Skip to main content

The Link Between Inflammation and Thrombosis

  • Chapter
  • First Online:
Antithrombotic Drug Therapy in Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1248 Accesses

Abstract

Atherosclerosis is an inflammatory disease. This fact is now strongly supported by clinical, basic, and pathological research which has caused an evolution in thought concerning the evaluation and treatment of acute coronary syndromes (ACS). The initial insult is endothelial injury and subsequent dysfunction via the deleterious effects of the known cardiac risk factors such as oxidized LDL, hyperglycemia, hypertension, hyperhomocystinemia, and smoking. Irrespective of the cause of endothelial damage, the resultant activation and proliferation of inflammatory cells, smooth muscle cells, and generation of cytokines and growth factors lead to the progression of atherosclerosis. The presence and extent of inflammation, procoagulant state and composition of the atherosclerotic plaque have been strongly associated with an increased risk of future cardiac events. Thus, the perpetuation of the inflammatory response likely plays a pivotal roIe in the pathobiology and vulnerability of the atherosclerotic plaque. Inflammatory markers once thought to be passive observers are now being investigated as active participants in the progression of atherosclerosis and therefore targets for future pharmacologic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander RW (1994) Inflammation and coronary artery disease. N Engl J Med 331:468–469

    Article  PubMed  CAS  Google Scholar 

  2. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 295:369–377

    Article  PubMed  CAS  Google Scholar 

  3. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  4. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  5. Ross R (1986) The pathogenesis of atherosclerosis – an update. N Engl J Med 314:488–500

    Article  PubMed  CAS  Google Scholar 

  6. Toss H, Lindahl B, Siegbahn A, Wallentin L (1997) Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. Circulation 96:4204–4210

    Article  PubMed  CAS  Google Scholar 

  7. Liuzzo G, Biasucci LM, Gallimore JR et al (1994) The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 331:417–424

    Article  PubMed  CAS  Google Scholar 

  8. Tommasi S, Carluccio E, Bentivoglio M et al (1999) C-reactive protein as a marker for cardiac ischemic events in the year after a first, uncomplicated myocardial infarction. Am J Cardiol 83:1595–1599

    Article  PubMed  CAS  Google Scholar 

  9. Biasucci LM, Liuzzo G, Caligiuri G et al (1996) Temporal relation between ischemic episodes and activation of the coagulation system in unstable angina. Circulation 93:2121–2127

    Article  PubMed  CAS  Google Scholar 

  10. Bhagat K (1998) Endothelial function and myocardial infarction. Cardiovasc Res 39:312–317

    Article  PubMed  CAS  Google Scholar 

  11. Kinlay S, Selwyn AP, Libby P, Ganz P (1998) Inflammation, the endothelium, and the acute coronary syndromes. J Cardiovasc Pharmacol 32(Suppl 3):S62–S66

    PubMed  CAS  Google Scholar 

  12. Noll G, Luscher TF (1998) The endothelium in acute coronary syndromes. Eur Heart J 19(Suppl C):C30–C38

    PubMed  CAS  Google Scholar 

  13. Gonzalez-Amaro R, Diaz-Gonzalez F, Sanchez-Madrid F (1998) Adhesion molecules in inflammatory diseases. Drugs 56:977–988

    Article  PubMed  CAS  Google Scholar 

  14. Petruzzelli L, Takami M, Humes HD (1999) Structure and function of cell adhesion molecules. Am J Med 106:467–476

    Article  PubMed  CAS  Google Scholar 

  15. Frenette PS, Wagner DD (1996) Adhesion molecules – part II: blood vessels and blood cells. N Engl J Med 335:43–45

    Article  PubMed  CAS  Google Scholar 

  16. Frenette PS, Wagner DD (1996) Adhesion molecules – part 1. N Engl J Med 334:1526–1529

    Article  PubMed  CAS  Google Scholar 

  17. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  PubMed  CAS  Google Scholar 

  18. Braun M, Pietsch P, Schror K, Baumann G, Felix SB (1999) Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc Res 41:395–401

    Article  PubMed  CAS  Google Scholar 

  19. Marx N, Neumann FJ, Zohlnhofer D et al (1998) Enhancement of monocyte procoagulant activity by adhesion on vascular smooth muscle cells and intercellular adhesion molecule-1-transfected Chinese hamster ovary cells. Circulation 98:906–911

    Article  PubMed  CAS  Google Scholar 

  20. Phillips DR, Charo IF, Parise LV, Fitzgerald LA (1988) The platelet membrane glycoprotein IIb-IIIa complex. Blood 71:831–843

    PubMed  CAS  Google Scholar 

  21. De Caterina R, Basta G, Lazzerini G et al (1997) Soluble vascular cell adhesion molecule-1 as a biohumoral correlate of atherosclerosis. Arterioscler Thromb Vasc Biol 17:2646–2654

    Article  PubMed  Google Scholar 

  22. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J (1998) Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 351:88–92

    Article  PubMed  CAS  Google Scholar 

  23. Rohde LE, Hennekens CH, Ridker PM (1999) Cross-sectional study of soluble intercellular adhesion molecule-1 and cardiovascular risk factors in apparently healthy men. Arterioscler Thromb Vasc Biol 19:1595–1599

    Article  PubMed  CAS  Google Scholar 

  24. Tenaglia AN, Buda AJ, Wilkins RG et al (1997) Levels of expression of P-selectin, E-selectin, and intercellular adhesion molecule-1 in coronary atherectomy specimens from patients with stable and unstable angina pectoris. Am J Cardiol 79:742–747

    Article  PubMed  CAS  Google Scholar 

  25. Ridker PM, Buring JE, Rifai N (2001) Soluble P-selectin and the risk of future cardiovascular events. Circulation 103:491–495

    Article  PubMed  CAS  Google Scholar 

  26. Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125:191–207

    PubMed  CAS  Google Scholar 

  27. Schmitz G, Herr AS, Rothe G (1998) T-lymphocytes and monocytes in atherogenesis. Herz 23:168–177

    Article  PubMed  CAS  Google Scholar 

  28. Frankenberger M, Sternsdorf T, Pechumer H, Pforte A, Ziegler-Heitbrock HW (1996) Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 87:373–377

    PubMed  CAS  Google Scholar 

  29. Boyle JJ (1997) Association of coronary plaque rupture and atherosclerotic inflammation. J Pathol 181:93–99

    Article  PubMed  CAS  Google Scholar 

  30. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT (1994) Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90:775–778

    Article  PubMed  CAS  Google Scholar 

  31. Dirksen MT, van der Wal AC, van den Berg FM, van der Loos CM, Becker AE (1998) Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98:2000–2003

    Article  PubMed  CAS  Google Scholar 

  32. Shah PK, Falk E, Badimon JJ et al (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569

    PubMed  CAS  Google Scholar 

  33. Hansson GK, Jonasson L, Seifert PS, Stemme S (1989) Immune mechanisms in atherosclerosis. Arteriosclerosis 9:567–578

    Article  PubMed  CAS  Google Scholar 

  34. Caligiuri G, Liuzzo G, Biasucci LM, Maseri A (1998) Immune system activation follows inflammation in unstable angina: pathogenetic implications. J Am Coll Cardiol 32:1295–1304

    Article  PubMed  CAS  Google Scholar 

  35. van der Wal AC, Piek JJ, de Boer OJ et al (1998) Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes. Heart 80:14–18

    PubMed  Google Scholar 

  36. Kaartinen M, Penttila A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90:1669–1678

    Article  PubMed  CAS  Google Scholar 

  37. Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088

    Article  PubMed  CAS  Google Scholar 

  38. Kaartinen M, van der Wal AC, van der Loos CM et al (1998) Mast cell infiltration in acute coronary syndromes: implications for plaque rupture. J Am Coll Cardiol 32:606–612

    Article  PubMed  CAS  Google Scholar 

  39. Laine P, Kaartinen M, Penttila A, Panula P, Paavonen T, Kovanen PT (1999) Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99:361–369

    Article  PubMed  CAS  Google Scholar 

  40. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83:4464–4468

    Article  PubMed  CAS  Google Scholar 

  41. Kaartinen M, Penttila A, Kovanen PT (1996) Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-alpha. Circulation 94:2787–2792

    Article  PubMed  CAS  Google Scholar 

  42. Hibbs MS, Hoidal JR, Kang AH (1987) Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. J Clin Invest 80:1644–1650

    Article  PubMed  CAS  Google Scholar 

  43. Takeshita S, Isshiki T, Ochiai M et al (1997) Systemic inflammatory responses in acute coronary syndrome: increased activity observed in polymorphonuclear leukocytes but not T lymphocytes. Atherosclerosis 135:187–192

    Article  PubMed  CAS  Google Scholar 

  44. Dreyer WJ, Smith CW, Michael LH et al (1989) Canine neutrophil activation by cardiac lymph obtained during reperfusion of ischemic myocardium. Circ Res 65:1751–1762

    Article  PubMed  CAS  Google Scholar 

  45. Smith EF 3rd, Egan JW, Bugelski PJ, Hillegass LM, Hill DE, Griswold DE (1988) Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am J Physiol 255:H1060–H1068

    PubMed  Google Scholar 

  46. Kassirer M, Zeltser D, Prochorov V et al (1999) Increased expression of the CD11b/CD18 antigen on the surface of peripheral white blood cells in patients with ischemic heart disease: further evidence for smoldering inflammation in patients with atherosclerosis. Am Heart J 138:555–559

    Article  PubMed  CAS  Google Scholar 

  47. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318

    Article  PubMed  CAS  Google Scholar 

  48. Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242–250

    Article  PubMed  CAS  Google Scholar 

  49. Fitzgerald DJ, Roy L, Catella F, FitzGerald GA (1986) Platelet activation in unstable coronary disease. N Engl J Med 315:983–989

    Article  PubMed  CAS  Google Scholar 

  50. Celi A, Pellegrini G, Lorenzet R et al (1994) P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 91:8767–8771

    Article  PubMed  CAS  Google Scholar 

  51. Furman MI, Benoit SE, Barnard MR et al (1998) Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 31:352–358

    Article  PubMed  CAS  Google Scholar 

  52. Henn V, Slupsky JR, Grafe M et al (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  53. Lambert MP, Sachais BS, Kowalska MA (2007) Chemokines and thrombogenicity. Thromb Haemost 97:722–729

    PubMed  CAS  Google Scholar 

  54. Braunersreuther V, Mach F, Steffens S (2007) The specific role of chemokines in atherosclerosis. Thromb Haemost 97:714–721

    PubMed  CAS  Google Scholar 

  55. Jialal I, Devaraj S, Venugopal SK (2004) C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 44:6–11

    Article  PubMed  CAS  Google Scholar 

  56. Serrano-Martinez M, Palacios M, Lezaun R (2003) Monocyte chemoattractant protein-1 concentration in coronary sinus blood and severity of coronary disease. Circulation 108:e75

    Article  PubMed  CAS  Google Scholar 

  57. de Lemos JA, Morrow DA, Sabatine MS et al (2003) Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 107:690–695

    Article  PubMed  CAS  Google Scholar 

  58. Horrevoets AJ, Fontijn RD, van Zonneveld AJ, de Vries CJ, ten Cate JW, Pannekoek H (1999) Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes. Blood 93:3418–3431

    PubMed  CAS  Google Scholar 

  59. Rus HG, Niculescu F, Vlaicu R (1991) Tumor necrosis factor-alpha in human arterial wall with atherosclerosis. Atherosclerosis 89:247–254

    Article  PubMed  CAS  Google Scholar 

  60. Ahmad M, Theofanidis P, Medford RM (1998) Role of activating protein-1 in the regulation of the vascular cell adhesion molecule-1 gene expression by tumor necrosis factor-alpha. J Biol Chem 273:4616–4621

    Article  PubMed  CAS  Google Scholar 

  61. Morisaki N, Xu QP, Koshikawa T, Saito Y, Yoshida S, Ueda S (1993) Tumour necrosis factor-alpha can modulate the phenotype of aortic smooth muscle cells. Scand J Clin Lab Invest 53:347–352

    Article  PubMed  CAS  Google Scholar 

  62. Weber C, Draude G, Weber KS, Wubert J, Lorenz RL, Weber PC (1999) Downregulation by tumor necrosis factor-alpha of monocyte CCR2 expression and monocyte chemotactic protein-1-induced transendothelial migration is antagonized by oxidized low-density lipoprotein: a potential mechanism of monocyte retention in atherosclerotic lesions. Atherosclerosis 145:115–123

    Article  PubMed  CAS  Google Scholar 

  63. Barks JL, McQuillan JJ, Iademarco MF (1997) TNF-alpha and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J Immunol 159:4532–4538

    PubMed  CAS  Google Scholar 

  64. Libby P, Sukhova G, Lee RT, Galis ZS (1995) Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol 25(Suppl 2):S9–S12

    Article  PubMed  CAS  Google Scholar 

  65. Galis ZS, Muszynski M, Sukhova GK et al (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75:181–189

    Article  PubMed  CAS  Google Scholar 

  66. Rajavashisth TB, Xu XP, Jovinge S et al (1999) Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99:3103–3109

    Article  PubMed  CAS  Google Scholar 

  67. Dosquet C, Weill D, Wautier JL (1995) Cytokines and thrombosis. J Cardiovasc Pharmacol 25(Suppl 2):S13–S19

    Article  PubMed  CAS  Google Scholar 

  68. Charles P, Elliott MJ, Davis D et al (1999) Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol 163:1521–1528

    PubMed  CAS  Google Scholar 

  69. Biasucci LM, Liuzzo G, Fantuzzi G et al (1999) Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99:2079–2084

    Article  PubMed  CAS  Google Scholar 

  70. Miyao Y, Yasue H, Ogawa H et al (1993) Elevated plasma interleukin-6 levels in patients with acute myocardial infarction. Am Heart J 126:1299–1304

    Article  PubMed  CAS  Google Scholar 

  71. Kushner I, Ganapathi M, Schultz D (1989) The acute phase response is mediated by heterogeneous mechanisms. Ann N Y Acad Sci 557:19–29 discussion 29-30

    Article  PubMed  CAS  Google Scholar 

  72. Bevilacqua MP, Schleef RR, Gimbrone MA Jr, Loskutoff DJ (1986) Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest 78:587–591

    Article  PubMed  CAS  Google Scholar 

  73. Youker K, Smith CW, Anderson DC et al (1992) Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion. J Clin Invest 89:602–609

    Article  PubMed  CAS  Google Scholar 

  74. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  75. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286:2107–2113

    Article  PubMed  CAS  Google Scholar 

  76. Pannitteri G, Marino B, Campa PP, Martucci R, Testa U, Peschle C (1997) Interleukins 6 and 8 as mediators of acute phase response in acute myocardial infarction. Am J Cardiol 80:622–625

    Article  PubMed  CAS  Google Scholar 

  77. Gerszten RE, Garcia-Zepeda EA, Lim YC et al (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    Article  PubMed  CAS  Google Scholar 

  78. Yue TL, McKenna PJ, Gu JL, Feuerstein GZ (1993) Interleukin-8 is chemotactic for vascular smooth muscle cells. Eur J Pharmacol 240:81–84

    Article  PubMed  CAS  Google Scholar 

  79. Folcik VA, Aamir R, Cathcart MK (1997) Cytokine modulation of LDL oxidation by activated human monocytes. Arterioscler Thromb Vasc Biol 17:1954–1961

    Article  PubMed  CAS  Google Scholar 

  80. Edgington TS, Mackman N, Brand K, Ruf W (1991) The structural biology of expression and function of tissue factor. Thromb Haemost 66:67–79

    PubMed  CAS  Google Scholar 

  81. Nie Q, Fan J, Haraoka S, Shimokama T, Watanabe T (1997) Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis. Lab Invest 77:469–482

    PubMed  CAS  Google Scholar 

  82. Mantovani A, Garlanda C, Introna M, Vecchi A (1998) Regulation of endothelial cell function by pro- and anti-inflammatory cytokines. Transplant Proc 30:4239–4243

    Article  PubMed  CAS  Google Scholar 

  83. Mach F, Schonbeck U, Libby P (1998) CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis 137(Suppl):S89–S95

    Article  PubMed  CAS  Google Scholar 

  84. Mohan C, Shi Y, Laman JD, Datta SK (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 154:1470–1480

    PubMed  CAS  Google Scholar 

  85. Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438

    Article  PubMed  CAS  Google Scholar 

  86. Gerritse K, Laman JD, Noelle RJ et al (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93:2499–2504

    Article  PubMed  CAS  Google Scholar 

  87. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–203

    Article  PubMed  CAS  Google Scholar 

  88. Aukrust P, Muller F, Ueland T et al (1999) Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation 100:614–620

    Article  PubMed  CAS  Google Scholar 

  89. Baeuerle PA (1998) IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell 95:729–731

    Article  PubMed  CAS  Google Scholar 

  90. Mercurio F, Manning AM (1999) Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 11:226–232

    Article  PubMed  CAS  Google Scholar 

  91. Lee JI, Burckart GJ (1998) Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol 38:981–993

    Article  PubMed  CAS  Google Scholar 

  92. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  93. Massi-Benedetti M, Federici MO (1999) Cardiovascular risk factors in type 2 diabetes: the role of hyperglycaemia. Exp Clin Endocrinol Diabetes 107(Suppl 4):S120–S123

    Article  PubMed  CAS  Google Scholar 

  94. Dichtl W, Nilsson L, Goncalves I et al (1999) Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ Res 84:1085–1094

    Article  PubMed  CAS  Google Scholar 

  95. Brand K, Eisele T, Kreusel U et al (1997) Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 17:1901–1909

    Article  PubMed  CAS  Google Scholar 

  96. Kranzhofer R, Browatzki M, Schmidt J, Kubler W (1999) Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem Biophys Res Commun 257:826–828

    Article  PubMed  CAS  Google Scholar 

  97. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    Article  PubMed  CAS  Google Scholar 

  98. Bustos C, Hernandez-Presa MA, Ortego M et al (1998) HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol 32:2057–2064

    Article  PubMed  CAS  Google Scholar 

  99. Ritchie ME (1998) Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98:1707–1713

    Article  PubMed  CAS  Google Scholar 

  100. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959

    Article  PubMed  CAS  Google Scholar 

  101. Weber C, Erl W, Pietsch A, Weber PC (1995) Aspirin inhibits nuclear factor-kappa B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation 91:1914–1917

    Article  PubMed  CAS  Google Scholar 

  102. Plutzky J (1999) Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 84:15J–20J

    Article  PubMed  CAS  Google Scholar 

  103. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  104. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    Article  PubMed  CAS  Google Scholar 

  105. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  CAS  Google Scholar 

  106. Marx N, Sukhova G, Murphy C, Libby P, Plutzky J (1998) Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 153:17–23

    Article  PubMed  CAS  Google Scholar 

  107. Chinetti G, Griglio S, Antonucci M et al (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273:25573–25580

    Article  PubMed  CAS  Google Scholar 

  108. Jackson SM, Parhami F, Xi XP et al (1999) Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 19:2094–2104

    Article  PubMed  CAS  Google Scholar 

  109. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125–3131

    Article  PubMed  CAS  Google Scholar 

  110. Delerive P, Martin-Nizard F, Chinetti G et al (1999) Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 85:394–402

    Article  PubMed  CAS  Google Scholar 

  111. Staels B, Koenig W, Habib A et al (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393:790–793

    Article  PubMed  CAS  Google Scholar 

  112. Rubins HB, Robins SJ, Collins D et al (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341:410–418

    Article  PubMed  CAS  Google Scholar 

  113. Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111

    Article  PubMed  CAS  Google Scholar 

  114. Hazen SL (2004) Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol 24:1143–1146

    Article  PubMed  CAS  Google Scholar 

  115. Zhang R, Brennan ML, Fu X et al (2001) Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–2142

    Article  PubMed  CAS  Google Scholar 

  116. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A (2002) Widespread coronary inflammation in unstable angina. N Engl J Med 347:5–12

    Article  PubMed  Google Scholar 

  117. Brennan ML, Penn MS, Van Lente F et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    Article  PubMed  CAS  Google Scholar 

  118. Baldus S, Heeschen C, Meinertz T et al (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445

    Article  PubMed  CAS  Google Scholar 

  119. Meuwese MC, Stroes ES, Hazen SL et al (2007) Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 50:159–165

    Article  PubMed  CAS  Google Scholar 

  120. Heeschen C, Dimmeler S, Hamm CW, Boersma E, Zeiher AM, Simoons ML (2003) Prognostic significance of angiogenic growth factor serum levels in patients with acute coronary syndromes. Circulation 107:524–530

    Article  PubMed  CAS  Google Scholar 

  121. Kugiyama K, Ota Y, Sugiyama S et al (2000) Prognostic value of plasma levels of secretory type II phospholipase A2 in patients with unstable angina pectoris. Am J Cardiol 86:718–722

    Article  PubMed  CAS  Google Scholar 

  122. Mallat Z, Steg PG, Benessiano J et al (2005) Circulating secretory phospholipase A2 activity predicts recurrent events in patients with severe acute coronary syndromes. J Am Coll Cardiol 46:1249–1257

    Article  PubMed  CAS  Google Scholar 

  123. Packard CJ, O’Reilly DS, Caslake MJ et al (2000) Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 343:1148–1155

    Article  PubMed  CAS  Google Scholar 

  124. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425–429

    Article  PubMed  CAS  Google Scholar 

  125. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1:1356–1370

    Article  PubMed  CAS  Google Scholar 

  126. Heeschen C, Dimmeler S, Fichtlscherer S et al (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291:435–441

    Article  PubMed  CAS  Google Scholar 

  127. Yasuda S, Goto Y, Baba T et al (2000) Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 36:115–121

    Article  PubMed  CAS  Google Scholar 

  128. Zimmermann-Gorska I, Kujawa H, Drygas J (1972) Studies of acute phase reactants in myocardial infarction. Pol Med J 11:779–785

    PubMed  CAS  Google Scholar 

  129. Jain VC (1968) An evaluation of C-reactive protein test in acute myocardial infarction. Indian Heart J 20:16–21

    PubMed  CAS  Google Scholar 

  130. Zhang YX, Cliff WJ, Schoefl GI, Higgins G (1999) Coronary C-reactive protein distribution: its relation to development of atherosclerosis. Atherosclerosis 145:375–379

    Article  PubMed  CAS  Google Scholar 

  131. Anzai T, Yoshikawa T, Shiraki H et al (1997) C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 96:778–784

    Article  PubMed  CAS  Google Scholar 

  132. Casscells W, Hathorn B, David M et al (1996) Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347:1447–1451

    Article  PubMed  CAS  Google Scholar 

  133. Stefanadis C, Diamantopoulos L, Vlachopoulos C et al (1999) Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 99:1965–1971

    Article  PubMed  CAS  Google Scholar 

  134. Mora S, Rifai N, Buring JE, Ridker PM (2006) Additive value of immunoassay-measured fibrinogen and high-­sensitivity C-reactive protein levels for predicting incident cardiovascular events. Circulation 114:381–387

    Article  PubMed  CAS  Google Scholar 

  135. Lagrand WK, Visser CA, Hermens WT et al (1999) C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 100:96–102

    Article  PubMed  CAS  Google Scholar 

  136. Toschi V, Gallo R, Lettino M et al (1997) Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95:594–599

    Article  PubMed  CAS  Google Scholar 

  137. Pepys MB, Rowe IF, Baltz ML (1985) C-reactive protein: binding to lipids and lipoproteins. Int Rev Exp Pathol 27:83–111

    PubMed  CAS  Google Scholar 

  138. Volanakis JE (1982) Complement activation by C-reactive protein complexes. Ann N Y Acad Sci 389:235–250

    Article  PubMed  CAS  Google Scholar 

  139. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM (1993) C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 82:513–520

    PubMed  CAS  Google Scholar 

  140. Mazer SP, Rabbani LE (2004) Evidence for C-reactive protein’s role in (CRP) vascular disease: atherothrombosis, immuno-regulation and CRP. J Thromb Thrombolysis 17:95–105

    Article  PubMed  CAS  Google Scholar 

  141. Paffen E, DeMaat MP (2006) C-reactive protein in atherosclerosis: a causal factor? Cardiovasc Res 71:30–39

    Article  PubMed  CAS  Google Scholar 

  142. Singh U, Devaraj S, Jialal I (2005) C-reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells: evidence that C-reactive protein is a procoagulant. Arterioscler Thromb Vasc Biol 25:2216–2221

    Article  PubMed  CAS  Google Scholar 

  143. Devaraj S, Xu DY, Jialal I (2003) C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 107:398–404

    Article  PubMed  CAS  Google Scholar 

  144. Venugopal SK, Devaraj S, Jialal I (2003) C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation 108:1676–1678

    Article  PubMed  CAS  Google Scholar 

  145. Verma S, Wang CH, Li SH et al (2002) A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106:913–919

    Article  PubMed  CAS  Google Scholar 

  146. Yaron G, Brill A, Dashevsky O et al (2006) C-reactive protein promotes platelet adhesion to endothelial cells: a potential pathway in atherothrombosis. Br J Haematol 134:426–431

    Article  PubMed  CAS  Google Scholar 

  147. Danenberg HD, Kantak N, Grad E, Swaminathan RV, Lotan C, Edelman ER (2007) C-reactive protein promotes monocyte-platelet aggregation: an additional link to the inflammatory-thrombotic intricacy. Eur J Haematol 78:246–252

    Article  PubMed  CAS  Google Scholar 

  148. Wang CH, Li SH, Weisel RD et al (2003) C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation 107:1783–1790

    Article  PubMed  CAS  Google Scholar 

  149. Anderson JL, Adams CD, Antman EM et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Circulation 116:e148–e304

    Article  PubMed  Google Scholar 

  150. Cai H, Song C, Endoh I et al (2007) Serum amyloid A induces monocyte tissue factor. J Immunol 178:1852–1860

    PubMed  CAS  Google Scholar 

  151. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–979

    Article  PubMed  CAS  Google Scholar 

  152. Sacks FM, Ridker PM (1999) Lipid lowering and beyond: results from the CARE study on lipoproteins and inflammation. Cholesterol and recurrent events. Herz 24:51–56

    Article  PubMed  CAS  Google Scholar 

  153. Cannon CP, Braunwald E, McCabe CH et al (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    Article  PubMed  CAS  Google Scholar 

  154. Schwartz GG, Olsson AG, Ezekowitz MD et al (2001) Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285:1711–1718

    Article  PubMed  CAS  Google Scholar 

  155. Kinlay S, Schwartz GG, Olsson AG et al (2003) High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation 108:1560–1566

    Article  PubMed  CAS  Google Scholar 

  156. Ridker PM, Rifai N, Pfeffer MA et al (1998) Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 98:839–844

    Article  PubMed  CAS  Google Scholar 

  157. Vaughan CJ, Murphy MB, Buckley BM (1996) Statins do more than just lower cholesterol. Lancet 348:1079–1082

    Article  PubMed  CAS  Google Scholar 

  158. McPherson R, Tsoukas C, Baines MG et al (1993) Effects of lovastatin on natural killer cell function and other immunological parameters in man. J Clin Immunol 13:439–444

    Article  PubMed  CAS  Google Scholar 

  159. Bellosta S, Via D, Canavesi M et al (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18:1671–1678

    Article  PubMed  CAS  Google Scholar 

  160. Pasceri V, Patti G, Nusca A, Pristipino C, Richichi G, Di Sciascio G (2004) Randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation 110:674–678

    Article  PubMed  CAS  Google Scholar 

  161. Nissen SE, Nicholls SJ, Sipahi I et al (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565

    Article  PubMed  CAS  Google Scholar 

  162. Krotz F, Schiele TM, Klauss V, Sohn HY (2005) Selective COX-2 inhibitors and risk of myocardial infarction. J Vasc Res 42:312–324

    Article  PubMed  CAS  Google Scholar 

  163. Cheng JW, Ngo MN (1997) Current perspective on the use of angiotensin-converting enzyme inhibitors in the management of coronary (atherosclerotic) artery disease. Ann Pharmacother 31:1499–1506

    PubMed  CAS  Google Scholar 

  164. Soehnlein O, Schmeisser A, Cicha I et al (2005) ACE inhibition lowers angiotensin-II-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT 1 expression. J Vasc Res 42:399–407

    Article  PubMed  CAS  Google Scholar 

  165. Schmeisser A, Soehnlein O, Illmer T et al (2004) ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression. Biochem Biophys Res Commun 325:532–540

    Article  PubMed  CAS  Google Scholar 

  166. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    Article  PubMed  CAS  Google Scholar 

  167. Dzau VJ, Bernstein K, Celermajer D et al (2002) Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 16:149–160

    Article  PubMed  CAS  Google Scholar 

  168. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  PubMed  CAS  Google Scholar 

  169. Jamieson GA (1997) Pathophysiology of platelet thrombin receptors. Thromb Haemost 78:242–246

    PubMed  CAS  Google Scholar 

  170. Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. J Biol Chem 273:13669–13674

    Article  PubMed  CAS  Google Scholar 

  171. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 97:5255–5260

    Article  PubMed  CAS  Google Scholar 

  172. Coughlin SR, Camerer E (2003) PARticipation in inflammation. J Clin Invest 111:25–27

    PubMed  CAS  Google Scholar 

  173. Cleator JH, Zhu WQ, Vaughan DE, Hamm HE (2006) Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP. Blood 107:2736–2744

    Article  PubMed  CAS  Google Scholar 

  174. Ruggeri ZM (2003) Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 1:1335–1342

    Article  PubMed  CAS  Google Scholar 

  175. Montalescot G, Philippe F, Ankri A et al (1998) Early increase of von Willebrand factor predicts adverse outcome in unstable coronary artery disease: beneficial effects of enoxaparin. French investigators of the ESSENCE trial. Circulation 98:294–299

    Article  PubMed  CAS  Google Scholar 

  176. Collet JP, Montalescot G, Vicaut E et al (2003) Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation 108:391–394

    Article  PubMed  CAS  Google Scholar 

  177. Hanson SR, Griffin JH, Harker LA, Kelly AB, Esmon CT, Gruber A (1993) Antithrombotic effects of thrombin-induced activation of endogenous protein C in primates. J Clin Invest 92:2003–2012

    Article  PubMed  CAS  Google Scholar 

  178. Isermann B, Sood R, Pawlinski R et al (2003) The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 9:331–337

    Article  PubMed  CAS  Google Scholar 

  179. Cheng T, Liu D, Griffin JH et al (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

    Article  PubMed  CAS  Google Scholar 

  180. McCoy C, Matthews SJ (2003) Drotrecogin alfa (recombinant human activated protein C) for the treatment of severe sepsis. Clin Ther 25:396–421

    Article  PubMed  CAS  Google Scholar 

  181. Bernard GR, Ely EW, Wright TJ et al (2001) Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit Care Med 29:2051–2059

    Article  PubMed  CAS  Google Scholar 

  182. Davis LS, Kavanaugh AF, Nichols LA, Lipsky PE (1995) Induction of persistent T cell hyporesponsiveness in vivo by monoclonal antibody to ICAM-1 in patients with rheumatoid arthritis. J Immunol 154:3525–3537

    PubMed  CAS  Google Scholar 

  183. Buerke M, Weyrich AS, Zheng Z, Gaeta FC, Forrest MJ, Lefer AM (1994) Sialyl Lewisx-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest 93:1140–1148

    Article  PubMed  CAS  Google Scholar 

  184. Silver MJ, Sutton JM, Hook S et al (1995) Adjunctive selectin blockade successfully reduces infarct size beyond thrombolysis in the electrolytic canine coronary artery model. Circulation 92:492–499

    Article  PubMed  CAS  Google Scholar 

  185. Myers DD Jr, Wrobleski SK, Longo C et al (2007) Resolution of venous thrombosis using a novel oral small-molecule inhibitor of P-selectin (PSI-697) without anticoagulation. Thromb Haemost 97:400–407

    PubMed  CAS  Google Scholar 

  186. Hannawa KK, Cho BS, Sinha I et al (2006) Attenuation of experimental aortic aneurysm formation in P-selectin knockout mice. Ann N Y Acad Sci 1085:353–359

    Article  PubMed  CAS  Google Scholar 

  187. Burger PC, Wagner DD (2003) Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101:2661–2666

    Article  PubMed  CAS  Google Scholar 

  188. Versaci F, Gaspardone A, Tomai F et al (2002) Immunosuppressive therapy for the prevention of restenosis after coronary artery stent implantation (IMPRESS Study). J Am Coll Cardiol 40:1935–1942

    Article  PubMed  Google Scholar 

  189. Roberts R, DeMello V, Sobel BE (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53:I204–I206

    Article  PubMed  CAS  Google Scholar 

  190. Baker CS, Hall RJ, Evans TJ et al (1999) Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 19:646–655

    Article  PubMed  CAS  Google Scholar 

  191. Schonbeck U, Sukhova GK, Graber P, Coulter S, Libby P (1999) Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155:1281–1291

    Article  PubMed  CAS  Google Scholar 

  192. Bogaty P, Brophy JM, Noel M et al (2004) Impact of prolonged cyclooxygenase-2 inhibition on inflammatory markers and endothelial function in patients with ischemic heart disease and raised C-reactive protein: a randomized placebo-controlled study. Circulation 110:934–939

    Article  PubMed  CAS  Google Scholar 

  193. Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429

    Article  PubMed  CAS  Google Scholar 

  194. Linton MF, Fazio S (2004) Cyclooxygenase-2 and inflammation in atherosclerosis. Curr Opin Pharmacol 4:116–123

    Article  PubMed  CAS  Google Scholar 

  195. Bombardier C, Laine L, Reicin A et al (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 343:1520–1528 2 p following 1528

    Article  PubMed  CAS  Google Scholar 

  196. Bresalier RS, Sandler RS, Quan H et al (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102

    Article  PubMed  CAS  Google Scholar 

  197. Solomon SD, McMurray JJ, Pfeffer MA et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080

    Article  PubMed  CAS  Google Scholar 

  198. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  PubMed  CAS  Google Scholar 

  199. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F (2002) The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol 40:1199–1204

    Article  PubMed  CAS  Google Scholar 

  200. Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG (1999) Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 30:894–899

    Article  PubMed  CAS  Google Scholar 

  201. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    Article  PubMed  CAS  Google Scholar 

  202. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25:1512–1518

    Article  PubMed  CAS  Google Scholar 

  203. Veillard NR, Kwak B, Pelli G et al (2004) Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 94:253–261

    Article  PubMed  CAS  Google Scholar 

  204. Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y (2003) Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb Haemost 89:506–512

    PubMed  CAS  Google Scholar 

  205. Parissis JT, Adamopoulos S, Venetsanou KF, Mentzikof DG, Karas SM, Kremastinos DT (2002) Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. J Interferon Cytokine Res 22:223–229

    Article  PubMed  CAS  Google Scholar 

  206. Walz A, Baggiolini M (1990) Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue-activating peptide III through monocyte proteases. J Exp Med 171:449–454

    Article  PubMed  CAS  Google Scholar 

  207. Holt JC, Yan ZQ, Lu WQ, Stewart GJ, Niewiarowski S (1992) Isolation, characterization, and immunological detection of neutrophil-activating peptide 2: a proteolytic degradation product of platelet basic protein. Proc Soc Exp Biol Med 199:171–177

    PubMed  CAS  Google Scholar 

  208. Smith C, Damas JK, Otterdal K et al (2006) Increased levels of neutrophil-activating peptide-2 in acute coronary syndromes: possible role of platelet-mediated vascular inflammation. J Am Coll Cardiol 48:1591–1599

    Article  PubMed  CAS  Google Scholar 

  209. Kowalska MA, Ratajczak MZ, Majka M et al (2000) Stromal cell-derived factor-1 and macrophage-derived chemokine: 2 chemokines that activate platelets. Blood 96:50–57

    PubMed  CAS  Google Scholar 

  210. Teupser D, Pavlides S, Tan M, Gutierrez-Ramos JC, Kolbeck R, Breslow JL (2004) Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci USA 101:17795–17800

    Article  PubMed  CAS  Google Scholar 

  211. Koenig W, Sund M, Frohlich M et al (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242

    Article  PubMed  CAS  Google Scholar 

  212. Ridker PM, Glynn RJ, Hennekens CH (1998) C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 97:2007–2011

    Article  PubMed  CAS  Google Scholar 

  213. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98:731–733

    Article  PubMed  CAS  Google Scholar 

  214. Gaspardone A, Crea F, Versaci F et al (1998) Predictive value of C-reactive protein after successful coronary-artery stenting in patients with stable angina. Am J Cardiol 82:515–518

    Article  PubMed  CAS  Google Scholar 

  215. Liuzzo G, Baisucci LM, Gallimore JR et al (1999) Enhanced inflammatory response in patients with preinfarction unstable angina. J Am Coll Cardiol 34:1696–1703

    Article  PubMed  CAS  Google Scholar 

  216. Biasucci LM, Liuzzo G, Grillo RL et al (1999) Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 99:855–860

    Article  PubMed  CAS  Google Scholar 

  217. Milazzo D, Biasucci LM, Luciani N et al (1999) Elevated levels of C-reactive protein before coronary artery bypass grafting predict recurrence of ischemic events. Am J Cardiol 84:459–461 A9

    Article  PubMed  CAS  Google Scholar 

  218. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349:462–466

    Article  PubMed  CAS  Google Scholar 

  219. Verheggen PW, de Maat MP, Cats VM et al (1999) Inflammatory status as a main determinant of outcome in patients with unstable angina, independent of coagulation activation and endothelial cell function. Eur Heart J 20:567–574

    Article  PubMed  CAS  Google Scholar 

  220. Biasucci LM, Vitelli A, Liuzzo G et al (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94:874–877

    Article  PubMed  CAS  Google Scholar 

  221. Morrow DA, Rifai N et al (1998) C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in myocardial infarction. J Am Coll Cardiol 31:1460–1465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cleator, J.H., Robbins, M. (2010). The Link Between Inflammation and Thrombosis. In: Askari, A., Lincoff, A. (eds) Antithrombotic Drug Therapy in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-235-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-235-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-234-6

  • Online ISBN: 978-1-60327-235-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics