Skip to main content

Enterococcus and its Association with Foodborne Illness

  • Chapter
Foodborne Diseases

Part of the book series: Infectious Disease ((ID))

Abstract

Enterococci are an important group of bacteria and their interaction with humans is complex. On one hand, enterococci are part of the normal flora of humans and animals, and some of their strains are used for the manufacturing of foods or as probiotics, whereas others are known to cause serious diseases in humans. With the emergence of enterococci as the third most common cause of nosocomial blood-stream infections (1) as well as the alarming rise in enterococci resistance to multiple antimicrobials, more concentrated effort has been invested in the better understanding of this versatile microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, R. N., Marshall, S. A., Pfaller, M. A., et al. (1997) Nosocomial enterococcal blood stream infections in the SCOPE Program: antimicrobial resistance, species occurrence, molecular testing results, and laboratory testing accuracy. SCOPE Hospital Study Group. Diagn. Microbiol. Infect. Dis. 29, 95–102.

    Article  PubMed  CAS  Google Scholar 

  2. Teixeira, L. M. and Facklam, R. R. (2003) Enterococcus. In: Manual of Clinical Microbiology (Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A., and Yolker, H. Y., eds.), 8th edn, ASM, Washington, DC, pp. 422–429.

    Google Scholar 

  3. Facklam, R. R., Carvalho, M. G. S., and Teixeira, L. M. (2002) History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. In: The Enterococci. Pathogenesis, Molecular Biology, and Antibiotic Resistance (Gilmore, M. S., ed.), ASM, Washington, DC, pp. 1–54.

    Google Scholar 

  4. Moellering, R. C. Jr. (2000) Enterococcus species, Streptococcus bovis, and Leuconostoc species. In: Mandell’s, Bennett’s and Dolin’s Principles and Practice of Infectious Diseases (Mandell, D., Bennett, J. E., and Dolin, R., eds.), 5th edn, Churchill Livingstone, Philadelphia, PA, pp. 2147–2152.

    Google Scholar 

  5. Franz, C. M., Holzapfel, W. H., and Stiles, M. E. (1999) Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47, 1–24.

    Article  PubMed  CAS  Google Scholar 

  6. Carvalho, M. D. G., Steigerwalt, A. G., Morey, R. E., Shewmaker, P. L., Teixeira, L. M., and Facklam, R. R. (2004) Characterization of three new enterococcal species, Enterococcus sp. Nov. CDC PNS-E1, Enterococcus sp. Nov. CDC PNS-E2, and Enterococcus sp. Nov. CDC PNS-E3, isolated from human clinical specimens. J. Clin. Microbiol. 42, 1192–1198.

    Article  Google Scholar 

  7. Aarestrup, F. M., Butaye, P., and Witte, W. (2002) Nonhuman reservoirs of enterococci. In: The Enterococci. Pathogenesis, Molecular Biology, and Antibiotic Resistance (Gilmore, M. S., ed.), ASM, Washington, DC, pp. 55–99.

    Google Scholar 

  8. Eaton, T. J. and Gasson, M. J. (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67(4), 1628–1635.

    Article  PubMed  CAS  Google Scholar 

  9. International Commission on Microbiological Specifications for Foods. (1978) Microorganisms in foods. 1. Their significance and methods of enumeration, 2nd edn. University of Toronto Press, Toronto.

    Google Scholar 

  10. Giraffa, G. (2002) Enterococci form foods. FEMS Microbiol. Rev. 26(2), 163–171.

    Article  PubMed  CAS  Google Scholar 

  11. Andrighetto, C., Knijff, E., Lombardi, A., et al. (2001) Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. J. Diary Res. 68(2), 303–316.

    Article  CAS  Google Scholar 

  12. Donabedian, S. M., Thal, L. A., Hershberger, E., et al. (2003) Molecular characterization of gentamycin-resistant Enterococci in the United States: evidence of spread form animals to humans through food. J. Clin. Microbiol. 41, 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  13. Tannock, G. W. and Cook, G. (2002) Enterococci as members of the intestinal microflora of humans. In: The Enterococci. Pathogenesis, Molecular Biology, and Antibiotic Resistance (Gilmore, M. S., ed.), ASM, Washington, DC, pp. 101–132.

    Google Scholar 

  14. Jett, B. D., Huycke, M. M., and Gilmore, M. S. (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7, 462–478.

    PubMed  CAS  Google Scholar 

  15. Gilmore, M. S. and Ferretti, J. J. (2003) The thin line between gut commensal and pathogen. Science 299, 1999, 2001–2002.

    Google Scholar 

  16. Stiles, M. E. (1989) Less recognized or presumptive foodborne pathogenic bacteria. In: Foodborne Bacterial Pathogens (Doyle, M. P., ed.), Marcel Dekker, New York, pp. 674–735.

    Google Scholar 

  17. Riemann, H. and Bryan, F. L. (eds.) (1979) Foodborne Infections and Intoxications, 2nd edn, Academic, New York.

    Google Scholar 

  18. Giraffa, G., Carminati, D., and Neviani, E. (1997) Enterococci isolated from diary products: a review of risks and potential technological use. J. Food Prot. 60, 732–738.

    Google Scholar 

  19. Giraffa, G., Pepe, G., Locci, F., Neviani, E., and Carminati, D. (1995) Hemolytic activity, production of thermonuclease and biogenic amines by dairy enterococci. Ital. J. Food Sci. 7, 341–349.

    CAS  Google Scholar 

  20. Bover Cid, S., Hugas, M., Izquierdo-Pulido, M., and Vidal-Carou, M. C. (2001) Amino aciddecarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 66, 185–189.

    Article  PubMed  CAS  Google Scholar 

  21. Boulanger, J. M., Ford-Jones, E. L., and Matlow, A. G. (1991) Enterococcal bacteremia in a pediatric institution: a four-year review. Rev. Infect Dis. 13, 847–856.

    PubMed  CAS  Google Scholar 

  22. Bryan, C. S., Reynolds, K. L., and Brown, J. J. (1985) Mortality associated with enterococcal bacteremia. Surg. Gynecol. Obstet. 160, 557–561.

    PubMed  CAS  Google Scholar 

  23. Graninger, W. and Ragette, R. (1992) Nosocmial bacteremia due to Enterococcus faecalis without endocarditis. Clin. Infect. Dis. 15, 49–57.

    PubMed  CAS  Google Scholar 

  24. Gullberg, R. M., Homann, S. R., and Phair, J. P. (1989) Enterococcal bacteremia: analysis of 75 episodes. Rev. Infect. Dis. 11, 74–85.

    PubMed  CAS  Google Scholar 

  25. Jones, W. G., Barie, P. S., Yurt, R. W., and Goodwin, C. W. (1986) Enterococcal burn sepsis: a highly lethal complication in severely burned patients. Arch. Surg. 121, 649–652.

    PubMed  CAS  Google Scholar 

  26. Landry, S. L., Kaiser, D. L., and Wenzel, R. P. (1989) Hospital stay and mortality attributed to nosocomial enterococcal bacteremia: a controlled study. Am. J. Infect. Control 17, 323–329.

    Article  PubMed  CAS  Google Scholar 

  27. Malone, D. A., Wagner, R. A., Myers, J. P., and Watanakunakorn, C. (1986) Enterococcal bacteremia in two large community teaching hospitals. Am. J. Med. 81, 601–606.

    Article  PubMed  CAS  Google Scholar 

  28. Rimailho, A., Lampl, E., Riou, B., Richard, C. Rottman, E., and Auzepy, P. (1988) Enterococcal bacteremia in an intensive care unit. Crit. Care Med. 16, 126–129.

    Article  PubMed  CAS  Google Scholar 

  29. Schlaes, D. M., Levy, J., and Wolinsky, E. (1981) Enterococcal bacteremia without endocarditis. Arch. Intern. Med. 141, 578–581.

    Article  Google Scholar 

  30. Zervos, M. J., Kauffman, C. A., Tharasse, P. M., Bergman, A. G., Mikesell, T. S., and Schaberg, D. R. (1987) Nosocomial infection by gentamicin-resistant Streptococcus faecalis: an epidemiologic study. Ann. Intern. Med. 106, 687–691.

    PubMed  CAS  Google Scholar 

  31. Vergis, E. N., Hayden, M. K., Chow, J. W., et al. (2001) Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia: a prospective multicenter study. Ann. Intern. Med. 135, 484–492.

    PubMed  CAS  Google Scholar 

  32. Weinstein, M. P., Murphy, J. R., Reller, L. B., and Lichtenstein, K. A. (1983) The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. II. Clinical observations, with reference to factors influencing prognosis. Rev. Infect. Dis. 5, 54–69.

    PubMed  CAS  Google Scholar 

  33. Jett, B. D., Jensen, H. G., Nordquist, R. E., and Gilmore, M. S. (1992) Contribution of the pAD1-encoded cytollysin to the severity of experimental Enterococcus faecalis endophtalmitis. Infect. Immun. 60, 2445–2452.

    PubMed  CAS  Google Scholar 

  34. Chow, J. W., Thal, L. A., Perri, M. B., et al. (1993) Plasmid-associated hemolysin and aggregation substance production contributes to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37, 2474–2477.

    CAS  Google Scholar 

  35. Galli, D. and Wirth, R. (1991) Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance. J. Bacteriol. 173, 3029–3033.

    PubMed  CAS  Google Scholar 

  36. Kreft, B., Marre, R., Schramm, U., and Wirth, R. (1992) Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60, 25–30.

    PubMed  CAS  Google Scholar 

  37. Ember, J. A. and Hugli, T. E. (1989) Characterization of the human neutrophil response to sex pheromones from Streptococcus faecalis. Am. J. Pathol. 134, 797–805.

    PubMed  CAS  Google Scholar 

  38. Bhakdi, S., Klonisch, T., Nuber, P., and Fischer, W. (1991) Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59, 4614–4620.

    PubMed  CAS  Google Scholar 

  39. Ehrenfeld, E. E., Kessler, R. E., and Clewell, D. B. (1986) Identification of pheromoneinduced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J. Bacteriol. 168, 6–12.

    PubMed  CAS  Google Scholar 

  40. Mäkinen, P., Clewell, D. B., An, F., and Mäkinen, K. K. (1989) Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (“gelatinase”) from Streptococcus faecalis (strain OG1-10). J. Biol. Chem. 264, 3325–3334.

    PubMed  Google Scholar 

  41. Su, Y. A., Sulavik, M. C., He, P., et al. (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis aubsp. Liquefaciens. Infect Immun. 59, 415–420.

    CAS  Google Scholar 

  42. Rosan, B. and Williams, N. B. (1964) Hyaluronidase production by oral enterococci. Arch. Oral Biol. 9, 291–298.

    Article  CAS  PubMed  Google Scholar 

  43. Gálvez, A., Maqueda, M., Martinez-Bueno, M., and Valdivia, E. (1991) Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers of peptide antibiotic AS-48. J. Bacteriol. 173, 886–892.

    PubMed  Google Scholar 

  44. Franz, C. M. A. P., Muscholl-Silberhorn, A. B., Yousif, N. M. K., Vancanneyt, M., Swings, J., and Holzapfel, W. H. (2001) Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl. Environ. Microbiol. 67(9), 4385–4389.

    Article  PubMed  CAS  Google Scholar 

  45. Mundy, L. M., Sahm, D. F., and Gilmore, M. (2000) Relationship between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13, 513–522.

    Article  PubMed  CAS  Google Scholar 

  46. Clewell, D. B. (1990) Movable genetic elements and antibiotic resistance in enterococci. Eur. J. Clin. Microbiol. Infect. 9, 90–102.

    Article  CAS  Google Scholar 

  47. Noble, W., Virani, Z., and Crec, R. (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93, 195–198.

    Article  CAS  Google Scholar 

  48. Chang, S., Sievert, D. M., Hageman, J. C., et al. (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348, 1342–1347.

    Article  PubMed  Google Scholar 

  49. Tenover, F. C., Weigel, L. M., Appelbaum, P. C., et al. (2004) Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48, 275–280.

    Article  PubMed  CAS  Google Scholar 

  50. Franz, C. M., Holzapfel, W. H., and Stiles, M. E. (1999) Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47, 1–24.

    Article  PubMed  CAS  Google Scholar 

  51. MMWR. (2004) Vancomycin-resistant Staphylococcus aureus New York-2004. Morb. Mortal Wkly Rep. 53, 322.

    Google Scholar 

  52. Flannagan, S. E., Chow, J. W., Donabedian, S. M., et al. (2003) Antimicrob. Agents Chemother. 47, 3954–3959.

    Article  CAS  Google Scholar 

  53. Malani, P. N., Kauffman, C. A., and Zervos, M. J. (2002) Enterococcal disease, epidemiology, and treatment. In: The Enterococci. Pathogenesis, Molecular Biology, and Antibiotic Resistance (Gilmore, M. S., ed.), ASM, Washington, DC, pp. 385–408.

    Google Scholar 

  54. Wells, C. L., Maddaus, M. A., and Simmons, R. L. (1988) Proposed mechanisms for the translocation of intestinal bacteria. Rev. Infect. Dis. 10, 958–978.

    PubMed  CAS  Google Scholar 

  55. Kak, V. and Chow, J. W. (2002) Acquired antibiotic resistances in Enterococci. In: The Enterococci. Pathogenesis, Molecular Biology, and Antibiotic Resistance (Gilmore, M. S., ed.), ASM, Washington, DC, pp. 355–383.

    Google Scholar 

  56. Leclercq, R., Derlot, E., Duval, J., and Courvalin, P. (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161.

    Article  PubMed  CAS  Google Scholar 

  57. Hospital Infections Program. (1999) National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990-May 1999, issued June 1999. Am. J. Infect. Control. 27, 520–532.

    Article  Google Scholar 

  58. Wells, C. L., Juni, B. A., Cameron, S. B., et al. (1994) Stool carriage, clinical isolation, and mortality during an outbreak of vancomycin-resistant enterococci in hospitalized medical and/or surgical patients. Clin. Infect. Dis. 21, 45–50.

    Google Scholar 

  59. Beezhold, D. W., Slaughter, S., Hayden, M. K., et al. (1997) Skin colonization with vancomycinresistant enterococci among hospitalized patients with bacteremia. Clin. Infect. Dis. 24, 704–706.

    PubMed  CAS  Google Scholar 

  60. Zervos, M. J., Terpenning, M. S., Schaberg, D. R., Therasse, P. M., Medendorp, S. V., and Kauffman, C. A. (1987) High-level aminoglycoside-resistant enterococci: colonization of nursing home and acute care hospital patients. Arch. Intern. Med. 147, 1591–1594.

    Article  PubMed  CAS  Google Scholar 

  61. Chenoweth, C. E., Bradley, S. F., Trepenning, M. S., et al. (1994) Colonization and transmission of high-level gentamicin-resistant enterococci in a long-term care facility. Infect. Control Hosp. Epidemiol. 15, 703–709.

    PubMed  CAS  Google Scholar 

  62. Bonten, M. J., Slaughter, S., Ambergen, A. W., et al. (1998) The role of “colonization pressure” in the spread of vancomycin-resistant enterococci: an important infection control variable. Arch. Intern. Med. 158, 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  63. Carmeli, Y., Samore, M. H., and Huskins, C. (1999) The association between antecedent vancomycin treatment and hospital-acquired vancomycin-resistant enterococci. Arch. Intern. Med. 159, 2461–2468.

    Article  PubMed  CAS  Google Scholar 

  64. Karanfil, L. V., Murphy, M., Josephson, A., et al. (1992) A cluster of vancomycin-resistant Enterococcus faecium in an intensive care unit. Infect. Control Hosp. Epidemiol. 13, 195–200.

    Article  PubMed  CAS  Google Scholar 

  65. Morris, J. G., Jr., Shay, D. K., Hebden, J. N., et al. (1995) Enterococci resistant to multiple antimicrobial agents, including vancomycin. Arch. Intern. Med. 123, 250–259.

    CAS  Google Scholar 

  66. Ostrowsky, B. E., Venkataraman, L., D’Agata, E. M., Gold, H. S., DeGirolami, P. C., and Samore, M. H. (1999) Vancomycin-resistant enterococci in intensive care units. Arch. Intern. Med. 159, 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  67. Tornieporth, N. G., Roberts, R. B., John, J., Hafner, A., and Riley, L. W. (1996) Risk factors associated with vancomycin-resistant Enterococcus faecium infection or colonization in 145 matched case-patients and control patients. Clin. Infect. Dis. 23, 767–772.

    PubMed  CAS  Google Scholar 

  68. Oprea, S. F., Zaidi, N., Donabedian, S. M., Balasubramaniam, M., Hershberger, E., and Zervos, M. J. (2004) Molecular and clinical epidemiology of vancomycin-resistant Enterococcus faecalis. J. Antimicrob. Chemother. 53, 626–630.

    Article  PubMed  CAS  Google Scholar 

  69. Donskey, C. J., Chowdhry, T. K., Hecker, M. T., et al. (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932.

    Article  PubMed  CAS  Google Scholar 

  70. Loeb, M., Salama, S., Armstrong-Evans, M., Capretta, G., and Olde, J. (1999) A case-control study to detect modifiable risk factors for colonization with vancomycin-resistant enterococci. Infect. Control Hosp. Epidemiol. 20, 760–763.

    Article  PubMed  CAS  Google Scholar 

  71. Boyce, J. M., Opal, S. M., Chow, J. W., et al. (1994) Outbreak of multi-drug resistant Enterococcus faecium with transferable VanB class vancomycin resistance. J. Clin. Microbiol. 32, 1148–1153.

    PubMed  CAS  Google Scholar 

  72. Mayhall, C. G.(1999) The epidemiology and control of VRE: still struggling to come of age. Infect. Control Hosp. Epidemiol. 20, 650–652.

    Article  PubMed  CAS  Google Scholar 

  73. D’Agata, E. M. C., Green, W. K., Schulman, G., Li, H., Tang, Y.-W., and Schaffner, W. (2001) Vancomycin-resistant enterococci among chronic hemodialysis patients: a prospective study of acquisition. Clin. Infect. Dis. 32, 23–29.

    Article  PubMed  CAS  Google Scholar 

  74. Montecalvo, M. A., Shay, D. K., Patel, P., Tacsa, L., Maloney, S. A., and Jarvis, W. R. (1996) Bloodstream infections with vancomycin-resistant enterococci. Arch. Intern. Med. 156, 1458.

    Article  PubMed  CAS  Google Scholar 

  75. Lautenbach, E., Bilker, W. B., and Brennan, P. J. (1999) Enterococcal bacteremia: risk factors for vancomycin resistance and predictors of mortality. Infect. Control Hosp. Epidemiol. 20, 318–323.

    Article  PubMed  CAS  Google Scholar 

  76. Linden, P. K., Pasculle, A. W., Manez, R., et al. (1996) Differences in outcomes for patients with bacteremia due to vancomycin-resistant Enterococcus feacium or vancomycin-sensitive E. faecium. Clin. Infect. Dis. 22, 663–670.

    PubMed  CAS  Google Scholar 

  77. Montecalvo, M. A., Horowitz, H., Gedris, C., Carbonaro, C., Teneover, F. C., and Isaah, A. (1994) Outbreak of vancomycin-, ampicillin-, and aminoglycoside-resistant Enterococcus feacium bacteremia in an adult oncology unit. Antimicrob. Agents Chemother. 38, 1363.

    PubMed  CAS  Google Scholar 

  78. Gonzales, R. D., Schreckenberger, P. C., Graham, M. B., Kelkar, S., DenBeste, K., and Quinn, J. P. (2001) Infections due to vancomycin-resistant Enterococcus feacium resistant to linezolid. Lancet. 357, 1179.

    Article  PubMed  CAS  Google Scholar 

  79. Chow, J. W., Donabedian, S. M., and Zervos, M. J. (1997) Emergence of increased resistance to quinupristin/dalfopristin during therapy for Enterococcus feacium bacteremia. Clin. Infect. Dis. 24, 90–91.

    PubMed  CAS  Google Scholar 

  80. Dowzicky, M., Talbot, G. H., Feger, C., Prokocimer, P., Etienne, J., and Leclercq, R. (2000) Characterization of isolates associated with emerging resistance to quinupristin/dalfopristin (Synercid) during a worldwide clinical program. Diagn. Microbiol. Infect. Dis. 37, 57–62.

    Article  CAS  Google Scholar 

  81. Hershberger, E., Donabedian, S., Konstantinou, K., and Zervos, M. J., (2004) Quinupristin-dalfopristin resistance in Gram-positive bacteria: mechanism of resistance and epidemiology. Clin. Infect. Dis. 38, 92–98.

    Article  PubMed  CAS  Google Scholar 

  82. McDonald, L. C., Rossiter, S., Mackinson, C., et al. (2001) Quinupristin-dalfopristin-resistant Enterococcus feacium on chicken and in human stool specimens. N. Engl. J. Med. 345, 1155–1160.

    Article  PubMed  CAS  Google Scholar 

  83. Simjee, S., White, D. G., Meng, J., et al. (2002) Prevalence of streptogramin resistance genes among Enterococcus isolates from retail meats in the greater Washington DC area. J. Antimicrob. Chemother. 50, 877–882.

    Article  PubMed  CAS  Google Scholar 

  84. Carpenter, C. F. and Chambers, H. F. (2004) Daptomycin: another novel agent for treating infections due to drug-resistant Gram-positive pathogens. Clin. Infect. Dis. 38, 994–1000.

    Article  PubMed  CAS  Google Scholar 

  85. Moellering, R. C., Linden, P. K., Reinhardt, J., Blumberg, E. A., Bompart, F., and Talbot, G. H. (1999) The efficacy and safety of quinupristin-dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. Synercid Emergency Use Study Group. J. Antimicrob. Chemother. 44, 251–261.

    Article  PubMed  CAS  Google Scholar 

  86. Hershberger, E., Donabedian, S., Konstantinou, K., and Zervos, M. J. (2003) Quinupristin-dalfopristin resistance in Gram-positive bacteria: mechanism of resistance and epidemiology. Clin. Infect. Dis. 38, 92–98.

    Article  PubMed  Google Scholar 

  87. Drexler, M. (2002) Secret Agents: The Menace of Emerging Infections. Joseph Henry, Washington, DC.

    Google Scholar 

  88. McDonald, L. C., Rossiter, S., Mackinson, C., et al. (2001) Quinupristin-dalfopristin-resistant Enterococcus faecium on chicken and in human stool specimens. N. Engl. J. Med. 345, 1155–1160.

    Article  PubMed  CAS  Google Scholar 

  89. Werner, G., Klare, I., Heier, H., et al. (2000) Quinupristin/dalfopristin-resistant enterococci of the satA (vatD) and satG (vatE) genotypes from different ecological origins in Germany. Microb. Drug Resist. 6, 37–47.

    Article  PubMed  CAS  Google Scholar 

  90. Ronconi, M. C., Merino, L. A., and Fernandez, G. (2002) Detection of Enterococcus with high-level aminoglycoside and glycopeptide resistance in Lactuca sativa (lettuce). Enfermed. Infec. Microbiol. Clin. 20, 380–383 (in Spanish).

    Google Scholar 

  91. Curtis, G. D. and Bowler, I. C. (2001) Prevalence of glycopeptide and aminoglycoside resistance in Enterococcus and Listeri spp. in low microbial load diets of neutropenic hospital patients. Int. J. Food Microbiol. 64, 41–49.

    Article  PubMed  CAS  Google Scholar 

  92. Aarestrup, F. M. (1995) Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb. Drug Res. 1, 255–257.

    CAS  Google Scholar 

  93. Bates, J., Jordens, J., and Griffiths, D. (1994) Farm animals as a putative reservoir for vancomycin-resistant enterococcal infections in man. J. Antimicrob. Chemother. 34, 507–516.

    Article  PubMed  CAS  Google Scholar 

  94. Klare, I., Heier, H, Claus, H., and Witte, W. (1993) Environmental strains of Enterococcus faecium with inducible high-level resistance to glycopeptides. FEMS Microbiol. Lett. 80, 23–29.

    Article  Google Scholar 

  95. Klare, I., Heier, H, Claus, H., Reissbrodt, R., and Witte, W. (1995) vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125, 165–171.

    Article  PubMed  CAS  Google Scholar 

  96. Bates, J. (1997) Epidemiology of vancomycin-resistant enterococcus in the community and the relevance of farm animals to human infection. J. Antimicrob. Chemother. 37, 89–101.

    CAS  Google Scholar 

  97. Aarestrup, F. M., Seyfarth, A. M., Emborg, H. D., Pedersen, K., Hendriksen, R. S., and Bager, F. (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059.

    Article  PubMed  CAS  Google Scholar 

  98. Bengmark, S. (2000) Colonic food: Pre-and Probiotics. Am. J. Gastroenter. 95, S5–S7.

    Article  PubMed  CAS  Google Scholar 

  99. WHO. (1994) WHO Scientific Working Group on monitoring and management of bacterial resistance to antimicrobial agents, Geneva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Oprea, S.F., Zervos, M.J. (2007). Enterococcus and its Association with Foodborne Illness. In: Simjee, S. (eds) Foodborne Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-501-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-501-5_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-518-7

  • Online ISBN: 978-1-59745-501-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics