al. Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 2005;289, F978–F988.

    Article  CAS  PubMed  Google Scholar 

  92. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 1997;16, 179–183.

    Article  CAS  PubMed  Google Scholar 

  93. Xu GM, Gonzalez-Perrett S, Essafi M, et al. Polycystin-1 activates and stabilizes the polycystin-2 channel. J Biol Chem 2003;278, 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  94. Cooper DM. Molecular and cellular requirements for the regulation of adenylate cyclases by calcium. Biochem Soc Trans 2003;31(Pt 5), 912–915.

    Article  CAS  PubMed  Google Scholar 

  95. Chabardes D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal 1999;11, 651–663.

    Article  CAS  PubMed  Google Scholar 

  96. Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D. Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 2000;872, 271–275.

    Article  CAS  PubMed  Google Scholar 

  97. Bargmann CI. Chemosensation in C. elegans. WormBook 2006, 1–29.

    Google Scholar 

  98. Tobin D, Madsen D, Kahn-Kirby A, et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002;35, 307–318.

    Article  CAS  PubMed  Google Scholar 

  99. Liedtke W, Choe Y, Marti-Renom MA, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000;103, 525–535.

    Article  CAS  PubMed  Google Scholar 

  100. Liedtke W. Role of TRPV ion channels in sensory transduction of osmotic stimuli in mammals. Exp Physiol 2007;92, 507–512.

    Article  CAS  PubMed  Google Scholar 

  101. Liedtke W. Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli. J Endocrinol 2006;191, 515–523.

    Article  CAS  PubMed  Google Scholar 

  102. Plant TD, Strotmann R. Trpv4. Handb Exp Pharmacol 2007, 189–205.

    Google Scholar 

  103. Andrade YN, Fernandes J, Vazquez E, et al. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 2005;168, 869–874.

    Article  CAS  PubMed  Google Scholar 

  104. Yoder BK, Tousson A, Millican L, et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 2002;282, F541–F552.

    CAS  PubMed  Google Scholar 

  105. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 2000;127, 2347–2355.

    CAS  PubMed  Google Scholar 

  106. Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 2003;100, 5286–5291.

    Article  CAS  PubMed  Google Scholar 

  107. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH, 2nd. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 2004;10, 363–364.

    Article  CAS  PubMed  Google Scholar 

  108. Gattone VH, 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 2003;9, 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  109. Yamaguchi T, Nagao S, Wallace DP, et al. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 2003;63, 1983–1994.

    Article  PubMed  Google Scholar 

  110. Belibi FA, Reif G, Wallace DP, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 2004;66, 964–973.

    Article  CAS  PubMed  Google Scholar 

  111. Hanaoka K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol 2000;11, 1179–1187.

    CAS  PubMed  Google Scholar 

  112. Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 2004;279, 40419–40430.

    Article  CAS  PubMed  Google Scholar 

  113. Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 2006;17, 178–187.

    Article  CAS  PubMed  Google Scholar 

  114. Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 2007;132, 1104–1116.

    Article  CAS  PubMed  Google Scholar 

  115. Banales JM, Masyuk TV, Gradilone SA, Masyuk AI, Medina JF, LaRusso NF. The cAMP effectors, Epac and PKA, are involved in the benign hyperproliferation of cholangiocytes from an animal model of ARPKD. Hepatology 2009;49(1):160–174.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (N.F. LaRusso: grant DK 24031), by the PKD Foundation (T.V. Masyuk), and by the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Masyuk, T.V., Masyuk, A.I., LaRusso, N.F. (2010). Cholangiocyte Cilia and Basal Bodies. In: Murray, K., Larson, A. (eds) Fibrocystic Diseases of the Liver. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60327-524-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-524-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-523-1

  • Online ISBN: 978-1-60327-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics