Skip to main content

The Role of the Gastrointestinal Hormones Ghrelin, Peptide YY, and Glucagon-like Peptide-1 in the Regulation of Energy Balance

  • Chapter
Energy Metabolism and Obesity

Part of the book series: Contemporary Endocrinology ((COE))

  • 1138 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 1902;28:325.

    PubMed  CAS  Google Scholar 

  2. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    Article  PubMed  CAS  Google Scholar 

  3. Tomasetto C, Karam SM, Ribieras S, et al. Identification and characterization of a novel gastric peptide hormone: the motilin-related peptide. Gastroenterology 2000;119:395–405.

    Article  PubMed  CAS  Google Scholar 

  4. Sheppard P, Deisher T. Patent application 1998;WO 98/42840, 01.10.

    Google Scholar 

  5. Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem 2000;275:21995–22000.

    Article  PubMed  CAS  Google Scholar 

  6. Gualillo O, Lago F, Gomez-Reino J, Casanueva FF, Dieguez C. Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and mechanism of action. FEBS Lett 2003;552:105–109.

    Article  PubMed  CAS  Google Scholar 

  7. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000;141:4325–4328.

    Article  PubMed  CAS  Google Scholar 

  8. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001;50:1714–1719.

    Article  PubMed  CAS  Google Scholar 

  9. Callahan HS, Cummings DE, Pepe MS, Breen PA, Matthys CC, Weigle DS. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J Clin Endocrinol Metab 2004;89:1319–1324.

    Article  PubMed  CAS  Google Scholar 

  10. Otto B, Cuntz U, Fruehauf E, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 2001;145:669–673.

    Article  PubMed  CAS  Google Scholar 

  11. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001;50:707–709.

    Article  PubMed  CAS  Google Scholar 

  12. Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol 2001;280:R1483–R1487.

    CAS  Google Scholar 

  13. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 2001;86:4753–4758.

    Article  PubMed  CAS  Google Scholar 

  14. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 2002;87:240–244.

    Article  PubMed  CAS  Google Scholar 

  15. Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 2002;8:643–644.

    Article  PubMed  CAS  Google Scholar 

  16. Korbonits M, Grossman AB. Ghrelin: update on a novel hormonal system. Eur J Endocrinol 2004;151:S67–70.

    Article  PubMed  CAS  Google Scholar 

  17. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 2000;141:4797–4800.

    Article  PubMed  CAS  Google Scholar 

  18. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature 2001;409:194–198.

    Article  PubMed  CAS  Google Scholar 

  19. Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M. Minireview: ghrelin and the regulation of energy balance—a hypothalamic perspective. Endocrinology 2001;142:4163–4169.

    Article  PubMed  CAS  Google Scholar 

  20. Zigman JM, Elmquist JK. Minireview: from anorexia to obesity—the yin and yang of body weight control. Endocrinology 2003;144:3749–3756.

    Article  PubMed  CAS  Google Scholar 

  21. Tamura H, Kamegai J, Shimizu T, Ishii S, Sugihara H, Oikawa S. Ghrelin stimulates GH but not food intake in arcuate nucleus ablated rats. Endocrinology 2002;143:3268–3275.

    Article  PubMed  CAS  Google Scholar 

  22. Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ. Hyperphagic effects of brainstem ghrelin administration. Diabetes 2003;52:2260–2265.

    Article  PubMed  CAS  Google Scholar 

  23. Tschop M, Statnick MA, Suter TM, Heiman ML. GH-releasing peptide-2 increases fat mass in mice lacking NPY: indication for a crucial mediating role of hypothalamic agouti-related protein. Endocrinology 2002;143:558–568.

    Article  PubMed  CAS  Google Scholar 

  24. Choi K, Roh SG, Hong YH, et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 2003;144:754–759.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson NM, Gill DA, Davies R, Loveridge N, Houston PA, Robinson IC, Wells T. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology 2004;145:234–242.

    Article  PubMed  CAS  Google Scholar 

  26. Otto V, Fasshauer M, Dalski A, Meier B, Perwitz N, Klein HH, Tschop M, Klein J. Direct peripheral effects of ghrelin include suppression of adiponectin expression. Horm Metab Res 2002;34: 640–645.

    Article  Google Scholar 

  27. Masuda Y, Tanaka T, Inomata N, et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun 2000;276:905–908.

    Article  PubMed  CAS  Google Scholar 

  28. Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun 2001;280:904–907.

    Article  PubMed  CAS  Google Scholar 

  29. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120:337–345.

    Article  PubMed  CAS  Google Scholar 

  30. Lee HM, Wang G, Englander EW, Kojima M, Greeley GH Jr. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 2002;143:185–190.

    Article  PubMed  CAS  Google Scholar 

  31. Broglio F, Benso A, Gottero C, et al. Non-acylated ghrelin does not possess the pituitaric and pancreatic endocrine activity of acylated ghrelin in humans. J Endocrinol Invest 2003;26:192–196.

    PubMed  CAS  Google Scholar 

  32. McCowen KC, Maykel JA, Bistrian BR, Ling PR. Circulating ghrelin concentrations are lowered by intravenous glucose or hyperinsulinemic euglycemic conditions in rodents. J Endocrinol 2002; 175:R7–11.

    Article  PubMed  CAS  Google Scholar 

  33. Mohlig M, Spranger J, Otto B, Ristow M, Tschop M, Pfeiffer AF. Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans. J Endocrinol Invest 2002; 25:RC36–38.

    PubMed  CAS  Google Scholar 

  34. Saad MF, Bernaba B, Hwu CM, Jinagouda S, Fahmi S, Kogosov E, Boyadjian R. Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 2002;87:3997–4000.

    Article  PubMed  CAS  Google Scholar 

  35. Flanagan DE, Evans ML, Monsod TP, Rife F, Heptulla RA, Tamborlane WV, Sherwin RS. The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab 2003;284:E313–316.

    PubMed  CAS  Google Scholar 

  36. Rudovich NN, Dick D, Moehlig M, et al. Ghrelin is not suppressed in hyperglycemic clamps by gastric inhibitory polypeptide and arginine. Regul Pept 2005;127:95–99.

    Article  PubMed  CAS  Google Scholar 

  37. Date Y, Nakazato M, Hashiguchi S, et al. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002;51:124–129.

    Article  PubMed  CAS  Google Scholar 

  38. Volante M, Allia E, Gugliotta P, et al. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 2002;87:1300–1308.

    Article  PubMed  CAS  Google Scholar 

  39. Pagotto U, Gambineri A, Vicennati V, Heiman ML, Tschop M, Pasquali R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. J Clin Endocrinol Metab 2002;87:5625–5629.

    Article  PubMed  CAS  Google Scholar 

  40. Schaller G, Schmidt A, Pleiner J, Woloszczuk W, Wolzt M, Luger A. Plasma ghrelin concentrations are not regulated by glucose or insulin: a double-blind, placebo-controlled crossover clamp study. Diabetes 2003;52:16–20.

    Article  PubMed  CAS  Google Scholar 

  41. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A 2004;101:4679–4684.

    Article  PubMed  CAS  Google Scholar 

  42. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003;23:7973–7981.

    Article  PubMed  CAS  Google Scholar 

  43. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996;381:415–421.

    Article  PubMed  CAS  Google Scholar 

  44. Qian S, Chen H, Weingarth D, et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 2002;22:5027–5035.

    Article  PubMed  CAS  Google Scholar 

  45. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A 2004;101:8227–8232.

    Article  PubMed  CAS  Google Scholar 

  46. Zigman JM, Nakano Y, Coppari R, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 2005;115:3564–3572.

    Article  PubMed  CAS  Google Scholar 

  47. Grove KL, Cowley MA. Is ghrelin a signal for the development of metabolic systems? J Clin Invest 2005;115:3393–3397.

    Article  PubMed  CAS  Google Scholar 

  48. Shuto Y, Shibasaki T, Otagiri A, et al. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 2002;109:1429–1436.

    Article  PubMed  CAS  Google Scholar 

  49. Kamegai J, Wakabayashi I, Miyamoto K, Unterman TG, Kineman RD, Frohman LA. Growth hormone-dependent regulation of pituitary GH secretagogue receptor (GHS-R) mRNA levels in the spontaneous dwarf Rat. Neuroendocrinology 1998;68:312–318.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 2005;310:996–999.

