Skip to main content
Log in

Movable genetic elements and antibiotic resistance in enterococci

  • Current Topic: Review
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

The enterococci possess genetic elements able to move from one strain to another via conjugation. Certain enterococcal plasmids exhibit a broad host range among gram-positive bacteria, but only when matings are performed on solid surfaces. Other plasmids are more specific to enterococci, transfer efficiently in broth, and encode a response to recipient-produced sex phermones. Transmissible non-plasmid elements, the conjugative transposons, are widespread among the enterococci and determine their own fertility properties. Drug resistance, hemolysin, and bacteriocin determinants are commonly found on the various transmissible enterococcal elements. Examples of the different systems are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courvalin PM, Carlier C, Chabbert YA: Plasmid linked tetracycline and erythromycin resistance in group DStreptococcus. Annales de l'Institut Pasteur 1972, 123: 755–759.

    Google Scholar 

  2. Courvalin PM, Carlier C, Croissant O, Blangy D: Identification of two plasmids determining resistance to tetracycline and to erythromycin in group DStreptococcus. Molecular and General Genetics 1974, 132: 181–192.

    Google Scholar 

  3. Jacob A, Hobbs SJ: Conjugal transfer of plasmid-borne multiple antibiotic resistance inStreptococcus faecalis var.zymogenes. Journal of Bacteriology 1974, 117:360–372.

    Google Scholar 

  4. Tomura T, Hirano T, Ito T, Yoshioka M: Transmission of bacteriocinogenicity by conjugation in group D streptococci. Japanese Journal of Microbiology 1973, 17: 445–452.

    Google Scholar 

  5. Raycroft RE, Zimmerman LN: New mode of genetic transfer inStreptococcus faecalis var.liquefaciens. Journal of Bacteriology 1964, 87: 799–801.

    Google Scholar 

  6. Clewell DB: Plasmids, drug resistance, and gene transfer in the genusStreptococcus. Microbiological Reviews 1981, 45: 409–436.

    Google Scholar 

  7. Horaud T, LeBouguenec C, Pepper K: Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. Journal of Antimicrobial Chemotherapy 1985, 16, Supplement A: 111–135.

    Google Scholar 

  8. Clewell DB, Weaver KE: Sex pheromones and plasmid transfer inEnterococcus faecalis. Plasmid 1989, 21:175–184.

    Google Scholar 

  9. Dunny GM, Clewell DB: Transmissible toxin (hemolysin) plasmid inStreptococcus faecalis and its mobilization of a noninfectious drug resistance plasmid. Journal of Bacteriology 1975, 124: 784–790.

    Google Scholar 

  10. Clewell DB, Yagi Y, Ike Y, Craig RA, Brown BL, An F: Sex pheromones inStreptococcus faecalis: multiple pheromone systems in strain DS5, similarities of pAD1 and pAM∂1, and mutants of pAD1 altered in conjugative properties. In: Schlessinger D (ed): Microbiology — 1982. American Society for Microbiology, Washington, DC, 1982, p. 97–100.

    Google Scholar 

  11. Tomich P, An F, Damle S, Clewell DB: Plasmid related transmissibility and multiple drug resistance inStreptococcus faecalis subsp.zymogenes strain DS16. Antimicrobial Agents and Chemotherapy 1979, 15: 828–830.

    Google Scholar 

  12. Tomich P, An F, Clewell DB: Properties of erythromycin-inducible transposon Tn917 inStreptococcus faecalis. Journal of Bacteriology 1980, 141: 1366–1374.

    Google Scholar 

  13. Clewell DB, Tomich PK, Gawron-Burke MC, Franke AE, Yagi Y, An F: Mapping ofStreptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. Journal of Bacteriology 1982, 152: 1220–1230.

    Google Scholar 

  14. Franke AE, Clewell DB: Evidence for a chromosome-borne resistance transposon inStreptococcus faecalis capable of “conjugal” transfer in the absence of a conjugative plasmid. Journal of Bacteriology 1981, 145: 494–502.

    Google Scholar 

  15. Franke A, Dunny G, Brown B, An F, Oliver D, Damle S, Clewell D: Gene transfer inStreptococcus faecalis. Evidence for the mobilization of chromosomal determinants by transmissible plasmids. In: Schlessinger D (ed): Microbiology — 1978. American Society for Microbiology, Washington, DC, 1978, p. 45–47.

    Google Scholar 

  16. Clewell DB, Gawron-Burke C: Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annual Review of Microbiology 1986, 40: 635–659.

    Google Scholar 

  17. Shoemaker NB, Smith MD, Guild WR: DNase-resistant transfer of chromosomalcat andtet insertions by filter mating in pneumococcus. Plasmid 1980, 3: 80–87.

    Google Scholar 

  18. Marder H, Kayser FH: Transferable plasmids mediating multiple-antibiotic resistance inStreptococcus faecalis subsp.liquefaciens. Antimicrobial Agents and Chemotherapy 1977, 12: 261–269.

    Google Scholar 

  19. Courvalin PM, Shaw WV, Jacob AE: Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Antimicrobial Agents and Chemotherapy 1978, 13: 716–721.

    Google Scholar 

  20. Courvalin P, Carlier C, Collatz E: Plasmid-mediated resistance to aminocyclitol antibiotics in group D streptococci. Journal of Bacteriology 1980, 143: 541–551.

    Google Scholar 

  21. van Embden J, Engel H, van Klingeren B: Drug resistance in group D streptococci of clinical and nonclinical origin: prevalence, transferability, and plasmid properties. Antimicrobial Agents and Chemotherapy 1977, 11: 925–932.

    Google Scholar 

  22. Krogstad DJ, Korfhagen TR, Moellering Jr RC, Wennersten C, Schwartz MN: Plasmid-mediated resistance to antibiotic synergism in enterococci. Journal of Clinical Investigation 1978, 61: 1645–1653.

    Google Scholar 

  23. Horodniceanu T, Bougueleret L, El Solh N, Bieth G, Delbos F: High level, plasmid-borne resistance to gentamicin inStreptococcus faecalis subsp.zymogenes. Antimicrobial Agents and Chemotherapy 1979, 16: 686–689.

    Google Scholar 

  24. Romero E, Perduca M, Pagani L: Plasmids mediating multiple antibiotic resistance in group D streptococci: prevalence and compatibility characteristics. Microbiologica 1979, 2: 421–424.

    Google Scholar 

  25. Engel H, Soedirman N, Rost J, van Leeuwen W, van Embden JDA: Transferability of macrolide, lincosamide, and streptogramin resistances between group A, B, and D streptococci,Streptococcus pneumoniae, andStaphylococcus aureus. Journal of Bacteriology 1980, 142: 407–413.

    Google Scholar 

  26. Bondi M, Messi P, Borghi V, Manicardi G: Conjugal plasmids in group D streptococci. Microbiologica 1984, 7: 133–140.

    Google Scholar 

  27. Jacob A, Douglas GI, Hobbs SJ: Self-transferable plasmids determining the hemolysin and bacteriocin ofStreptococcus faecalis var.zymogenes. Journal of Bacteriology 1975, 121: 863–872.

    Google Scholar 

  28. Oliver D, Brown B, Clewell DB: Characterization of plasmids determining hemolysin and bacteriocin production inStreptococcus faecalis. Journal of Bacteriology 1977, 130: 948–950.

    Google Scholar 

  29. Frazier ML, Zimmerman LN: Genetic loci of hemolysin production inStreptococcus faecalis subsp.zymogenes. Journal of Bacteriology 1977, 130: 1064–1071.

    Google Scholar 

  30. Yagi Y, Kessler RE, Shaw JH, Lopatin DE, An FY, Clewell DB: Plasmid content ofStreptococcus faecalis strain 39-5 and identification of a pheromone (cPD1)-induced surface antigen. Journal of General Microbiology 1983, 129: 1207–1215.

    Google Scholar 

  31. Borderon E, Bieth G, Horodniceanu T: Genetic and physical studies ofStreptococcus faecalis hemolysin plasmids. FEMS Microbiology Letters 1982, 14: 51–55.

    Google Scholar 

  32. Colmar I, Horand T:Enterococcus faecalis hemolysin-bacteriocin plasmids belong to the same incompatibility group. Applied and Environmental Microbiology 1987, 53: 567–570.

    Google Scholar 

  33. Siegrist HH, Birch BR, Jacob AE: Detection of a large haemolysin plasmid carrying multiple antibiotic resistance markers inStreptococcus faecalis. Microbial Pathogenesis 1987, 2: 155–158.

    Google Scholar 

  34. Messi P, Bondi M, Borghi V, Piccinini L, Manicardi G: R factors in group D streptococci: classification by compatibility. Microbiologica 1982, 5: 281–284.

    Google Scholar 

  35. Dunny GM, Craig RA, Carron RL, Clewell DB: Plasmid transfer inStreptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 1979, 2: 454–465.

    Google Scholar 

  36. Ike Y, Hashimoto H, Clewell DB: High incidence of hemolysin production byEnterococcus (Streptococcus) faecalis strains associated with human parenteral infections. Journal of Clinical Microbiology 1987, 25: 1524–1528.

    Google Scholar 

  37. Weisblum B: Inducible resistance to macrolides, lincosamides, and streptogramin type-B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression. In: Gene function in prokaryotes. Cold Spring Harbor Laboratory, New York, 1983, p. 91–121.

    Google Scholar 

  38. LeBlane DJ, Lee LN: Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region. Journal of Bacteriology 1984, 157: 445–453.

    Google Scholar 

  39. Macrina FL, Keeler Jr CL, Jones KR, Wood PH: Molecular characterization of unique deletion mutants of the streptococcal plasmid, pAMβ1. Plasmid 1980, 4: 8–16.

    Google Scholar 

  40. van der Lelie D, Venema G:Bacillus subtilis generates a major specific deletion in pAMβ1. Applied and Environmental Microbiology 1987, 53: 2458–2463.

    Google Scholar 

  41. Martin B, Alloing G, Mejean V, Claverys JP: Constitutive expression of erythromycin resistance mediated by the erm AM determinant of plasmid pAMβ1 results from deletion of 5′ leader peptide sequences. Plasmid 1987, 18: 250–253.

    Google Scholar 

  42. Macrina FL, Tobian JA, Jones KR, Evans RP, Clewell DB: A cloning vector able to replicate inEscherichia coli andStreptococcus sanguis. Gene 1982, 19: 345–353.

    Google Scholar 

  43. Macrina FL, Evans RP, Tobian JA, Hartley DL, Clewell DB, Jones KR: Novel shuttle plasmid vehicles forEscherichia-Streptococcus transgeneric cloning. Gene 1983, 25: 145–150.

    Google Scholar 

  44. Trieu-Cuot P, Carlier C, Martin P, Courvalin P: Plasmid transfer by conjugation fromEscherichia coli to gram-positive bacteria. FEMS Microbiology Letters 1987, 48: 289–294.

    Google Scholar 

  45. Trieu-Cuot P, Carlier C, Courvalin P: Conjugative plasmid transfer fromEnterococcus faecalis toEscherichia coli. Journal of Bacteriology 1988, 170: 4388–4391.

    Google Scholar 

  46. Clewell DB, Fitzgerald GF, Dempsey L, Pearce LE, An F, White BA, Yagi Y, Gawron-Burke C: Streptococcal conjugation: plasmids, sex pheromones, and conjugative transposons. In: Mergenhagen SE, Rosan B (ed): Molecular basis of oral microbial adhesion. American Society for Microbiology, Washington, DC, 1985, p. 194–203.

    Google Scholar 

  47. Horodniceanu T, Bouanchaud D, Biet G, Chabbert Y: R plasmids inStreptococcus agalactiae (group B). Antimicrobial Agents and Chemotherapy 1976, 10: 795–801.

    Google Scholar 

  48. Hershfield V: Plasmids mediating multiple drug resistance in group BStreptococcus: transferability and molecular properties. Plasmid 1979, 2: 137–149.

    Google Scholar 

  49. Evans Jr RP, Macrina FL: Streptococcal R plasmid pIP501: endonuclease site map, resistance determinant location, and construction of novel derivatives. Journal of Bacteriology 1983, 154: 1347–1355.

    Google Scholar 

  50. Behnke D, Gilmore MS: Location of antibiotic resistance determinants, copy control, and replication functions on the double-selective cloning vector pGB301. Molecular and General Genetics 1981, 184: 115–120.

    Google Scholar 

  51. Dunny GM, Brown B, Clewell DB: Induced cell aggregation and mating inStreptococcus faecalis. Evidence for a bacterial sex pheromone. Proceedings of the National Academy of Sciences of the USA 1978, 75: 3479–3483.

    Google Scholar 

  52. Tortorello ML, Dunny GM: Identification of multiple surface antigens associated with the sex pheromone response ofStreptococcus faecalis. Journal of Bacteriology 1985, 162: 131–137.

    Google Scholar 

  53. Ehrenfeld EE, Kessler RE, Clewell DB: Identification of pheromone-induced surface proteins inStreptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. Journal of Bacteriology 1986, 168: 6–12.

    Google Scholar 

  54. Murray BE, An F, Clewell DB: Plasmids and pheromone response of the β-lactamase producerStreptococcus (Enterococcus) faecalis HH22. Antimicrobial Agents and Chemotherapy 1988, 32: 547–551.

    Google Scholar 

  55. Weaver KE, Clewell DB: Regulation of the pAD1 sex pheromone response inEnterococcus faecalis: construction and characterization oflacZ transcriptional fusions in a key control region of the plasmid. Journal of Bacteriology 1988, 4343–4352.

  56. Galli D, Wirth R, Wanner G: Identification of aggregation substances ofEnterococcus faecalis cells after induction by sex pheromones. An immunological and ultrastructural investigation. Archives of Microbiology 1989, 151: 486–490.

    Google Scholar 

  57. Wanner G, Formanek H, Galli D, Wirth R: Localization of aggregation substances ofEnterococcus faecalis after induction by sex pheromones. An ultrastructural comparison using immuno labelling, transmission and high resolution scanning electron microscopic techniques. Archives of Microbiology 1989, 151: 491–497.

    Google Scholar 

  58. Wicken AJ, Elliott SD, Baddiley J: The identity of streptococcal group D antigen with teichoic acid. Journal of General Microbiology 1963, 31: 231–239.

    Google Scholar 

  59. Suzuki A, Mori M, Sakagami Y, Isogai A, Fujino M, Kitada C, Craig RA, Clewell DB: Isolation and structure of bacterial sex pheromone cPD1. Science 1984, 226: 849–850.

    Google Scholar 

  60. Mori M, Sakagami Y, Narita M, Isogai A, Fujino M, Kitada C, Craig R, Clewell D, Suzuki A: Isolation and structure of the bacterial sex pheromone, cAD1, that induces plasmid transfer inStreptococcus faecalis. FEBS Letters 1984, 178: 97–100.

    Google Scholar 

  61. Mori M, Tanaka H, Sakagami Y, Isogai A, Fujino M, Kitada C, White BA, An FY, Clewell DB, Suzuki A: Isolation and structure of theStreptococcus faecalis sex pheromone, cAM373. FEBS Letters 1986, 206: 69–72.

    Google Scholar 

  62. Mori M, Sakagami Y, Ishii Y, Isogai A, Kitada C, Fujino M, Adsit JC, Dunny GM, Suzuki A: Structure of cCF10, a peptide sex pheromone which induces conjugative transfer of theStreptococcus faecalis tetracycline-resistance plasmid, pCF10. Journal of Biological Chemistry 1988, 263: 14,574–14,578.

    Google Scholar 

  63. Mori M, Tanaka H, Sakagami Y, Isogai A, Fujino M, Kitada C, Clewell DB, Suzuki A: Isolation and structure of the sex pheromone inhibitor, iPD1, excreted byStreptococcus faecalis donor strains harboring plasmid pPD1. Journal of Bacteriology 1987, 169: 1747–1749.

    Google Scholar 

  64. Mori M, Isogai A, Sakagami Y, Fujino M, Kitada C, Clewell DB, Suzuki A: Isolation and structure ofStreptococcus faecalis sex pheromone inhibitor, iAD1, that is excreted by donor strains harboring plasmid pAD1. Agricultural and Biological Chemistry 1986, 50: 539–541.

    Google Scholar 

  65. Kitada C, Fujino M, Mori M, Sakagami Y, Isogai A, Suzuki A, Clewell DB, Craig R: Synthesis and structure-activity relationships ofStreptococcus faecalis sex pheromones, cPD1 and cAD1. In: Izumiya N (ed): Peptide chemistry 1984. Protein Research Foundation, Osaka, 1985, p. 43–48.

    Google Scholar 

  66. Clewell DB, An FY, Mori M, Ike Y, Suzuki A:Streptococcus faecalis sex pheromone (cAD1) response: evidence that the peptide inhibitor excreted by pAD1-containing cells may be plasmid determined. Plasmid 1987, 17: 65–68.

    Google Scholar 

  67. Youngman PJ: Plasmid vectors for recovering and exploiting Tn917 transposition inBacillus and other gram-positives. In: Hardy K (ed): Plasmids: a practical approach. IRL Press, Oxford, 1987, p. 79–103.

    Google Scholar 

  68. Ike Y, Clewell DB: Genetic analysis of the pAD1 pheromone response inStreptococcus faecalis, using transposon Tn917 as an insertional mutagen. Journal of Bacteriology 1984, 158: 777–783.

    Google Scholar 

  69. Ehrenfeld EE, Clewell DB: Transfer functions of theStreptococcus faecalis plasmid pAD1: organization of plasmid DNA encoding response to sex pheromone. Journal of Bacteriology 1987, 169: 3473–3481.

    Google Scholar 

  70. Weaver KE, Clewell DB: Construction ofEnterococcus faecalis pAD1 miniplasmids: identification of a minimal pheromone response regulatory region and evaluation of a novel pheromone-dependent growth inhibition. Plasmid 1989, 22: 106–119.

    Google Scholar 

  71. Dunny GM, Funk C, Adisit J: Direct stimulation of the transfer of antibiotic resistance by sex pheromones inStreptococcus faecalis. Plasmid 1981, 6: 270–278.

    Google Scholar 

  72. Christie PJ, Dunny GM: Identification of regions of theStreptococcus faecalis plasmid pCF-10 that encode antibiotic resistance and pheromone response functions. Plasmid 1986, 15: 230–241.

    Google Scholar 

  73. Clewell DB, An FY, White BA, Gawron-Burke C:Streptococcus faecalis sex pheromone (cAM373) also produced byStaphylococcus aureus and identification of a conjugative transposon (Tn918). Journal of Bacteriology 1985, 162: 1212–1220.

    Google Scholar 

  74. Clewell DB: Sex pheromones, plasmids, and conjugation inStreptococcus faecalis. In: Halvoson HO, Monroy A (ed): The origin and evolution of sex (MBL lectures in biology, Volume 7). Alan R. Liss, New York 1985, p. 13–28.

    Google Scholar 

  75. Ember JA, Hugli TE: Characterization of the human neutrophil response to sex pheromones fromStreptococcus faecalis. American Journal of Pathology 1989, 134: 797–805.

    Google Scholar 

  76. Sannomiya P, Craig RA, Clewell DB, Suzuki A, Fujino M, Till GO, Marasco WA: Characterization of a new class ofEnterococcus faecalis derived neutrophil chemotactic peptides, the sex pheromones. Proceedings of the National Academy of Sciences of the USA 1990, 87: 66–70.

    Google Scholar 

  77. Clewell DB, Yagi Y, Dunny G, Schultz S: Characterization of three plasmid DNA molecules in a strain ofStreptococcus faecalis. Identification of a plasmid determining erythromycin resistance. Journal of Bacteriology 1974, 117: 283–289.

    Google Scholar 

  78. Clewell DB, Yagi Y, Bauer B: Plasmid-determined tetracycline resistance inStreptococcus faecalis. Evidence for gene amplification during growth in the presence of tetracycline. Proceedings of the National Academy of Sciences of the USA 1975, 72: 1720–1724.

    Google Scholar 

  79. Yagi Y, Clewell DB: Plasmid-determined tetracycline resistance inStreptococcus faecalis. Tandemly repeated resistance determinants in amplified forms of pAMα1 DNA. Journal of Molecular Biology 1976, 102: 538–600.

    Google Scholar 

  80. Yagi Y, Clewell DB: Identification and characterization of a small sequence located at two sites on the amplifiable tetracycline resistance plasmid pAMα1 inStreptococcus faecalis. Journal of Bacteriology 1977, 129: 400–406.

    Google Scholar 

  81. Yagi Y, Clewell DB: Amplification of the tetracycline resistance determinant of plasmid pAMα1 inStreptococcus faecalis: dependence on host recombination machinery. Journal of Bacteriology 1980, 143: 1070–1072.

    Google Scholar 

  82. Rownd R, Miki T, Greenberg J, Luckow V, Miller J, Huffman G, Proctor G, Finkelstein M, Easton A, Barton C: Structure, dissociation and amplification of composite R plasmid DNA. In: Mitsuhashi S (ed): Microbial drug resistance. Volume 2. University Park Press, Baltimore, 1979, p. 3–22.

    Google Scholar 

  83. Perkins JB, Youngman P:Streptococcus plasmid pAMα1 is a composite of two separable replicons, one of which is closely related toBacillus plasmid pBC16. Journal of Bacteriology 1983, 155: 607–615.

    Google Scholar 

  84. Clewell DB, Yagi Y, Tomich P: Amplification of pAMα1 inStreptococcus faecalis. In: Mitsuhashi S (ed): Microbial drug resistance. Volume 2. University Park Press, Baltimore, 1979, p. 23–32.

    Google Scholar 

  85. Bernhard K, Schrempf H, Goebel W: Bacteriocin and antibiotic resistance plasmids inBacillus cereus andBacillus subtilis. Journal of Bacteriology 1978, 133: 897–903.

    Google Scholar 

  86. Bingham AHA, Bruton CJ, Atkinson T: Isolation and partial characterization of four plasmids from antibiotic-resistant thermophilic bacilli. Journal of General Microbiology 1979, 114: 401–408.

    Google Scholar 

  87. Polak J, Novick RP: Closely related plasmids fromStaphylococcus aureus and soil bacilli. Plasmid 1982, 7: 152–162.

    Google Scholar 

  88. Banai M, Gonda MA, Ranhand JM, LeBlanc DJ:Streptococcus faecalis R plasmid pJH1 contains a pAMα1Δ1-like replicon. Journal of Bacteriology 1985, 164: 626–632.

    Google Scholar 

  89. Shishido K, Noguchi N, Kim C, Ando T: Isolation of a tetracycline-resistance plasmid excised from a chromosomal DNA sequence inBacillus subtilis. Plasmid 1983, 10: 224–234.

    Google Scholar 

  90. Ishiwa H, Shibahara H: New shuttle vectors forEscherichia coli andBacillus subtilis. III. Nucleotide sequence analysis of tetracycline resistance gene of pAMα1 and ori-177. Japanese Journal of Genetics 1985, 60: 485–498.

    Google Scholar 

  91. Burdett V, Inamine J, Rajagopalan S: Heterogeneity of tetracycline resistance determinants inStreptococcus. Journal of Bacteriology 1982, 149: 995–1004.

    Google Scholar 

  92. Gawron-Burke C, Clewell DB: A transposon inStreptococcus faecalis with fertility properties. Nature 1982, 300: 281–284.

    Google Scholar 

  93. Christie PJ, Korman RZ, Zahler SA, Adsit JC, Dunny GM: Two conjugation systems associated withStreptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers betweenStreptococcus faecalis andBacillus subtilis. Journal of Bacteriology 1987, 169: 2529–2536.

    Google Scholar 

  94. Fitzgerald GF, Clewell DB: A conjugative transposon (Tn919) inStreptococcus sanguis. Infection and Immunity 1985, 47: 415–420.

    Google Scholar 

  95. Courvalin P, Carlier C: Transposable multiple antibiotic resistance inStreptococcus pneumoniae. Molecular and General Genetics 1986, 205: 291–297.

    Google Scholar 

  96. Vijayakumar MN, Priche SD, Guild WR: Structure of a conjugative element inStreptococcus pneumoniae. Journal of Bacteriology 1986, 166: 978–984.

    Google Scholar 

  97. Smith M, Guild WR: Evidence for transposition of the conjugative R determinants ofStreptococcus agalactiae B109. In: Schlessinger D (ed): Microbiology — 1982. American Society for Microbiology, Washington, DC, 1982, p. 109–111.

    Google Scholar 

  98. Inamine J, Burdett V: Structural organization of a 67-kilobase streptococcal conjugative element mediating multiple antibiotic resistance. Journal of Bacteriology 1985, 161: 620–626.

    Google Scholar 

  99. LeBouguenec C, Horaud T, Bicth G, Colimon R, Dauguet C: Translocation of antibiotic resistance markers of a plasmid-freeStreptococcus pyogenes (group A) strain into different streptococcal hemolysin plasmids. Molecular and General Genetics 1984, 194: 377–387.

    Google Scholar 

  100. Hachler H, Kayser FH, Berger-Bachi B: Homology of a transferable tetracycline resistance determinant ofClostridium difficile withStreptococcus (Enterococcus) faecalis transposon Tn916. Antimicrobial Agents and Chemotherapy 1987, 31: 1033–1038.

    Google Scholar 

  101. Courvalin P, Carlier C: Tn1545: a conjugative shuttle transposon. Molecular and General Genetics 1987, 206: 259–264.

    Google Scholar 

  102. Caillaud F, Courvalin P: Nucleotide sequence of the ends of the conjugative shuttle transposon Tn-1545. Molecular and General Genetics 1987, 209: 110–115.

    Google Scholar 

  103. Martin P, Trieu-Cuot P, Courvalin P: Nucleotide sequence of thetetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Research 1986, 14: 7047–7058.

    Google Scholar 

  104. Gawron-Burke C, Clewell DB: Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 inEscherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. Journal of Bacteriology 1984, 159: 214–221.

    Google Scholar 

  105. Scott JR, Kirchman PA, Caparon MG: An intermediate in transposition of the conjugative transposon Tn916. Proceedings of the National Academy of Sciences of the USA 1988, 85: 4809–4813.

    Google Scholar 

  106. Wirth R, An FY, Clewell DB: Highly efficient protoplast transformation system forStreptococcus faecalis and a newEscherichia coli-Streptococcus faecalis shuttle vector. Journal of Bacteriology 1986, 165: 831–836.

    Google Scholar 

  107. Yamamoto M, Jones JM, Senghas E, Gawron-Burke C, Clewell DB: Generation of Tn5 insertions in streptococcal conjugative transposon Tn916. Applied and Environmental Microbiology 1987, 53: 1069–1072.

    Google Scholar 

  108. Senghas E, Jones JM, Yamamoto M, Gawron-Burke C, Clewell DB: Genetic organization of the bacterial conjugative transposon Tn916. Journal of Bacteriology 1988, 170: 245–249.

    Google Scholar 

  109. Jones JM, Gawron-Burke C, Flannagan SE, Yamamoto M, Senghas E, Clewell DB: Structural and genetic studies of the conjugative transposon Tn916. In: Ferretti J, Curtiss III R (ed): Streptococcal genetics. American Society for Microbiology, Washington, DC, 1987, p. 54–60.

    Google Scholar 

  110. Clewell DB, Flannagan SE, Ike Y, Jones JM, Gawron-Burke C: Sequence analysis of termini of conjugative transposon Tn916. Journal of Bacteriology 1988, 170: 3046–3052.

    Google Scholar 

  111. Poyart-Salmeron C, Tricu-Cuot P, Carlier C, Courvalin P: Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO Journal 1989, 8: 2425–2433.

    Google Scholar 

  112. Sherratt D: Tn3 and related transposable elements: site-specific recombination and transposition. In: Berg DE, Howe MM (ed): Mobile DNA. American Society for Microbiology, Washington, DC, 1989, p. 163–184.

    Google Scholar 

  113. Shaw J, Clewell DB: Complete nucleotide sequence of macrolide lincosamide-streptogramin B-resistance transposon Tn917 inStreptococcus faecalis. Journal of Bacteriology 1985, 164: 782–796.

    Google Scholar 

  114. Perkins J, Youngman PJ: A physical and functional analysis of Tn917, aStreptococcus transposon in the Tn3 family that functions inBacillus. Plasmid 1984, 12: 119–138.

    Google Scholar 

  115. Yagi Y, McLellan T, Frez W, Clewell D: Characterization of a small plasmid determining resistance to erythromycin, lincomycin and vernamycin B in a strain ofStreptococcus sanguis isolated from dental plaque. Antimicrobial Agents and Chemotherapy 1978, 13: 884–887.

    Google Scholar 

  116. Horinouchi S, Byeon W-H, Weisblum B: A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics inStreptococcus sanguis. Journal of Bacteriology 1983, 154: 1252–1262.

    Google Scholar 

  117. Murphy E: Transposable elements in gram-positive bacteria. In: Berg DE, Howe MM (ed): Mobile DNA. American Society for Microbiology, Washington, DC, 1989, p. 269–288.

    Google Scholar 

  118. Schmitt R, Altenbuchner J, Wiebauer K, Arnold W, Puhler A, Schoffl F: Basis of transposition and gene amplification by Tn1721 and related tetracycline resistance transposons. Cold Spring Harbor Symposia on Quantitative Biology 1981, 45: 319–353.

    Google Scholar 

  119. Schoffl F, Arnold W, Puhler A, Altenbuchner J, Schmitt R: The tetracycline resistance transposons Tn1721 and Tn1771 have three 38-base-pair repeats and generate 5-base-pair direct repeats. Molecular and General Genetics 1981, 181: 87–94.

    Google Scholar 

  120. Lereclus D, Mahillon J, Menou G, Lecadet M: Identification of Tn4430, a transposon ofBacillus thuringiensis functional inEscherichia coli. Molecular and General Genetics 1986, 204: 52–57.

    Google Scholar 

  121. Mahillon J, Lereclues D: Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the cointegrate-resolution process. EMBO Journal 1988, 7: 1515–1526.

    Google Scholar 

  122. Mahillon J, Seurinck J, Delcour J, Zabeau M: Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon inBacillus thuringiensis. Gene 1987, 51: 187–196.

    Google Scholar 

  123. Kitts PA, Reed R, Symington L, Burke M, Sherratt DJ: Transposon-specified site-specific recombination. Proceedings of the National Academy of Sciences of the USA 1982, 79: 46–50.

    Google Scholar 

  124. Banai M, LeBlanc DJ:Streptococcus faecalis R plasmid pJH1 contains an erythromycin resistance transposon (Tn3871) similar to transposon Tn917. Journal of Bacteriology 1984, 158: 1172–1174.

    Google Scholar 

  125. Rollins LD, Lee LN, LeBlanc DJ: Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptotocci isolated from pigs, chickens, and humans. Antimicrobial Agents and Chemotherapy 1985, 27: 439–444.

    Google Scholar 

  126. LeBlanc DJ, Inamine JM, Lee LN: Broad geographical distribution of homologous crythromycin, kanamycin, and streptomycin resistance determinants among group D streptococci of human and animal origin. Antimicrobial Agents and Chemotherapy 1986, 29: 549–555.

    Google Scholar 

  127. Weaver KE, Clewell DB: Transpon Tn917 delivery vectors for mutagenesis inStreptococcus faecalis. In: Ferretti J, Curtiss III R (ed): Streptococcal genetics. American Society for Microbiology, Washington, DC, 1987, p. 17–21.

    Google Scholar 

  128. Patterson JE, Masecar BL, Kauffman CA, Schaberg DR, Hierholzer WJ, Zervos MJ: Gentamicin resistance plasmids of enterococci from diverse geographic areas are heterogeneous. Journal of Infectious Diseases 1988, 158: 212–216.

    Google Scholar 

  129. Zervos MS, Mikesell TS, Schaberg DR: Heterogeneity of plasmids determining high-level resistance to gentamicin in clinical isolates ofStreptococcus faecalis. Antimicrobial Agents and Chemotherapy 1986, 30: 78–81.

    Google Scholar 

  130. LeBlanc DJ, Lee LN, Clewell DB, Behnke D: Broad geographical distribution of a cytotoxin gene mediating beta-hemolysis and bacteriocin activity amongStreptococcus faecalis strains. Infection and Immunity 1983, 40: 1015–1022.

    Google Scholar 

  131. Ike Y, Hashimoto Y, Clewell DB: Hemolysin ofStreptococcus faecalis subspecieszymogenes contributes to virulence in mice. Infection and Immunity 1984, 45: 528–530.

    Google Scholar 

  132. Brock TD, Davie JM: Probable identity of group D hemolysin with bacteriocin. Journal of Bacteriology 1963, 86: 708–712.

    Google Scholar 

  133. Basinger SF, Jackson RW: Bacteriocin (hemolysin) ofStreptoccus zymogenes. Journal of Bacteriology 1968, 96: 1895–1902.

    Google Scholar 

  134. Ike Y, Clewell DB: High incidence of hemolysin production byStreptococcus faecalis strains associated with human parenteral infections: structure of hemolysin plasmids. In: Ferretti J, Curtiss III R (ed): Streptotoccal genetics. American Society for Microbiology, Washington, DC, 1987, p. 159–164.

    Google Scholar 

  135. Granato PA, Jackson RW: Bicomponent nature of lysin fromStreptococcus zymogenes. Journal of Bacteriology 1969, 100: 865–868.

    Google Scholar 

  136. Granato PA, Jackson RW: Characterization of the A component ofStreptococcus zymogenes lysin. Journal of Bacteriology 1971, 107: 551–556.

    Google Scholar 

  137. Granato PA, Jackson RW: Purification and characterization of the L component ofStreptococcus zymogenes lysin. Journal of Bacteriology 1971, 108: 804–808.

    Google Scholar 

  138. Ike Y, Clewell DB, Segarra RA, Gilmore MS: Genetic analysis of the pAD1 hemolysin/bacteriocin determinant inEnterococcus faecalis: Tn917 insertional mutagenesis and cloning. Journal of Bacteriology 1990, 172: 155–163.

    Google Scholar 

  139. Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman MJ, Abrutyn E, Mederski-Samoraj B: Comparison of two β-lactamase-producing strains ofStreptococcus faecalis. Antimicrobial Agents and Chemotherapy 1986, 30: 861–864.

    Google Scholar 

  140. Zscheck KK, Hull R, Murray BE: Restriction mapping and hybridization studies of a β-lactamase-encoding fragment fromStreptococcus (Enterococcus) faecalis. Antimicrobial Agents and Chemotherapy 1988, 32: 768–769.

    Google Scholar 

  141. Leclercq R, Derlot E, Dubal J, Courvalin P: Plasmid-mediated resistance to vancomycin and teicoplanin inEnterococcus faecium. New England Journal of Medicine 1988, 319: 157–161.

    Google Scholar 

  142. Shlaes DM, Bouvet A, Devine C, Shlaes JH, Al-Obied S, Williamson R: Inducible, transferable resistance to vancomycin inEnterococcus faecalis A256. Antimicrobial Agents and Chemotherapy 1989, 33: 198–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clewell, D.B. Movable genetic elements and antibiotic resistance in enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9, 90–102 (1990). https://doi.org/10.1007/BF01963632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01963632

Keywords

Navigation