Skip to main content
Log in

Cilia and ciliopathies: From Chlamydomonas and beyond

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The biological function of motile cilia/flagella has long been recognized. The non-motile primary cilium, once regarded as a vestigial organelle, however, has been found recently to play unexpected roles in mammalian physiology and development. Defects in cilia have profound impact on human health. Diseases related to cilia, collectively called ciliopathies include male infertility, primary cilia dyskinesia, renal cyst formation, blindness, polydactyly, obesity, hypertension, and even mental retardation. Our current understanding of cilia and ciliopathies has been fueled by basic research employing various model organisms including Chlamydomonas, a unicellular green alga. This review article provides a general introduction to the cell biology of cilia and an overview of various cilia-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silflow C D, Lefebvre P A. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol, 2001, 127: 1500–1507, 11743094, 10.1104/pp.127.4.1500, 1:CAS:528:DC%2BD38XjtVWgtQ%3D%3D

    Article  CAS  Google Scholar 

  2. Brokaw C J, Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton, 1987, 8: 68–75, 2958145, 10.1002/cm.970080110, 1:STN:280:BieD3c3jvVw%3D

    Article  CAS  Google Scholar 

  3. Porter M E, Sale W S. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol, 2000, 151: 37–42, 10.1083/jcb.151.5.F37

    Article  Google Scholar 

  4. Dentler W L. Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci, 1980, 42: 207–220, 6772653, 1:STN:280:Bi%2BB2cbntVA%3D

    CAS  Google Scholar 

  5. Sloboda R D. Intraflagellar transport and the flagellar tip complex. J Cell Biochem, 2005, 94: 266–272, 15558569, 10.1002/jcb.20323, 1:CAS:528:DC%2BD2MXpsFegsA%3D%3D

    Article  CAS  Google Scholar 

  6. Rosenbaum J L, Witman G B. Intraflagellar transport. Nat Rev Mol Cell Biol, 2002, 3: 813–825, 12415299, 10.1038/nrm952, 1:CAS:528:DC%2BD38Xotlerur0%3D

    Article  CAS  Google Scholar 

  7. Sanders M A, Salisbury J L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol, 1989, 108: 1751–1760, 2654141, 10.1083/jcb.108.5.1751, 1:CAS:528:DyaL1MXhvV2gs74%3D

    Article  CAS  Google Scholar 

  8. Dutcher S K. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic, 2003, 4: 443–451, 12795689, 10.1034/j.1600-0854.2003.00104.x, 1:CAS:528:DC%2BD3sXltFektLY%3D

    Article  CAS  Google Scholar 

  9. Zariwala M A, Knowles M R, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol, 2007, 69: 423–450, 17059358, 10.1146/annurev.physiol.69.040705.141301, 1:CAS:528:DC%2BD2sXltVaksLo%3D

    Article  CAS  Google Scholar 

  10. Afzelius B A. The immotile-cilia syndrome and other ciliary diseases. Int Rev Exp Pathol, 1979, 19: 1–43, 156703, 1:STN:280:CSaB3MrlsVQ%3D

    CAS  Google Scholar 

  11. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell, 1998, 95: 829–837, 9865700, 10.1016/S0092-8674(00)81705-5, 1:CAS:528:DyaK1MXivVKn

    Article  CAS  Google Scholar 

  12. Marszalek J R, Liu X, Roberts E A, et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell, 2000, 102: 175–187, 10943838, 10.1016/S0092-8674(00)00023-4, 1:CAS:528:DC%2BD3cXltl2hsro%3D

    Article  CAS  Google Scholar 

  13. Menco B P. Ultrastructural aspects of olfactory signaling. Chem Senses, 1997, 22: 295–311, 9218142, 10.1093/chemse/22.3.295, 1:STN:280:ByiA287isVw%3D

    Article  CAS  Google Scholar 

  14. Sobkowicz H M, Slapnick S M, August B K. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol, 1995, 24: 633–653, 7500120, 10.1007/BF01179815, 1:STN:280:BymC3c%2Fis1M%3D

    Article  CAS  Google Scholar 

  15. Axelrod J D. Basal bodies, kinocilia and planar cell polarity. Nat Genet, 2008, 40: 10–11, 18163128, 10.1038/ng0108-10, 1:CAS:528:DC%2BD1cXhtVyktg%3D%3D

    Article  CAS  Google Scholar 

  16. Schneider L, Clement C A, Teilmann S C, et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol, 2005, 15: 1861–1866, 16243034, 10.1016/j.cub.2005.09.012, 1:CAS:528:DC%2BD2MXhtFCjsL%2FJ

    Article  CAS  Google Scholar 

  17. Rohatgi R, Milenkovic L, Scott M P. Patched1 regulates hedgehog signaling at the primary cilium. Science, 2007, 317: 372–376, 17641202, 10.1126/science.1139740, 1:CAS:528:DC%2BD2sXnslGrs70%3D

    Article  CAS  Google Scholar 

  18. Huangfu D, Liu A, Rakeman A S, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 2003, 426: 83–87, 14603322, 10.1038/nature02061, 1:CAS:528:DC%2BD3sXoslSjtbw%3D

    Article  CAS  Google Scholar 

  19. Liu A, Wang B, Niswander L A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 2005, 132: 3103–3111, 15930098, 10.1242/dev.01894, 1:CAS:528:DC%2BD2MXnvVWmt7Y%3D

    Article  CAS  Google Scholar 

  20. Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet, 2005, 37: 537–543, 15852005, 10.1038/ng1552, 1:CAS:528:DC%2BD2MXjsF2ks7s%3D

    Article  CAS  Google Scholar 

  21. Ross A J, May-Simera H, Eichers E R, et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet, 2005, 37: 1135–1140, 16170314, 10.1038/ng1644, 1:CAS:528:DC%2BD2MXhtVCntL%2FK

    Article  CAS  Google Scholar 

  22. Jones C, Roper V C, Foucher I, et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet, 2008, 40: 69–77, 18066062, 10.1038/ng.2007.54, 1:CAS:528:DC%2BD1cXhtVykuw%3D%3D

    Article  CAS  Google Scholar 

  23. Nauli S M, Alenghat F J, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet, 2003, 33: 129–137, 12514735, 10.1038/ng1076, 1:CAS:528:DC%2BD3sXnsFSksw%3D%3D

    Article  CAS  Google Scholar 

  24. Pazour G J, Witman G B. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol, 2003, 15: 105–110, 12517711, 10.1016/S0955-0674(02)00012-1, 1:CAS:528:DC%2BD3sXotVOg

    Article  CAS  Google Scholar 

  25. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol, 1962, 15: 363–377, 13978319, 10.1083/jcb.15.2.363, 1:STN:280:CC2C2s%2Fht1M%3D

    Article  CAS  Google Scholar 

  26. Sorokin S P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci, 1968, 3: 207–230, 5661997, 1:STN:280:CCeA38ngsF0%3D

    CAS  Google Scholar 

  27. Hagiwara H, Ohwada N, Aoki T, et al. Ciliogenesis and ciliary abnormalities. Med Electron Microsc, 2000, 33: 109–114, 11810467, 10.1007/s007950000009, 1:STN:280:DC%2BD38%2Foslynug%3D%3D

    Article  CAS  Google Scholar 

  28. Dawe H R, Farr H, Gull K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci, 2007, 120: 7–15, 17182899, 10.1242/jcs.03305, 1:CAS:528:DC%2BD2sXht1Gmsrk%3D

    Article  CAS  Google Scholar 

  29. Pan J, Snell W. The primary cilium: Keeper of the key to cell division. Cell, 2007, 129: 1255–1257, 17604715, 10.1016/j.cell.2007.06.018, 1:CAS:528:DC%2BD2sXotV2hs7o%3D

    Article  CAS  Google Scholar 

  30. Pan J, Wang Q, Snell W J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell, 2004, 6: 445–451, 15030766, 10.1016/S1534-5807(04)00064-4, 1:CAS:528:DC%2BD2cXis1KmsLs%3D

    Article  CAS  Google Scholar 

  31. Pan J, Snell W J. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell, 2005, 9: 431–438, 16139231, 10.1016/j.devcel.2005.07.010, 1:CAS:528:DC%2BD2MXhtVert7%2FN

    Article  CAS  Google Scholar 

  32. Wloga D, Camba A, Rogowski K, et al. Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell, 2006, 17: 2799–2810, 16611747, 10.1091/mbc.E05-05-0450, 1:CAS:528:DC%2BD28XlvVCisL4%3D

    Article  CAS  Google Scholar 

  33. Pugacheva E N, Jablonski S A, Hartman T R, et al. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell, 2007, 129: 1351–1363, 17604723, 10.1016/j.cell.2007.04.035, 1:CAS:528:DC%2BD2sXotV2hsL0%3D

    Article  CAS  Google Scholar 

  34. Kozminski K G, Johnson K A, Forscher P, et al. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA, 1993, 90: 5519–5523, 8516294, 10.1073/pnas.90.12.5519, 1:STN:280:ByyB1Mnhs10%3D

    Article  CAS  Google Scholar 

  35. Iomini C, Babaev-Khaimov V, Sassaroli M, et al. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol, 2001, 153: 13–24, 11285270, 10.1083/jcb.153.1.13, 1:CAS:528:DC%2BD3MXisVyhtL4%3D

    Article  CAS  Google Scholar 

  36. Mueller J, Perrone C A, Bower R, et al. The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell, 2005, 16: 1341–1354, 15616187, 10.1091/mbc.E04-10-0931, 1:CAS:528:DC%2BD2MXit1Srt7Y%3D

    Article  CAS  Google Scholar 

  37. Snow J J, Ou G, Gunnarson A L, et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol, 2004, 6: 1109–1113, 15489852, 10.1038/ncb1186, 1:CAS:528:DC%2BD2cXptFentLo%3D

    Article  CAS  Google Scholar 

  38. Follit J A, Tuft R A, Fogarty K E, et al. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell, 2006, 17: 3781–3792, 16775004, 10.1091/mbc.E06-02-0133, 1:CAS:528:DC%2BD28Xpt1alur0%3D

    Article  CAS  Google Scholar 

  39. Cole D G, Diener D R, Himelblau A L, et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol, 1998, 141: 993–1008, 9585417, 10.1083/jcb.141.4.993, 1:CAS:528:DyaK1cXjt1Kntb4%3D

    Article  CAS  Google Scholar 

  40. Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA, 1997, 94: 4457–4462, 9114011, 10.1073/pnas.94.9.4457, 1:CAS:528:DyaK2sXjtVyrtbk%3D

    Article  CAS  Google Scholar 

  41. Cole D G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic, 2003, 4: 435–442, 12795688, 10.1034/j.1600-0854.2003.t01-1-00103.x, 1:CAS:528:DC%2BD3sXltFektLk%3D

    Article  CAS  Google Scholar 

  42. Qin H, Diener D R, Geimer S, et al. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol, 2004, 164: 255–266, 14718520, 10.1083/jcb.200308132, 1:CAS:528:DC%2BD2cXmsV2isg%3D%3D

    Article  CAS  Google Scholar 

  43. Pazour G J, Dickert B L, Witman G B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol, 1999, 144: 473–481, 9971742, 10.1083/jcb.144.3.473, 1:CAS:528:DyaK1MXhtFGru7s%3D

    Article  CAS  Google Scholar 

  44. Pazour G J, Dickert B L, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol, 2000, 151: 709–718, 11062270, 10.1083/jcb.151.3.709, 1:CAS:528:DC%2BD3cXnsl2lsbg%3D

    Article  CAS  Google Scholar 

  45. Davidge J A, Chambers E, Dickinson H A, et al. Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J Cell Sci, 2006, 119: 3935–3943, 16954145, 10.1242/jcs.03203, 1:CAS:528:DC%2BD2sXit1Cgtw%3D%3D

    Article  CAS  Google Scholar 

  46. Tsao C C, Gorovsky M A. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell, 2008, 19: 1450–1461, 18199688, 10.1091/mbc.E07-05-0403

    Article  CAS  Google Scholar 

  47. Scholey J M. Intraflagellar transport. Annu Rev Cell Dev Biol, 2003, 19: 423–443, 14570576, 10.1146/annurev.cellbio.19.111401.091318, 1:CAS:528:DC%2BD3sXpsFamt7g%3D

    Article  CAS  Google Scholar 

  48. Kramer-Zucker A G, Olale F, Haycraft C J, et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development, 2005, 132: 1907–1921, 15790966, 10.1242/dev.01772, 1:CAS:528:DC%2BD2MXktlShsLs%3D

    Article  CAS  Google Scholar 

  49. Tsujikawa M, Malicki J. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron, 2004, 42: 703–716, 15182712, 10.1016/S0896-6273(04)00268-5, 1:CAS:528:DC%2BD2cXlslWhtbg%3D

    Article  CAS  Google Scholar 

  50. Pazour G J, Baker S A, Deane J A, et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol, 2002, 157: 103–113, 11916979, 10.1083/jcb.200107108, 1:CAS:528:DC%2BD38Xis1KnsLY%3D

    Article  CAS  Google Scholar 

  51. Pan J, Snell W J. Signal transduction during fertilization in the unicellular green alga, Chlamydomonas. Curr Opin Microbiol, 2000, 3: 596–602, 11121779, 10.1016/S1369-5274(00)00146-6, 1:CAS:528:DC%2BD3MXis1amsA%3D%3D

    Article  CAS  Google Scholar 

  52. Pazour G J, Agrin N, Leszyk J, et al. Proteomic analysis of a eukaryotic cilium. J Cell Biol, 2005, 170: 103–113, 15998802, 10.1083/jcb.200504008, 1:CAS:528:DC%2BD2MXlvFCnsrg%3D

    Article  CAS  Google Scholar 

  53. Tam L W, Lefebvre P A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics, 1993, 135: 375–384, 8244002, 1:CAS:528:DyaK2cXlt1Khur8%3D

    CAS  Google Scholar 

  54. Pennarun G, Escudier E, Chapelin C, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet, 1999, 65: 1508–1519, 10577904, 10.1086/302683, 1:CAS:528:DC%2BD3cXjvFentQ%3D%3D

    Article  CAS  Google Scholar 

  55. Wheatley D N, Wang A M, Strugnell G E. Expression of primary cilia in mammalian cells. Cell Biol Int, 1996, 20: 73–81, 8936410, 10.1006/cbir.1996.0011, 1:STN:280:ByiD1M%2FltVY%3D

    Article  CAS  Google Scholar 

  56. Storm van’s Gravesande K, Omran H. Primary ciliary dyskinesia: Clinical presentation, diagnosis and genetics. Ann Med, 2005, 37: 439–449, 16203616, 10.1080/07853890510011985

    Article  Google Scholar 

  57. Cowan M J, Gladwin M T, Shelhamer J H. Disorders of ciliary motility. Am J Med Sci, 2001, 321: 3–10, 11202477, 10.1097/00000441-200101000-00002, 1:STN:280:DC%2BD3M7hvVyqsQ%3D%3D

    Article  CAS  Google Scholar 

  58. Ibanez-Tallon I, Pagenstecher A, Fliegauf M, et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet, 2004, 13: 2133–2141, 15269178, 10.1093/hmg/ddh219, 1:CAS:528:DC%2BD2cXnsVyisrc%3D

    Article  CAS  Google Scholar 

  59. Adams N A, Awadein A, Toma H S. The retinal ciliopathies. Ophthalmic Genet, 2007, 28: 113–125, 17896309, 10.1080/13816810701537424, 1:CAS:528:DC%2BD2sXht1amtLrP

    Article  CAS  Google Scholar 

  60. Afzelius B A. Cilia-related diseases. J Pathol, 2004, 204: 470–477, 15495266, 10.1002/path.1652, 1:CAS:528:DC%2BD2cXhtVCgsrjP

    Article  CAS  Google Scholar 

  61. Kulaga H M, Leitch C C, Eichers E R, et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet, 2004, 36: 994–998, 15322545, 10.1038/ng1418, 1:CAS:528:DC%2BD2cXntFSku7o%3D

    Article  CAS  Google Scholar 

  62. Williams D S. Usher syndrome: Animal models, retinal function of Usher proteins, and prospects for gene therapy. Vision Res, 2008, 48: 433–441, 17936325, 10.1016/j.visres.2007.08.015, 1:CAS:528:DC%2BD1cXhtlOmtL0%3D

    Article  CAS  Google Scholar 

  63. Witzgall R. New developments in the field of cystic kidney diseases. Curr Mol Med, 2005, 5: 455–465, 16101475, 10.2174/1566524054553496, 1:CAS:528:DC%2BD2MXmvVyktLk%3D

    Article  CAS  Google Scholar 

  64. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol, 2007, 18: 1855–1871, 17513324, 10.1681/ASN.2006121344, 1:CAS:528:DC%2BD2sXnt1Wjs7g%3D

    Article  CAS  Google Scholar 

  65. Beales P L. Lifting the lid on Pandora’s box: The Bardet-Biedl syndrome. Curr Opin Genet Dev, 2005, 15: 315–323, 15917208, 10.1016/j.gde.2005.04.006, 1:CAS:528:DC%2BD2MXks1Gjsb8%3D

    Article  CAS  Google Scholar 

  66. Ou G, Blacque O E, Snow J J, et al. Functional coordination of intraflagellar transport motors. Nature, 2005, 436: 583–587, 16049494, 10.1038/nature03818, 1:CAS:528:DC%2BD2MXmsFCgsL4%3D

    Article  CAS  Google Scholar 

  67. Nachury M V, Loktev A V, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 2007, 129: 1201–1213, 17574030, 10.1016/j.cell.2007.03.053, 1:CAS:528:DC%2BD2sXntVOnt7Y%3D

    Article  CAS  Google Scholar 

  68. Li G, Vega R, Nelms K, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet, 2007, 3: e8, 17206865, 10.1371/journal.pgen.0030008

    Article  Google Scholar 

  69. Dawe H R, Smith U M, Cullinane A R, et al. The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet, 2007, 16: 173–186, 17185389, 10.1093/hmg/ddl459, 1:CAS:528:DC%2BD2sXhtVKktrc%3D

    Article  CAS  Google Scholar 

  70. Ferrante M I, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet, 2006, 38: 112–117, 16311594, 10.1038/ng1684, 1:CAS:528:DC%2BD2MXhtlCmtr7E

    Article  CAS  Google Scholar 

  71. Arts H H, Doherty D, van Beersum S E, et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet, 2007, 39: 882–888, 17558407, 10.1038/ng2069, 1:CAS:528:DC%2BD2sXmvFKlsLs%3D

    Article  CAS  Google Scholar 

  72. Otto E A, Loeys B, Khanna H, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet, 2005, 37: 282–288, 15723066, 10.1038/ng1520, 1:CAS:528:DC%2BD2MXhsFOqu7k%3D

    Article  CAS  Google Scholar 

  73. Sayer J A, Otto E A, O’Toole J F, et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet, 2006, 38: 674–681, 16682973, 10.1038/ng1786, 1:CAS:528:DC%2BD28XltVOhtb0%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunMin Pan.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30671090 and 30771084), and National Basic Research Program of China (“973” Program) (Grant No. 2007CB914401)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J. Cilia and ciliopathies: From Chlamydomonas and beyond. SCI CHINA SER C 51, 479–486 (2008). https://doi.org/10.1007/s11427-008-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0071-3

Keywords

Navigation