    Article  PubMed  CAS  Google Scholar 

  51. Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 1980;285:417–418.

    Article  PubMed  CAS  Google Scholar 

  52. Ali-Rachedi A, Varndell IM, Adrian TE, Gapp DA, Van Noorden S, Bloom SR, Polak JM. Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry 1984;80:487–491.

    Article  PubMed  CAS  Google Scholar 

  53. El-Salhy M, Wilander E, Juntti-Berggren L, Grimelius L. The distribution and ontogeny of polypeptide YY (PYY)- and pancreatic polypeptide (PP)-immunoreactive cells in the gastrointestinal tract of rat. Histochemistry 1983;78:53–60.

    Article  PubMed  CAS  Google Scholar 

  54. Leduque P, Paulin C, Dubois PM. Immunocytochemical evidence for a substance related to the bovine pancreatic polypeptide-peptide YY group of peptides in the human fetal gastrointestinal tract. Regul Pept 1983;6:219–230.

    Article  PubMed  CAS  Google Scholar 

  55. Pappas TN, Debas HT, Taylor IL. Peptide YY: metabolism and effect on pancreatic secretion in dogs. Gastroenterology 1985;89:1387–1392.

    PubMed  CAS  Google Scholar 

  56. Lundberg JM, Terenius L, Hokfelt T, Tatemoto K. Comparative immunohistochemical and biochemical analysis of pancreatic polypeptide-like peptides with special reference to presence of neuropeptide Y in central and peripheral neurons. J Neurosci 1984;4:2376–2386.

    PubMed  CAS  Google Scholar 

  57. Dumont Y, Fournier A, St-Pierre S, Quirion R. Autoradiographic distribution of [125I]Leu31,Pro34] PYY and [125I]PYY3-36 binding sites in the rat brain evaluated with two newly developed Y1 and Y2 receptor radioligands. Synapse 1996;22:139–158.

    Article  PubMed  CAS  Google Scholar 

  58. Lynch DR, Walker MW, Miller RJ, Snyder SH. Neuropeptide Y receptor binding sites in rat brain: differential autoradiographic localizations with 125I-peptide YY and 125I-neuropeptide Y imply receptor heterogeneity. J Neurosci 1989;9:2607–2619.

    PubMed  CAS  Google Scholar 

  59. Yang H, Li WP, Reeve JR Jr, Rivier J, Tache Y. PYY-preferring receptor in the dorsal vagal complex and its involvement in PYY stimulation of gastric acid secretion in rats. Br J Pharmacol 1998;123:1549–1554.

    Article  PubMed  CAS  Google Scholar 

  60. Grandt D, Schimiczek M, Beglinger C, Layer P, Goebell H, Eysselein VE, Reeve JR Jr. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1–36 and PYY 3–36. Regul Pept 1994;51:151–159.

    Article  PubMed  CAS  Google Scholar 

  61. Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(1–36). Peptides 1989;10:797–803.

    Article  PubMed  CAS  Google Scholar 

  62. Morley JE, Levine AS, Grace M, Kneip J. Peptide YY (PYY), a potent orexigenic agent. Brain Res 1985;341:200–203.

    Article  PubMed  CAS  Google Scholar 

  63. Harding RK, McDonald TJ. Identification and characterization of the emetic effects of peptide YY. Peptides 1989;10:21–24.

    Article  PubMed  CAS  Google Scholar 

  64. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med 2003;349:941–948.

    Article  PubMed  CAS  Google Scholar 

  65. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002;418:650–654.

    Article  PubMed  CAS  Google Scholar 

  66. Pittner RA, Moore CX, Bhavsar SP, et al. Effects of PYY[3–36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord 2004;28:963–971.

    Article  PubMed  CAS  Google Scholar 

  67. Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of peptide YY(3–36) potently inhibits food intake in rats. Endocrinology 2005;146:879–888.

    Article  PubMed  CAS  Google Scholar 

  68. Tschop M, Castaneda TR, Joost HG, et al. Physiology: does gut hormone PYY3–36 decrease food intake in rodents? Nature 2004;430:165.

    Article  CAS  Google Scholar 

  69. Halatchev IG, Ellacott KL, Fan W, Cone RD. Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology 2004;145:2585–2590.

    Article  PubMed  CAS  Google Scholar 

  70. Riediger T, Bothe C, Becskei C, Lutz TA. Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 2004;79:317–326.

    Article  PubMed  CAS  Google Scholar 

  71. Challis BG, Pinnock SB, Coll AP, Carter RN, Dickson SL, O’Rahilly S. Acute effects of hPYY3–36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun 2003;311:915–919.

    Article  PubMed  CAS  Google Scholar 

  72. Challis BG, Coll AP, Yeo GS, et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3–36). Proc Natl Acad Sci U S A 2004;101:4695–4700.

    Article  PubMed  CAS  Google Scholar 

  73. Marsh DJ, Hollopeter G, Huszar D, et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999;21:119–122.

    Article  PubMed  CAS  Google Scholar 

  74. Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology 2005;146:2369–2375.

    Article  PubMed  CAS  Google Scholar 

  75. Edwards CM, Abbott CR, Sunter D, et al. Cocaine- and amphetamine-regulated transcript, glucagon-like peptide-1 and corticotrophin releasing factor inhibit feeding via agouti-related protein independent pathways in the rat. Brain Res 2000;866:128–134.

    Article  PubMed  CAS  Google Scholar 

  76. Halatchev IG, Cone RD. Peripheral administration of PYY(3–36) produces conditioned taste aversion in mice. Cell Metab 2005;1:159–168.

    Article  PubMed  CAS  Google Scholar 

  77. Holst JJ. Enteroglucagon. Annu Rev Physiol 1997;59:257–271.

    Article  PubMed  CAS  Google Scholar 

  78. Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastro- enterology 2002;122:531–544.

    Article  CAS  Google Scholar 

  79. Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like hpeptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 2003;81:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  80. Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995;56:117–126.

    PubMed  CAS  Google Scholar 

  81. Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. Endocrinology 1993;133:233–240.

    Article  PubMed  CAS  Google Scholar 

  82. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136:3585–3596.

    Article  PubMed  CAS  Google Scholar 

  83. Hartmann B, Thulesen J, Kissow H, et al. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinology 2000;141: 4013–4020.

    Article  PubMed  CAS  Google Scholar 

  84. Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379:69–72.

    Article  PubMed  CAS  Google Scholar 

  85. Meeran K, O’Shea D, Edwards CM, et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology 1999;140:244–250.

    Article  PubMed  CAS  Google Scholar 

  86. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998;101:515–520.

    Article  PubMed  CAS  Google Scholar 

  87. Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999;23:304–311.

    Article  PubMed  CAS  Google Scholar 

  88. Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J, Beglinger C. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276:R1541–1544.

    PubMed  CAS  Google Scholar 

  89. Lachey JL, D’Alessio DA, Rinaman L, Elmquist JK, Drucker DJ, Seeley RJ. The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: differential effects in rats and mice. Endocrinology 2005;146:458–462.

    Article  PubMed  CAS  Google Scholar 

  90. Kinzig KP, D’Alessio DA, Seeley RJ. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 2002;22:10470–10476.

    PubMed  CAS  Google Scholar 

  91. Seeley RJ, Blake K, Rushing PA, Benoit S, Eng J, Woods SC, D’Alessio D. The role of CNS glucagon-like peptide-1 (7–36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 2000;20:1616–1621.

    PubMed  CAS  Google Scholar 

  92. Thiele TE, Van Dijk G, Campfield LA, et al. Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats. Am J Physiol 1997;272:R726–730.

    PubMed  CAS  Google Scholar 

  93. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG; GWAA Study Group. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005;143:559–569.

    PubMed  Google Scholar 

  94. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 1999;403:261–280.

    Article  PubMed  CAS  Google Scholar 

  95. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 1997;138:4445–4455.

    Article  PubMed  CAS  Google Scholar 

  96. Van Dijk G, Lindskog S, Holst JJ, Steffens AB, Ahren B. Effects of glucagon-like peptide-I on glucose turnover in rats. Am J Physiol 1996;270:E1015–1021.

    PubMed  Google Scholar 

  97. Hwa JJ, Ghibaudi L, Williams P, Witten MB, Tedesco R, Strader CD. Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides 1998;19:869–875.

    Article  PubMed  CAS  Google Scholar 

  98. Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide 1(7–36) amide’s central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment. Diabetes 1998;47:530–537.

    Article  PubMed  CAS  Google Scholar 

  99. Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller M, Sheikh SP. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271:R848–856.

    PubMed  CAS  Google Scholar 

  100. McMahon LR, Wellman PJ. PVN infusion of GLP-1-(7-36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am J Physiol 1998;274:R23–29.

    PubMed  CAS  Google Scholar 

  101. McMahon LR, Wellman PJ. Decreased intake of a liquid diet in nonfood-deprived rats following intra-PVN injections of GLP-1 (7-36) amide. Pharmacol Biochem Behav 1997;58:673–677.

    Article  PubMed  CAS  Google Scholar 

  102. Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999;22: 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  103. Delgado-Aros S, Kim DY, Burton DD, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 2002;282:G424–431.

    PubMed  CAS  Google Scholar 

  104. Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci 2002;18:7–14.

    Article  PubMed  CAS  Google Scholar 

  105. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996;2:1254–1258

    Article  PubMed  CAS  Google Scholar 

  106. Drucker DJ. Glucagon-like peptide 2. Trends Endocrinol Metab 1999;10:153–156.

    Article  PubMed  CAS  Google Scholar 

  107. Jeppesen PB. Clinical significance of GLP-2 in short-bowel syndrome. J Nutr 2003;133:3721–3724.

    PubMed  CAS  Google Scholar 

  108. Munroe DG, Gupta AK, Kooshesh F, et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci U S A 1999;96:1569–1573.

    Article  PubMed  CAS  Google Scholar 

  109. Chance WT, Foley-Nelson T, Thomas I, Balasubramaniam A. Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2. Am J Physiol 1997;273:G559–563.

    PubMed  CAS  Google Scholar 

  110. Tavakkolizadeh A, Shen R, Abraham P, et al. Glucagonlike peptide 2 (glp-2) promotes intestinal recovery following chemotherapy-induced enteritis. Curr Surg 2000;57:502.

    Article  PubMed  Google Scholar 

  111. Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 2000;6:802–807.

    Article  PubMed  CAS  Google Scholar 

  112. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol 1997;273:E77–84.

    PubMed  CAS  Google Scholar 

  113. Sorensen LB, Flint A, Raben A, Hartmann B, Holst JJ, Astrup A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int J Obes Relat Metab Disord 2003;27:450–456.

    Article  PubMed  CAS  Google Scholar 

  114. Schmidt PT, Naslund E, Gryback P, Jacobsson H, Hartmann B, Holst JJ, Hellstrom PM. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept 2003;116:21–25.

    Article  PubMed  CAS  Google Scholar 

  115. Dakin CL, Small CJ, Park AJ, Seth A, Ghatei MA, Bloom SR. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 2002;283:E1173–1177.

    PubMed  CAS  Google Scholar 

  116. Gros L, Thorens B, Bataille D, Kervran A. Glucagon-like peptide-1-(7-36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology 1993;133:631–638.

    Article  PubMed  CAS  Google Scholar 

  117. Schepp W, Dehne K, Riedel T, Schmidtler J, Schaffer K, Classen M. Oxyntomodulin: a cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like peptide-1 (7–36)NH2. Digestion 1996;57:398–405.

    PubMed  CAS  Google Scholar 

  118. Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001;142:4244–4250.

    Article  PubMed  CAS  Google Scholar 

  119. Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 2002;110:43–52.

    Article  PubMed  CAS  Google Scholar 

  120. Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004;145:2687–2695.

    Article  PubMed  CAS  Google Scholar 

  121. Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003;88:4696–4701.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Nogueiras, R., Wilson, H., Perez-Tilve, D., Tschöp, M.H. (2007). The Role of the Gastrointestinal Hormones Ghrelin, Peptide YY, and Glucagon-like Peptide-1 in the Regulation of Energy Balance. In: Donohoue, P.A. (eds) Energy Metabolism and Obesity. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-139-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-139-4_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-671-9

  • Online ISBN: 978-1-60327-139-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics