Skip to main content

Translational Neuropsychopharmacology for Major Depression: Targeting Neurotransmitter Systems

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

  • 552 Accesses

Abstract

For many years, the pathology of depression had been interpreted based on psychodynamic theories. However, the accidental discovery of antidepressants has raised questions about the relationship between monoamine neurotransmitters and depression and led to numerous research studies. Currently, dozens of antidepressants are available, and the field of biological psychiatry is developing day by day. More recently, as the development of drugs targeting new neurotransmitter systems progresses rapidly, the treatment of depression is attempting to change based on new paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldessarini RJ, Forte A, Selle V, Sim K, Tondo L, Undurraga J, Vazquez GH (2017) Morbidity in depressive disorders. Psychother Psychosom 86(2):65–72. https://doi.org/10.1159/000448661

    Article  PubMed  Google Scholar 

  2. American Psychiatric Association (2020) Diagnostic and statistical manual of mental disorders, Fifth Edition (DSM-5). APA, Washington, DC. https://www.psychiatry.org/psychiatrists/practice/dsm. Accessed 1 Sep 2020

    Google Scholar 

  3. American Psychiatric Association (2009) Practice guideline for the treatment of patients with major depressive disorder, 3rd edn. APA, Washington, DC

    Google Scholar 

  4. López-Muñoz F, Alamo C (2009) Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 15(14):1563–1586

    Article  PubMed  Google Scholar 

  5. Crane GE (1957) Iproniazid (Marsilid) phosphate: a therapeutic agent for mental disorders and debilitating diseases. Psychiatric Research Reports

    Google Scholar 

  6. Kline NS (1958) Clinical experience with iproniazid (Marsilid). J Clin Exp Psychopathol 19(2, Suppl. 1):72

    CAS  PubMed  Google Scholar 

  7. Kuhn R (1958) The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatr 115(5):459–464

    Article  CAS  PubMed  Google Scholar 

  8. López-Munoz F, Alamo C, Juckel G, Assion H-J (2007) Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. J Clin Psychopharmacol 27(6):555–559

    Article  CAS  PubMed  Google Scholar 

  9. Shaw DM, Camps FE, Eccleston EG (1967) 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 113(505):1407–1411

    Article  CAS  PubMed  Google Scholar 

  10. Nutt DJ (2008) Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 69:4–7

    Article  PubMed  Google Scholar 

  11. Gumnick JF, Nemeroff CB (2000) Problems with currently available antidepressants. J Clin Psychiatry 61:5

    CAS  PubMed  Google Scholar 

  12. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice. Am J Psychiatr 163(1):28–40

    Article  PubMed  Google Scholar 

  13. Stahl SM, Stahl SM (2013) Stahl’s essential psychopharmacology: neuroscientific basis and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  14. Altamura C, Maes M, Dai J, Meltzer HY (1995) Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 5(Suppl):71–75. https://doi.org/10.1016/0924-977x(95)00033-l

    Article  CAS  PubMed  Google Scholar 

  15. Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675(1–2):157–164. https://doi.org/10.1016/0006-8993(95)00057-w

    Article  CAS  PubMed  Google Scholar 

  16. Petty F, Sherman AD (1984) Plasma GABA levels in psychiatric illness. J Affect Disord 6(2):131–138. https://doi.org/10.1016/0165-0327(84)90018-1

    Article  CAS  PubMed  Google Scholar 

  17. Auer DP, Pütz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47(4):305–313. https://doi.org/10.1016/s0006-3223(99)00159-6

    Article  CAS  PubMed  Google Scholar 

  18. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64(2):193–200. https://doi.org/10.1001/archpsyc.64.2.193

    Article  CAS  PubMed  Google Scholar 

  19. Yildiz-Yesiloglu A, Ankerst DP (2006) Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 147(1):1–25. https://doi.org/10.1016/j.pscychresns.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Adams HA (1997) S-(+)-ketamine. Circulatory interactions during total intravenous anesthesia and analgesia-sedation. Anaesthesist 46(12):1081–1087. https://doi.org/10.1007/s001010050510

    Article  CAS  PubMed  Google Scholar 

  21. Heshmati F, Zeinali MB, Noroozinia H, Abbacivash R, Mahoori A (2003) Use of ketamine in severe status asthmaticus in intensive care unit. Iran J Allergy Asthma Immunol 2(4):175–180

    CAS  PubMed  Google Scholar 

  22. Rosenbaum SB, Gupta V, Palacios JL (2020) Ketamine. StatPearls, Treasure Island, FL

    Google Scholar 

  23. Layer RT, Popik P, Olds T, Skolnick P (1995) Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 52(3):621–627. https://doi.org/10.1016/0091-3057(95)00155-p

    Article  CAS  PubMed  Google Scholar 

  24. Meloni D, Gambarana C, De Montis MG, Dal Prá P, Taddei I, Tagliamonte A (1993) Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats. Pharmacol Biochem Behav 46(2):423–426. https://doi.org/10.1016/0091-3057(93)90374-3

    Article  CAS  PubMed  Google Scholar 

  25. Moryl E, Danysz W, Quack G (1993) Potential antidepressive properties of amantadine, memantine and bifemelane. Pharmacol Toxicol 72(6):394–397. https://doi.org/10.1111/j.1600-0773.1993.tb01351.x

    Article  CAS  PubMed  Google Scholar 

  26. Papp M, Moryl E (1994) Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 263(1–2):1–7. https://doi.org/10.1016/0014-2999(94)90516-9

    Article  CAS  PubMed  Google Scholar 

  27. Boyer PA, Skolnick P, Fossom LH (1998) Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 10(3):219–233. https://doi.org/10.1007/bf02761776

    Article  CAS  PubMed  Google Scholar 

  28. Mjellem N, Lund A, Hole K (1993) Reduction of NMDA-induced behaviour after acute and chronic administration of desipramine in mice. Neuropharmacology 32(6):591–595. https://doi.org/10.1016/0028-3908(93)90055-8

    Article  CAS  PubMed  Google Scholar 

  29. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269(1):95–102

    CAS  PubMed  Google Scholar 

  30. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. https://doi.org/10.1016/s0006-3223(99)00230-9

    Article  CAS  PubMed  Google Scholar 

  31. Ionescu DF, Luckenbaugh DA, Niciu MJ, Richards EM, Zarate CA Jr (2015) A single infusion of ketamine improves depression scores in patients with anxious bipolar depression. Bipolar Disord 17(4):438–443. https://doi.org/10.1111/bdi.12277

    Article  CAS  PubMed  Google Scholar 

  32. Murrough JW, Wan LB, Iacoviello B, Collins KA, Solon C, Glicksberg B, Perez AM, Mathew SJ, Charney DS, Iosifescu DV, Burdick KE (2013) Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology. https://doi.org/10.1007/s00213-013-3255-x

  33. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172(10):950–966. https://doi.org/10.1176/appi.ajp.2015.15040465

    Article  PubMed  Google Scholar 

  34. Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T (2013) Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol Lett 34(4):287–293

    CAS  PubMed  Google Scholar 

  35. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71(12):1605–1611. https://doi.org/10.4088/JCP.09m05327blu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA Jr (2015) Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol 29(5):596–607. https://doi.org/10.1177/0269881114568041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saligan LN, Luckenbaugh DA, Slonena EE, Machado-Vieira R, Zarate CA Jr (2016) An assessment of the anti-fatigue effects of ketamine from a double-blind, placebo-controlled, crossover study in bipolar disorder. J Affect Disord 194:115–119. https://doi.org/10.1016/j.jad.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrade C (2017) Ketamine for depression, 4: In what dose, at what rate, by what route, for how long, and at what frequency? J Clin Psychiatry 78(7):e852–e857. https://doi.org/10.4088/JCP.17f11738

    Article  PubMed  Google Scholar 

  39. Andrade C (2019) Oral ketamine for depression, 1: pharmacologic considerations and clinical evidence. J Clin Psychiatry 80(2):19f12820. https://doi.org/10.4088/JCP.19f12820

    Article  PubMed  Google Scholar 

  40. Domany Y, Bleich-Cohen M, Tarrasch R, Meidan R, Litvak-Lazar O, Stoppleman N, Schreiber S, Bloch M, Hendler T, Sharon H (2019) Repeated oral ketamine for out-patient treatment of resistant depression: randomised, double-blind, placebo-controlled, proof-of-concept study. Br J Psychiatry 214(1):20–26. https://doi.org/10.1192/bjp.2018.196

    Article  PubMed  Google Scholar 

  41. Henter ID, de Sousa RT, Zarate CA Jr (2018) Glutamatergic modulators in depression. Harv Rev Psychiatry 26(6):307

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, Tadic A, Sienaert P, Wiegand F, Manji H, Drevets WC, Van Nueten L (2016) Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry 80(6):424–431. https://doi.org/10.1016/j.biopsych.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  43. Fedgchin M, Trivedi M, Daly EJ, Melkote R, Lane R, Lim P, Vitagliano D, Blier P, Fava M, Liebowitz M (2019) Efficacy and safety of fixed-dose esketamine nasal spray combined with a new oral antidepressant in treatment-resistant depression: results of a randomized, double-blind, active-controlled study (TRANSFORM-1). Int J Neuropsychopharmacol 22(10):616–630

    Article  PubMed  PubMed Central  Google Scholar 

  44. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, Mazzucco C, Hough D, Thase ME, Shelton RC (2019) Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatr 176(6):428–438

    Article  PubMed  Google Scholar 

  45. Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, Lane R, Lim P, Duca AR, Hough D, Thase ME, Zajecka J, Winokur A, Divacka I, Fagiolini A, Cubala WJ, Bitter I, Blier P, Shelton RC, Molero P, Manji H, Drevets WC, Singh JB (2019) Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 76(9):893–903. https://doi.org/10.1001/jamapsychiatry.2019.1189

    Article  PubMed  PubMed Central  Google Scholar 

  46. Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR, Burch RM (2015) Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract 21(2):140–149. https://doi.org/10.1097/01.pra.0000462606.17725.93

    Article  PubMed  Google Scholar 

  47. Ragguett RM, Rong C, Kratiuk K, McIntyre RS (2019) Rapastinel - an investigational NMDA-R modulator for major depressive disorder: evidence to date. Expert Opin Investig Drugs 28(2):113–119. https://doi.org/10.1080/13543784.2019.1559295

    Article  CAS  PubMed  Google Scholar 

  48. Vasilescu AN, Schweinfurth N, Borgwardt S, Gass P, Lang UE, Inta D, Eckart S (2017) Modulation of the activity of N-methyl-d-aspartate receptors as a novel treatment option for depression: current clinical evidence and therapeutic potential of rapastinel (GLYX-13). Neuropsychiatr Dis Treat 13:973–980. https://doi.org/10.2147/ndt.S119004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pothula S, Liu RJ, Wu M, Sliby AN, Picciotto MR, Banerjee P, Duman RS (2020) Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons. Neuropsychopharmacology 46:799. https://doi.org/10.1038/s41386-020-00882-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, H., Kim, YK., Jeon, H.J. (2022). Translational Neuropsychopharmacology for Major Depression: Targeting Neurotransmitter Systems. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics