Skip to main content

Depression: Current Conceptual Trends

  • Chapter
  • First Online:
Psychiatric Neurotherapeutics

Part of the book series: Current Clinical Psychiatry ((CCPSY))

  • 788 Accesses

Abstract

Depression is a prevalent and devastating neuropsychiatric illness that causes great socioeconomic burden. One of the most challenging aspects in studying and treating depression is the subjective nature of this illness. For centuries, scholars and philosophers have pondered over the causes of depression. We have now developed a multilayered approach to define, understand, and treat depression. In what follows, we will highlight the current conceptual trends in the neurobiology of depression and point to new directions in treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirschfeld RM. American health care systems and depression: the past, present, and the future. J Clin Psychiatry. 1998;59 Suppl 20:5–10.

    PubMed  Google Scholar 

  2. Greden JF. The burden of recurrent depression: causes, consequences, and future prospects. J Clin Psychiatry. 2001;62 Suppl 22:5–9.

    PubMed  Google Scholar 

  3. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet. 1997;349(9063):1436–42.

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg PE, et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry. 2003;64(12):1465–75.

    Article  PubMed  Google Scholar 

  5. Fava M, Davidson KG. Definition and epidemiology of treatment-resistant depression. Psychiatr Clin N Am. 1996;19(2):179–200.

    Article  CAS  Google Scholar 

  6. Petersen T, et al. Treatment resistant depression and axis I co-morbidity. Psychol Med. 2001;31(7):1223–9.

    Article  CAS  PubMed  Google Scholar 

  7. Corey-Lisle PK, et al. Identification of a claims data “signature” and economic consequences for treatment-resistant depression. J Clin Psychiatry. 2002;63(8):717–26.

    Article  PubMed  Google Scholar 

  8. Kessler RC, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–105.

    Article  PubMed  Google Scholar 

  9. Klerman GL, Weissman MM. Increasing rates of depression. JAMA. 1989;261(15):2229–35.

    Article  CAS  PubMed  Google Scholar 

  10. Robins LN, Regier DA. Psychiatric disorders in America: the epidemiological catchment area study. New York: The Free Press; 1991.

    Google Scholar 

  11. Trivedi MH, et al. Clinical results for patients with major depressive disorder in the Texas Medication Algorithm Project. Arch Gen Psychiatry. 2004;61(7):669–80.

    Article  PubMed  Google Scholar 

  12. Khan A, et al. Placebo response and antidepressant clinical trial outcome. J Nerv Ment Dis. 2003;191(4):211–8.

    PubMed  Google Scholar 

  13. Keller MB. Long-term treatment of recurrent and chronic depression. J Clin Psychiatry. 2001;62 Suppl 24:3–5.

    PubMed  Google Scholar 

  14. Williams N, et al. Relapse rates with long-term antidepressant drug therapy: a meta-analysis. Hum Psychopharmacol. 2009;24(5):401–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kupfer DJ. Long-term treatment of depression. J Clin Psychiatry. 1991;52(Suppl):28–34.

    PubMed  Google Scholar 

  16. Kendler KS, Thornton LM, Gardner CO. Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry. 2000;157(8):1243–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sackeim HA. The definition and meaning of treatment-resistant depression. J Clin Psychiatry. 2001;62 Suppl 16:10–7.

    CAS  PubMed  Google Scholar 

  18. Caspi A, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kendler KS, Thornton LM, Prescott CA. Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am J Psychiatry. 2001;158(4):587–93.

    Article  CAS  PubMed  Google Scholar 

  20. Post RM. Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neurosci Biobehav Rev. 2007;31:858–73.

    Article  PubMed  Google Scholar 

  21. Solomon DA, et al. Multiple recurrences of major depressive disorder. Am J Psychiatry. 2000;157(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  22. Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun. 2002;16(5):513–24.

    Article  CAS  PubMed  Google Scholar 

  23. Paykel ES. Life events and affective disorders. Acta Psychiatr Scand Suppl. 2003;418:61–6.

    Article  PubMed  Google Scholar 

  24. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry. 2004;161(2):195–216.

    Article  PubMed  Google Scholar 

  25. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–44.

    Article  CAS  PubMed  Google Scholar 

  26. Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry. 2000;48(8):791–800.

    Article  CAS  PubMed  Google Scholar 

  27. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998;95(22):13290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drevets WC, Ongur D, Price JL. Reduced glucose metabolism in the subgenual prefrontal cortex in unipolar depression. Mol Psychiatry. 1998;3(3):190–1.

    Article  CAS  PubMed  Google Scholar 

  29. Steingard RJ, et al. Smaller frontal lobe white matter volumes in depressed adolescents. Biol Psychiatry. 2002;52(5):413–7.

    Article  PubMed  Google Scholar 

  30. Damasio AR, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3(10):1049–56.

    Article  CAS  PubMed  Google Scholar 

  31. Panksepp J. At the interface of the affective, behavioral, and cognitive neurosciences: decoding the emotional feelings of the brain. Brain Cogn. 2003;52(1):4–14.

    Article  PubMed  Google Scholar 

  32. Elliott R, et al. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59(7):597–604.

    Article  PubMed  Google Scholar 

  33. Davidson RJ, et al. Neural and behavioral substrates of mood and mood regulation. Biol Psychiatry. 2002;52(6):478–502.

    Article  PubMed  Google Scholar 

  34. Murphy TH, et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron. 1989;2(6):1547–58.

    Article  CAS  PubMed  Google Scholar 

  35. Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science. 1985;229:1397–400.

    Article  CAS  PubMed  Google Scholar 

  36. Cerqueira JJ, et al. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27(11):2781–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sackeim HA, Prohovnik I. Brain imaging studies of depressive disorders. In: Mann JJ, Kupfer DJ, editors. The biology of depressive disorders. New York: Plenum; 1993.

    Google Scholar 

  38. Mayberg HS, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.

    Article  CAS  PubMed  Google Scholar 

  39. Shirayama Y, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–61.

    CAS  PubMed  Google Scholar 

  40. Li R, El-Mallahk RS. A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett. 2000;294(3):147–50.

    Article  CAS  PubMed  Google Scholar 

  41. Chen AC, et al. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry. 2001;49(9):753–62.

    Article  CAS  PubMed  Google Scholar 

  42. Lucassen PJ, et al. Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci. 2001;14(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  43. Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull. 2001;35(2):5–49.

    CAS  PubMed  Google Scholar 

  44. Nahon E, et al. Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett. 2005;579(22):5105–10.

    Article  CAS  PubMed  Google Scholar 

  45. Chiou SH, et al. Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway. Br J Pharmacol. 2006;148(5):587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cole PM, Martin SE, Dennis TA. Emotion regulation as a scientific construct: methodological challenges and directions for child development research. Child Dev. 2004;75(2):317–33.

    Article  PubMed  Google Scholar 

  47. Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  48. Southam-Gerow MA, Kendall PC, Weersing VR. Examining outcome variability: correlates of treatment response in a child and adolescent anxiety clinic. J Clin Child Psychol. 2001;30(3):422–36.

    Article  CAS  PubMed  Google Scholar 

  49. Cole PM, Michel MK, Teti LO. The development of emotion regulation and dysregulation: a clinical perspective. Monogr Soc Res Child Dev. 1994;59(2–3):73–100.

    Article  CAS  PubMed  Google Scholar 

  50. Davidson RJ. The functional neuroanatomy of affective style. In: Lane RD, Nadel L, editors. Cognitive neuroscience of emotion. New York: Oxford University Press; 2000. p. 371–88.

    Google Scholar 

  51. Lyubomirsky S, Caldwell ND, Nolen-Hoeksema S. Effects of ruminative and distracting responses to depressed mood on retrieval of autobiographical memories. J Pers Soc Psychol. 1998;75(1):166–77.

    Article  CAS  PubMed  Google Scholar 

  52. Siegle GJ, et al. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.

    Article  PubMed  Google Scholar 

  53. Siegle GJ, et al. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51(9):693–707.

    Article  PubMed  Google Scholar 

  54. Schimmack U, Derryberry D. Attentional interference effects of emotional pictures: threat, negativity, or arousal? Emotion. 2005;5(1):55–66.

    Article  PubMed  Google Scholar 

  55. Verbruggen F, De Houwer J. Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm. Cogn Emot. 2007;21(2):391–403.

    Article  Google Scholar 

  56. Hartikainen KM, Ogawa KH, Knight RT. Transient interference of right hemispheric function due to automatic emotional processing. Neuropsychologia. 2000;38(12):1576–80.

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell DG, et al. Emotion at the expense of cognition: psychopathic individuals outperform controls on an operant response task. J Abnorm Psychol. 2006;115(3):559–66.

    Article  PubMed  Google Scholar 

  58. Ottowitz WE, Dougherty DD, Savage CR. The neural network basis for abnormalities of attention and executive function in major depressive disorder: implications for application of the medical disease model to psychiatric disorders. Harv Rev Psychiatry. 2002;10(2):86–99.

    Article  PubMed  Google Scholar 

  59. Gross JJ. Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. J Pers Soc Psychol. 1998;74(1):224–37.

    Article  CAS  PubMed  Google Scholar 

  60. Gross JJ. Emotion regulation: affective, cognitive, and social consequences. Psychophysiology. 2002;39(3):281–91.

    Article  PubMed  Google Scholar 

  61. Ochsner KN, et al. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14(8):1215–29.

    Article  PubMed  Google Scholar 

  62. Hajcak G, Nieuwenhuis S. Reappraisal modulates the electrocortical response to negative pictures. Cogn Affect Behav Neurosci. 2006;6(4):291–7.

    Article  PubMed  Google Scholar 

  63. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(5):242–9.

    Article  PubMed  Google Scholar 

  64. Beauregard M, Levesque J, Bourgouin P. Neural correlates of conscious self-regulation of emotion. J Neurosci. 2001;21(18):RC165.

    CAS  PubMed  Google Scholar 

  65. Levesque J, et al. Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry. 2003;53(6):502–10.

    Article  PubMed  Google Scholar 

  66. Phan KL, et al. Neural substrates for voluntary suppression of negative affect: a functional magnetic resonance imaging study. Biol Psychiatry. 2005;57(3):210–9.

    Article  PubMed  Google Scholar 

  67. Eippert F, et al. Regulation of emotional responses elicited by threat-related stimuli. Hum Brain Mapp. 2007;28(5):409–23.

    Article  PubMed  Google Scholar 

  68. Urry HL, et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci. 2006;26(16):4415–25.

    Article  CAS  PubMed  Google Scholar 

  69. Ochsner KN, et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23(2):483–99.

    Article  PubMed  Google Scholar 

  70. Broca P. Anatomie comparee des circonvolutions cerebrales. Le grand lobe limbique et la scissure limbique dans la serie des mammiferes. Rev Anthropol. 1878;1:456–98.

    Google Scholar 

  71. Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38:725–43.

    Article  Google Scholar 

  72. Maclean PD, editor. The triune brain in evolution: role in paleocerebral functions. New York: Plenum Press; 1990. 672 pp.

    Google Scholar 

  73. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  74. Mega MS, Cummings JL. Frontal subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6:358–70.

    Article  CAS  PubMed  Google Scholar 

  75. Abercrombie HC, et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport. 1998;9(14):3301–7.

    Article  CAS  PubMed  Google Scholar 

  76. Milak MS, et al. Neuroanatomic correlates of psychopathologic components of major depressive disorder. Arch Gen Psychiatry. 2005;62(4):397–408.

    Article  PubMed  Google Scholar 

  77. Graff-Guerrero A, et al. Frontal and limbic metabolic differences in subjects selected according to genetic variation of the SLC6A4 gene polymorphism. Neuroimage. 2005;25(4):1197–204.

    Article  CAS  PubMed  Google Scholar 

  78. Mayberg HS, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.

    CAS  PubMed  Google Scholar 

  79. Jacobs B, et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb Cortex. 2001;11(6):558–71.

    Article  CAS  PubMed  Google Scholar 

  80. Petrides M, Pandya D. Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci. 2007;27(43):11573–86.

    Article  CAS  PubMed  Google Scholar 

  81. Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–56.

    Article  CAS  PubMed  Google Scholar 

  82. Ramnani N, Owen A. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci. 2004;5(3):184–94.

    Article  CAS  PubMed  Google Scholar 

  83. Posner MI, et al. Localization of cognitive operations in the human brain. Science. 1988;240:1627–31.

    Article  CAS  PubMed  Google Scholar 

  84. Kjaer TW, et al. Increased dopamine tone during meditation-induced change of consciousness. Brain Res Cogn Brain Res. 2002;13(2):255–9.

    Article  CAS  PubMed  Google Scholar 

  85. Vogeley K, et al. Mind reading: neural mechanisms of theory of mind and self-perspective. Neuroimage. 2001;14(1 Pt 1):170–81.

    Article  CAS  PubMed  Google Scholar 

  86. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007;37(4):1083–9.

    Article  PubMed  Google Scholar 

  87. Greicius MD, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Petrides M. Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360(1456):781–95.

    Article  Google Scholar 

  89. Rush AJ, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–17.

    Article  PubMed  Google Scholar 

  90. Fava GA. Can long-term treatment with antidepressant drugs worsen the course of depression? J Clin Psychiatry. 2003;64(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  91. Baldessarini RJ, Ghaemi SN, Viguera AC. Tolerance in antidepressant treatment. Psychother Psychosom. 2002;71(4):177–9.

    Article  PubMed  Google Scholar 

  92. Felder R, Rousseau R. Elemental principles of chemical processes. New York: Wiley; 2005.

    Google Scholar 

  93. Davidson RJ, et al. Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53:545–74.

    Article  PubMed  Google Scholar 

  94. Nestler EJ, et al. Preclinical models: status of basic research in depression. Biol Psychiatry. 2002;52(6):503–28.

    Article  PubMed  Google Scholar 

  95. Kellner CH, et al. Continuation electroconvulsive therapy vs pharmacotherapy for relapse prevention in major depression: a multisite study from the Consortium for Research in Electroconvulsive Therapy (CORE). Arch Gen Psychiatry. 2006;63(12):1337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sackeim HA, et al. The cognitive effects of electroconvulsive therapy in community settings. Neuropsychopharmacology. 2007;32(1):244–54.

    Article  PubMed  Google Scholar 

  97. Sackeim HA, et al. The effects of electroconvulsive therapy on quantitative electroencephalograms. Relationship to clinical outcome (see comments). Arch Gen Psychiatry. 1996;53(9):814–24.

    Article  CAS  PubMed  Google Scholar 

  98. George MS, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67(5):507–16.

    Article  PubMed  Google Scholar 

  99. O’Reardon JP, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62:1208–16.

    Article  PubMed  Google Scholar 

  100. Nahas Z, et al. Brain effects of TMS delivered over prefrontal cortex in depressed adults: role of stimulation frequency and coil-cortex distance. J Neuropsychiatry Clin Neurosci. 2001;13(4):459–70.

    Article  CAS  PubMed  Google Scholar 

  101. Nahas Z, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry. 2005;66(9):1097–104.

    Article  PubMed  Google Scholar 

  102. Nahas Z, et al. Serial vagus nerve stimulation functional MRI in treatment-resistant depression. Neuropsychopharmacology. 2007;32(8):1649–60.

    Article  CAS  PubMed  Google Scholar 

  103. Deep-Brain Stimulation for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.

    Article  Google Scholar 

  104. Lozano AM, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord. 1997;12(6):865–70.

    Article  CAS  PubMed  Google Scholar 

  105. Pool JL. Psychosurgery of older people. J Geriatr Assoc. 1954;2:456–65.

    Article  CAS  Google Scholar 

  106. Mark VH, et al. The destruction of both anterior thalamic nuclei in a patient with intractable agitated depression. J Nerv Ment Dis. 1970;150(4):266–72.

    Article  CAS  PubMed  Google Scholar 

  107. Lozano AM, et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  PubMed  Google Scholar 

  108. Malone Jr D, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schlaepfer TE, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33(2):368–77.

    Article  PubMed  Google Scholar 

  110. Nahas Z, et al. Bilateral epidural prefrontal cortical stimulation for treatment-resistant depression. Biol Psychiatry. 2010;67(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kopell BH, et al. Epidural cortical stimulation of the left dorsolateral prefrontal cortex for refractory major depressive disorder. Neurosurgery. 2011;69(5):1015–29. discussion 1029.

    PubMed  Google Scholar 

  112. Herbsman T, et al. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 2009;66(5):509–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Nahas M.D., M.S.C.R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nahas, Z. (2016). Depression: Current Conceptual Trends. In: Camprodon, J., Rauch, S., Greenberg, B., Dougherty, D. (eds) Psychiatric Neurotherapeutics. Current Clinical Psychiatry. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-495-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-495-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-50-3

  • Online ISBN: 978-1-59745-495-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics