Skip to main content

Pathogenesis of Oxidative Stress and the Destructive Cycle in the Substantia Nigra in Parkinson’s Disease

  • Chapter
  • First Online:
Cortico-Subcortical Dynamics in Parkinson's Disease

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 728 Accesses

The dangers imposed by O2 arise from its electronic structure. It contains two unpaired electrons with parallel spin states, located on the second sheet (L), concretely on 2py and 2pz orbitals. Electrons tend to distribute according to a minimal repulsion, and two electrons with the same spin repel each other with more intensity than when their spins are antiparallel. For these reasons, if O2 is in contact with a reductant molecule, electrons are transferred to O2 one at a time: the first occupies the 2py orbital and the second occupies the 2pz orbital. The first step gives the superoxide ion (O2 ·–), and the second step (linked to the transfer of 2H+) gives hydrogen peroxide (H2O2). Two more electrons are needed to reduce O2 to two molecules of water (Fig. 16.1). Hence this univalent pathway usually needs intermediates, and those intermediates include strongly oxidant reactive oxygen species such as superoxide ions and hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in postmortem substantia nigra of parkinsonian brain. J Neural Trans 1988;74, 199–205.

    Article  CAS  Google Scholar 

  2. Morris CM, Edwardson JA. Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration 1994; 3, 277–82.

    PubMed  CAS  Google Scholar 

  3. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87, 1620–24.

    Article  PubMed  CAS  Google Scholar 

  4. Reif DW, Simmons RD. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 1990, 283: 537–41.

    Article  PubMed  CAS  Google Scholar 

  5. Hirsch EC, Mouatt A, Faucheux B, et al. Dopamine, tremor, and Parkinson's disease. Lancet 1992;340(8811):125–6.

    Article  PubMed  CAS  Google Scholar 

  6. Shapira AHV, Cooper JM, Dexter D. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 1:1269.

    Article  Google Scholar 

  7. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 1997;104: 661–77.

    Article  PubMed  CAS  Google Scholar 

  8. Hunot S, Boissiere F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996; 72, 355–63.

    Article  PubMed  CAS  Google Scholar 

  9. Bolanos JP, Almeida A, Stewart V et al. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997, 68: 2227–40.

    Article  PubMed  CAS  Google Scholar 

  10. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A. 1996, 93:4565–71.

    Article  PubMed  CAS  Google Scholar 

  11. Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999, 5(12):1403–9.

    Article  PubMed  CAS  Google Scholar 

  12. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of a meperidine-analog synthesis. Science 1983;219, 979–80.

    Article  PubMed  CAS  Google Scholar 

  13. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998;70, 2682–75.

    Google Scholar 

  14. Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989;52:381–9.

    Article  PubMed  CAS  Google Scholar 

  15. Yoritaka A, Hattori N, Uchida K, et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 1996; 93(7):2696–701.

    Article  PubMed  CAS  Google Scholar 

  16. Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 1999; 72(4):1617–24.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer MJ, Mosely DE, Amarnath V, Picklo MJ Sr. Metabolism of 4-hydroxy-trans-2-nonenal by central nervous system mitochondria is dependent on age and NAD+ availability. Chem Res Toxicol 2004;17(9):1272–9.

    Article  PubMed  CAS  Google Scholar 

  18. Alam Z.I., Zenner A., Daniel S.A., Lees A.J., Caims N., Marsdem C.D., Jenner P., and Haliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997;69:1196–203.

    Article  PubMed  CAS  Google Scholar 

  19. Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416:507–11.

    Article  PubMed  CAS  Google Scholar 

  20. Hurtig HI, Trojanowski JQ, Galvin J, et al. α-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 2000; 54:1916–21.

    PubMed  CAS  Google Scholar 

  21. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant α-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 2002; 277:38884–94.

    Article  PubMed  CAS  Google Scholar 

  22. Shermann MY, Goldberg A. Involvement of molecular chaperones in intracellular protein breakdown. EXS 1996;77:57–78.

    Google Scholar 

  23. McNaught KSP, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett 2002; 326:150–158.

    Article  Google Scholar 

  24. Zhang J, Perry G, Smith MA, et al. Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999;154(5):1423–9.

    Article  PubMed  CAS  Google Scholar 

  25. Hartley A, Cooper JM, Shapira AH. Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson’s disease. Brain Res 1993; 627: 349–53.

    Article  CAS  Google Scholar 

  26. Hasegawa E, Takeshige K, Oishi T, et al. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 1990; 170: 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  27. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 1994; 63(5):1987–90.

    Article  PubMed  CAS  Google Scholar 

  28. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53: S26–S38.

    Article  PubMed  CAS  Google Scholar 

  29. Ben-Schachar D, Zuk R, Glinka Y. Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 1995; 64: 718–723.

    Article  Google Scholar 

  30. Merad-Boudia M, Nicole A, Santiard-Baron D, Saillé C, Ceballos-Picot I. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem Pharmacol 1998; 56(5):645–655.

    Article  PubMed  CAS  Google Scholar 

  31. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 1999; 55(6):659–65.

    Article  PubMed  CAS  Google Scholar 

  32. Velez-Pardo C, Jimenez Del Rio M, Verschueren H, Ebinger G, Vauquelin G. Dopamine and iron induce apoptosis in PC12 cells. Pharmacol Toxicol 1997; 80(2):76–84.

    Article  PubMed  CAS  Google Scholar 

  33. Olney JW, Ho OL. Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 1970; 227: 609–611.

    Article  PubMed  CAS  Google Scholar 

  34. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdyalisis. J Neurochem 1984, 43:1369–74.

    Article  PubMed  CAS  Google Scholar 

  35. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS. The GluR2 (GluR-B) hypothesis: a Ca2+-permeable AMPA receptors in neurological disorders. Trens Neurosci 1997; 20:464–70.

    Article  CAS  Google Scholar 

  36. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Trans 2000; 60: 277–90.

    Google Scholar 

  37. Hunot S, Vila M, Teismann P, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004; 101(2):665–70.

    Article  PubMed  CAS  Google Scholar 

  38. Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 1996; 142: 313–322.

    Article  PubMed  CAS  Google Scholar 

  39. Nagatsu T, Sawada M. Cellular and molecular mechanisms of Parkinson’s disease: Neurotoxins, Causative Genes, and Inflammatory Cytokines. Cell Mol Neurobiol 2006; 26: 781–802.

    Article  PubMed  CAS  Google Scholar 

  40. Hunot S., Hirsch E.C. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 2003; 53 (suppl 3):S49–S60.

    Article  PubMed  CAS  Google Scholar 

  41. Hunot S, Dugas N, Faucheux B, et al. FcεRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis-alpha in glial cells. J Neurosci 1999; 19:3440–7.

    PubMed  CAS  Google Scholar 

  42. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLD-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38: 1285–1291.

    PubMed  CAS  Google Scholar 

  43. Rowe DB, Le W, Smith RG, Appel SH. Antibodies from patients with Parkinson's disease react with protein modified by dopamine oxidation. J Neurosci Res 1998; 53(5):551–558.

    Article  PubMed  CAS  Google Scholar 

  44. Höglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci USA. 2007; 104(9):3585–90.

    Article  PubMed  Google Scholar 

  45. Fernandez-Espejo E. Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol 2004; 9:15–30.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants to EFE from Junta de Andalucia, Spain (BIO127, and Proyectos de Excelencia, EXC/2006/CVI127-1716), and Red de Tera (Instituto Carlos III, RD06/025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Fernández-Espejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fernández-Espejo, E. (2009). Pathogenesis of Oxidative Stress and the Destructive Cycle in the Substantia Nigra in Parkinson’s Disease. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_16

Download citation

Publish with us

Policies and ethics