Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In addition to the well-known α- and β-tubulin, which constitute the tubulin dimer, there are other related forms of tubulin, including γ, σ, ε, η and others. γ-Tubulin plays a key role in the nucleation of microtubule assembly at the centrosome. The roles of the other members of the tubulin superfamily are still being explored. It is interesting that all of them are found either in the centrosome or the very similar basal body; there is evidence that some of these play significant roles in the assembly of these organelles. The proteins of the tubulin superfamily are also related to the prokaryotic protein FtsZ, which plays a key role in cell division. Comparison of the sequences of all of these proteins allows for speculation about their evolution. These proteins and their evolution will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oakley BR. γ-Tubulin. In: Microtubules, Hyams JS, Lloyd CW, eds. Wiley-Liss, New York, pp 33–45.

    Google Scholar 

  2. McKean PG, Vaughan S, Gull K. The extended tubulin superfamily. J Cell Sci 2001;114:2723–2733.

    PubMed  CAS  Google Scholar 

  3. Moritz M, Agard DA. γ-Tubulin complexes and microtubule nucleation. Curr Op Struct Biol 2001;11:174–181.

    Article  CAS  Google Scholar 

  4. Dutcher SK. Long-lost relatives reappear: identification of new members of the tubulin superfamily. Curr Op Microbiol 2003;6:634–640.

    Article  CAS  Google Scholar 

  5. Dutcher SK. The tubulin fraternity: alpha to eta. Curr Op Cell Biol 2001;13:49–54.

    Article  PubMed  CAS  Google Scholar 

  6. Errington J. Dynamic proteins and a cytoskeleton in bacteria. Nature Cell Biol 2003;5:175–178.

    Article  PubMed  CAS  Google Scholar 

  7. Lutkenhaus J, Addinall SG. Bacterial cell division and the Z ring. Annu Rev Biochem 1997;66: 93–116.

    Article  PubMed  CAS  Google Scholar 

  8. Margolin W. Organelle: self-assembling GTPase caught in the middle. Curr Biol 2000;10:R328–R330.

    Article  PubMed  CAS  Google Scholar 

  9. Oakley CE, Oakley BR. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 1989;338:662–664.

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs U, Moepps B, Maucher HP, Schraudolf H. Isolation, characterization and sequence of a cDNA encoding γ-tubulin protein from the fern Anemia phyllitidis L. Sw. Plant Mol Biol 1993;23:595–603.

    Article  PubMed  CAS  Google Scholar 

  11. Liang A, Heckmann K. The macronuclear γ-tubulin-encoding gene of Euplotes octocarinatus contains two introns and an in-frame TGA. Gene 1993; 136:319–322.

    Article  PubMed  CAS  Google Scholar 

  12. Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP. γ-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 1994;6:303–314.

    Article  PubMed  CAS  Google Scholar 

  13. Lopez I, Khan S, Sevik M, Cande WZ, Hussey PJ. Isolation of a full length cDNA encoding Zea mays γ-tubulin. Plant Physiol 1995;107:309–310.

    Article  PubMed  CAS  Google Scholar 

  14. Scott V, Sherwin T, Gull K. γ-Tubulin in trypanosomes: Molecular characterization and localization to multiple and diverse microtubule organizing centres. J Cell Sci 1997; 110:157–168.

    PubMed  CAS  Google Scholar 

  15. Fuller SD, Gowen BE, Reinsch S, et al. The core of the mammalian centriole contains γ-tubulin. Curr Biol 1995;5:1384–1393.

    Article  PubMed  CAS  Google Scholar 

  16. Knop M, Schiebel E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 1997; 16:6985–6995.

    Article  PubMed  CAS  Google Scholar 

  17. Shimamura M, Brown RC, Lemmon BE, et al. γ-Tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 2004; 16:45–59.

    Article  PubMed  CAS  Google Scholar 

  18. Inclán YF, Nogales E. Structural models for the self-assembly and microtubule interactions of γ-, σ-and ε-tubulin. J Cell Sci 2000; 114:413–422.

    Google Scholar 

  19. Leguy R, Melki R, Pantaloni D, Carlier MF. Monomeric γ-tubulin nucleates microtubules. J Biol Chem 2000;275:21,975–21,980.

    Article  PubMed  CAS  Google Scholar 

  20. Kierszenbaum AL. Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 2002;63:1–4.

    Article  PubMed  CAS  Google Scholar 

  21. Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA. γ-Tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil Cytoskeleton 1999;42: 285–297.

    Article  PubMed  CAS  Google Scholar 

  22. McKean PG, Baines A, Vaughan S, Gull K. γ-Tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr Biol 2003; 13:598–602.

    Article  PubMed  CAS  Google Scholar 

  23. Geimer S, Melkonian M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 2004;117: 2663–2674.

    Article  PubMed  CAS  Google Scholar 

  24. Shang Y, Li B, Gorovsky MA. Tetrahymena thermophila contains a conventional γ-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 2002; 158:1195–1206.

    Article  PubMed  CAS  Google Scholar 

  25. Linhartová I, Novotná B, Sulimenko V, Dráberová E, Dráber P. Gamma-tubulin in chicken erythrocytes: changes in localization during cell differentiation and characterization of cytoplasmic complexes. Dev Dynamics 2002;223:229–240.

    Article  Google Scholar 

  26. Zhou J, Shu HB, Joshi HC. Regulation of tubulin synthesis and cell cycle progression in mammalian cells by γ-tubulin-mediated microtubule nucleation. J Cell Biochem 2002;84:472–483.

    Article  PubMed  Google Scholar 

  27. Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. Dynamin 2 binds γ-tubulin and participates in centrosome cohesion. Nature Cell Biol 2004;6:335–342.

    Article  PubMed  CAS  Google Scholar 

  28. Bobinnec Y, Fukuda M, Nishida E. Identification and characterization of Caenorhabditis elegans γ-tubulin in dividing cells and differentiated tissues. J Cell Sci 2000;113:3747–3759.

    PubMed  CAS  Google Scholar 

  29. Lajoie-Mazenc I, Détraves C, Rotaru V, et al. A single γ-tubulin gene and mRNA, but two γ-tubulin polypeptides differing by their binding to the spindle pole organizing centres. J Cell Sci 1996;109: 2483–2492.

    PubMed  CAS  Google Scholar 

  30. Petitprez M, Caumont C, Barthou H, Wright M, Alibert G. Two γ-tubulin isoforms are differentially expressed during development in Helianthus annuus. Physiologia Plantarum 2001;111:102–107.

    Article  CAS  Google Scholar 

  31. Llamazares S, Tavosanis G, Gonzalez C. Cytological characterisation of the mutant phenotypes produced during early embryogenesis by null and loss-of-function alleles of the γTub37C gene in Drosophila. J Cell Sci 1999; 112:659–667.

    PubMed  CAS  Google Scholar 

  32. Tavosanis G, Gonzalez C. γ-Tubulin function during female germ-cell development and oogenesis in Drosophila. Proc Nat Acad Sci USA 2003;100:10,263–10,268.

    Article  PubMed  CAS  Google Scholar 

  33. Raynaud-Messina B, Debec A, Tollon Y, Gares M, Wright M. Differential properties of two γ-tubulin isotypes. Eur J Cell Biol 2001;80:643–649.

    Article  PubMed  CAS  Google Scholar 

  34. Wise DO, Krahe R, Oakley BR. The γ-tubulin gene family in humans. Genomics 2000;67:164–170.

    Article  PubMed  CAS  Google Scholar 

  35. Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M. Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast. Dev Cell 2001;1:621–631.

    Article  PubMed  CAS  Google Scholar 

  36. Dráber P, Sulimenko V. Association of γ-tubulin isoforms with tubulin dimers. Cell Biol Int 2003;27: 197–198.

    Article  PubMed  Google Scholar 

  37. Libusová L, Sulimenko T, Sulimenko V, Hozák Dráber P. γ-Tubulin in Leishmania: cell cycle-dependent changes in subcellular localization and heterogeneity of its isoforms. Exp Cell Res 2004; 295:375–386.

    Article  PubMed  Google Scholar 

  38. Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein tau and tubulin. Biochemistry 1994;33:12,471–12,477.

    Article  PubMed  CAS  Google Scholar 

  39. Dutcher SK, Trabuco EC. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes σ-tubulin, a new member of the tubulin superfamily. Mol Biol Cell 1998;9:1293–1308.

    PubMed  CAS  Google Scholar 

  40. Chang P, Stearns T. σ-Tubulin and ε-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol 2000;2:30–35.

    Article  PubMed  CAS  Google Scholar 

  41. Smrzka OW, Delgehyr N, Bornens M. Tissue-specific expression and subcellular localisation of mammalian σ-tubulin. Curr Biol 2000;10:413–416.

    Article  PubMed  CAS  Google Scholar 

  42. Kato A, Nagata Y, Todokoro K. σ-Tubulin is a component of intercellular bridges and both the early and perinuclear rings during spermatogenesis. Dev Biol 2004;269:196–205.

    Article  PubMed  CAS  Google Scholar 

  43. O’Toole ET, Giddings TH, McIntosh JR, Dutcher SK. Three-dimensional organization of basal bodies from wild-type and σ-tubulin deletion strains of Chlamydomonas reinhardtii. Mol Biol Cell 2003; 14:2999–3012.

    Article  PubMed  CAS  Google Scholar 

  44. Dupuis-Williams P, Fleury-Aubusson A, Garreau de Loubresse N, et al. Functional role of ε-tubulin in the assembly of the centriolar microtubule scaffold. J Cell Biol 2002;158:1183–1193.

    Article  PubMed  CAS  Google Scholar 

  45. Nakagawa Y, Yamane Y Okanoue T, Tsukita S, Tsukita S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell 2001;12:1687–1697.

    PubMed  CAS  Google Scholar 

  46. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J. ε-Tubulin is an essential component of the centriole. Mol Biol Cell 2002;13:3859–3869.

    Article  PubMed  CAS  Google Scholar 

  47. Chang P, Giddings TH, Winey M, Stearns T. ε-Tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol 2003;5:71–76.

    Article  PubMed  CAS  Google Scholar 

  48. Ruiz F, Krzywicka A, Klotz C, et. al. The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, η-tubulin. Curr Biol 2000; 10:1451–1454.

    Article  PubMed  CAS  Google Scholar 

  49. Ruiz F, Dupuis-Williams P, Klotz C, et al. Genetic evidence for interaction between η-and β-tubulins. Eukaryotic Cell 2004;3:212–220.

    Article  PubMed  CAS  Google Scholar 

  50. Vaughan S, Attwood T, Navarro M, Scott V, McKean P, and Gull K. New tubulins in protozoal parasites. Curr Biol 2000;10:R258–R259.

    Article  PubMed  CAS  Google Scholar 

  51. Ruiz F. (Unpublished) NCBI Accession # CAE11219, 2003.

    Google Scholar 

  52. Vaughan S, Wickstead B, Gull K, Addinall AG. Molecular evolution of FtsZ protein sequences encoded within the genomes of Archaea, Bacteria, and Eukaryota. J Mol Evol 2004;58:19–39.

    Article  PubMed  CAS  Google Scholar 

  53. Wang X, Lutkenhaus J. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 1996;21:313–319.

    Article  PubMed  CAS  Google Scholar 

  54. Lowe J, Amos LJ. Crystal structure of the bacterial cell-division protein FtsZ. Nature 1998; 391: 203–206.

    Article  PubMed  CAS  Google Scholar 

  55. Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998;391:199–203.

    Article  PubMed  CAS  Google Scholar 

  56. Bi E, Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature 1991;354:161–164.

    Article  PubMed  CAS  Google Scholar 

  57. Addinall SG, Holland B. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 2002;318:219–236.

    Article  PubMed  CAS  Google Scholar 

  58. Jenkins C, Samudrala R, Anderson I, et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Nat Acad Sci USA 2002;99:17,049–17,054.

    Article  PubMed  CAS  Google Scholar 

  59. Sontag CA, Stricker J, Staley JT, Erickson HP. Self assembly of a new class of bacterial tubulins. American Society for Cell Biology Annual Meeting Abstracts. 2004; p 423a.

    Google Scholar 

  60. McDonald K, Morphew M. Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: 1. Drosophila melanogaster and Stronglyocentrotus purpuratus embryos. Microsc Res Tech 1993;24:465–473.

    Article  PubMed  CAS  Google Scholar 

  61. Callaini G, Whitfield WG, Riparbelli MG. Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Exp Cell Res 1997;234:183–190.

    Article  PubMed  CAS  Google Scholar 

  62. Kuriyama R, Omoto CK, Gèze M, Bessse C, Schrével J. Changes in the distribution of microtubule/ centrosome-containing structures in the protozoan, Lecudina tuzetae. American Society for Cell Biology Annual Meeting Abstracts. 2004; p 70a.

    Google Scholar 

  63. Regnard C, Desbruyères E, Huet JC, Beauvallet C, Pernollet JC, Eddé B. Polyglutamylation of nucleosome assembly proteins. J Biol Chem 2000;275:15,969–15,976.

    Article  PubMed  CAS  Google Scholar 

  64. Xia L, Hai B, Gao Y, et al. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 2000;149:1097–1106.

    Article  PubMed  CAS  Google Scholar 

  65. Fox SW, Harada K. Thermal copolymerization of amino acids to a product resembling protein. Science 1958; 128:1214.

    Article  PubMed  CAS  Google Scholar 

  66. Mark HF, Gaylord MG, Bikales NM. Encyclopedia of Polymer Science and Technology, Interscience Publishers, New York, vol 9, 1964; pp 284.

    Google Scholar 

  67. Fox SW, Dose K. Molecular Evolution and the Origin of Life. W.H. Freeman & Co., San Francisco, 1972.

    Google Scholar 

  68. Fox SW, Jungck JR, Nakashima T. From proteinoid microsphere to contemporary cell: formation of internucleotide and peptide bonds by proteinoid particles. Origins of Life 1974;5:227–237.

    Article  PubMed  CAS  Google Scholar 

  69. Nakashima T, Fox SW. Metabolism of proteinoid microspheres. Topics Curr Chem 1987;139:58–81.

    CAS  Google Scholar 

  70. Fox SW. Synthesis of life in the lab? Defining a protoliving system. Quart Rev Biol 1991;66: 181–185.

    Article  PubMed  CAS  Google Scholar 

  71. Fox SW, Hefti F, Hartikka J, et al. Pharmacological activities in thermal proteins: relationships in molecular evolution. Int J Quantum Chem Quantum Biol Symp 1987;14:347–349.

    Article  PubMed  CAS  Google Scholar 

  72. Cloud P. Oasis in Space: Earth History from the Beginning. W.W. Norton, and Co., New York, 1988.

    Google Scholar 

  73. Schlesinger G, Miller SL. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. J Mol Evol 1983;19:376–382.

    Article  PubMed  CAS  Google Scholar 

  74. Wilson L. Properties of colchicine-binding protein from chick embryo brain. Interactions with Vinca alkaloids and podophyllotoxin. Biochemistry 1970;9:4999–5007.

    Article  PubMed  CAS  Google Scholar 

  75. Hamel E, Lin CM. Stabilization of the colchicine-binding activity of tubulin by organic acids. Biochim Biophys. Acta 1981;675:226–231.

    PubMed  CAS  Google Scholar 

  76. Hamel E, Lin CM. Glutamate-induced polymerization of tubulin: Characteristics of the reaction and application to the large-scale purification of tubulin. Arch Biochem Biophys 1981;209:29–40.

    Article  PubMed  CAS  Google Scholar 

  77. Hamel E, del Campo AA, Lowe MC, Waxman PG, Lin CM. Effects of organic acids on tubulin polymerization and associated guanosine 5′-triphosphate hydrolysis. Biochemistry 1982;21:503–509.

    Article  PubMed  CAS  Google Scholar 

  78. Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004;431:152–155.

    Article  PubMed  CAS  Google Scholar 

  79. Zheng Y, Jung MK, Oakley BR. γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the membrane. Cell 1991;65:817–823.

    Article  PubMed  CAS  Google Scholar 

  80. Kubo A, Hata M, Kubo A, Tsukita S. Gene-knockout analysis of two gamma-tubulin isoforms in mice. NCBI Accession nos. BAD27264, BAD27265, 2004.

    Google Scholar 

  81. Stearns T, Evans L, Kirschner M. γ-Tubulin is a highly conserved component of the centrosome. Cell 1991;65:825–836.

    Article  PubMed  CAS  Google Scholar 

  82. Rogers GC, Chui KK, Lee EW, et al. A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J Cell Biol 2000;150:499–512.

    Article  PubMed  CAS  Google Scholar 

  83. Kim YK, Cha YK, Jun HY, Kim JD, Choi JS, Kim HR. Nucleotide sequence of a cDNA (OstubG2) encoding a gamma-tubulin in the rice plant (Oryza sativa). NCBI Accession no. O49068, 2001.

    Google Scholar 

  84. Wagner TA, Sack FD, Oakley BR, Oakley CE, Schwuchow J. Characterization of gamma tubulin from Physcomitrella patens. NCBI Accession no. AAD33883, 1999.

    Google Scholar 

  85. Heckmann S, Schliwa M, Kube-Granderath E. Primary structure of Neurospora crassa γ-tubulin. Gene 1997;199:303–309.

    Article  PubMed  CAS  Google Scholar 

  86. Sobel SG, Snyder M. A highly divergent γ-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J Cell Biol 1995;131:1775–1788.

    Article  PubMed  CAS  Google Scholar 

  87. Luo H, Perlin MH. The γ-tubulin-encoding gene from the basidiomycete fungus, Ustilago violacea, has a long 5′-untranslated region. Gene 1993;137:187–194.

    Article  PubMed  CAS  Google Scholar 

  88. Katinka MD, Duprat S, Cornillot E, et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001;414:450–453.

    Article  PubMed  CAS  Google Scholar 

  89. Maessen S, Wesseling JG, Smits MA, Konings RN, Schoenmakers JG. The γ-tubulin gene of the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1993;60:27–35.

    Article  PubMed  CAS  Google Scholar 

  90. Tan M, Liang A, Heckmann K. The two gamma tubulin genes of Euplotes octocarinatus code for a slightly different protein. NCBI Accession nos. P34786, CAA70745, 1996.

    Google Scholar 

  91. Ueda M, Graf R, MacWilliams HK, Schliwa M, Euteneuer U. Centrosome positioning and directionality of cell movements. Proc Nat Acad Sci USA 1997;94:9674–9678.

    Article  PubMed  CAS  Google Scholar 

  92. Kube-Granderath E, Schliwa M. Unusual distribution of γ-tubulin in the giant fresh water amoeba Reticulomyxa filosa. Eur J Cell Biol 1997;72:287–296.

    PubMed  CAS  Google Scholar 

  93. Sidjanin DJ, Zangerl B, Johnson JL, et al. Cloning of the canine delta tubulin cDNA (TUBD) and mapping to CFA9. Anim Genet 2002;33:161–162.

    Article  PubMed  CAS  Google Scholar 

  94. Piard-Ruster K, Stearns T. Characterization of Xenopus delta-tubulin. NCBI Accession no. AAL27450, 2001.

    Google Scholar 

  95. Inaba K, Satouh Y. Molecular cloning of ascidian delta-tubulin. NCBI Accession no. BAB85852, 2002.

    Google Scholar 

  96. (no reference) NCBIAccession no. XP 125543.

    Google Scholar 

  97. Chang P, Stearns T. Xenopus epsilon tubulin is a centrosomal protein. (NCBI Accession no.) AAN77278, 2001.

    Google Scholar 

  98. Morrison HG, McArthur AG, Adam RD, et al. Draft sequence of the Giardia lamblia genome. NCBI Accession no. EAA40536, 2003.

    Google Scholar 

  99. Berriman M, Hertz-Fowler CVA, hall N, et al. NCBI Accession no. CAB95398, 2002.

    Google Scholar 

  100. Ivens AC, Lewis SM, Bagherzadeh A, Zhang L, Chan HM, Smith DF. A physical map of the Leishmania major Friedlin genome. Genome Res 1998;8:135–145.

    PubMed  CAS  Google Scholar 

  101. Ruiz F. NCBI Accession no. CAB99490, 2000.

    Google Scholar 

  102. Dupuis-Williams P. NCBI Accession no. CAD20607, 2000.

    Google Scholar 

  103. Dupuis-Williams P, Fleury-Aubusson A, Garreau de Loubresse N, Geoffrey H, Vayssie L, and Rossier J. Functional role of epsilon-tubulin in centriolar microtubule scaffold. NCBI Accession no. CAD20608, 2000.

    Google Scholar 

  104. Vinh J, Langridge JI, Bré MH, et al. Structural characterization by tandem mass spectrometry of the posttranslational polyglycylation of tubulin. Biochemistry 1999;38:3133–3139.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Ludueña, R.F., Banerjee, A. (2008). The Tubulin Superfamily. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics