Skip to main content
Log in

Molecular Evolution of FtsZ Protein Sequences Encoded Within the Genomes of Archaea, Bacteria, and Eukaryota

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify “FtsZ-like” sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. MD Adams SE Celniker RA Holt et al. (2000) ArticleTitleThe genome sequence Drosophila melanogaster. Science 287 2185–2195 Occurrence Handle10.1126/science.287.5461.2185 Occurrence Handle10731132

    Article  PubMed  Google Scholar 

  2. SG Addinall B Holland (2002) ArticleTitleThe tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 318 219–236 Occurrence Handle10.1016/S0022-2836(02)00024-4 Occurrence Handle1:CAS:528:DC%2BD38XktlCksrs%3D Occurrence Handle12051832

    Article  CAS  PubMed  Google Scholar 

  3. S-i Arimura N Tsutsumi (2002) ArticleTitleA dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. PNAS 99 5727–5731 Occurrence Handle10.1073/pnas.082663299 Occurrence Handle1:CAS:528:DC%2BD38XjtFKluro%3D Occurrence Handle11960028

    Article  CAS  PubMed  Google Scholar 

  4. TK Attwood ME Beck (1994) ArticleTitlePRINTS—A protein motif fingerprint database. Protein Eng 7 841–848 Occurrence Handle1:CAS:528:DyaK2cXmtVSgsrw%3D Occurrence Handle7971946

    CAS  PubMed  Google Scholar 

  5. TK Attwood ME Beck AJ Bleasby DJ Parry-Smith (1994) ArticleTitlePRINTS—A database of protein motif fingerprints. Nucleic Acids Res 22 3590–3596 Occurrence Handle1:CAS:528:DyaK2cXmslersLg%3D Occurrence Handle7937065

    CAS  PubMed  Google Scholar 

  6. TK Attwood ME Beck DR Flower P Scordis JN Selley (1998) ArticleTitleThe PRINTS protein fingerprint database in its fifth year. Nucleic Acids Res 26 304–308 Occurrence Handle1:CAS:528:DyaK1cXovVCisQ%3D%3D Occurrence Handle9399860

    CAS  PubMed  Google Scholar 

  7. TK Attwood MJ Blythe DR Flower A Gaulton JE Mabey N Maudling L McGregor AL Mitchell G Moulton K Paine P Scordis (2002) ArticleTitlePRINTS and PRINTS-S shed light on protein ancestry. Nucleic Acids Res 30 239–241 Occurrence Handle10.1093/nar/30.1.239 Occurrence Handle1:CAS:528:DC%2BD38Xht12ku7o%3D Occurrence Handle11752304

    Article  CAS  PubMed  Google Scholar 

  8. TL Bailey C Elkan (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc 2nd Int Conf Intelligent Syst Mol Biol, AAAI Press Menlo Park, C 28–36

    Google Scholar 

  9. TL Bailey . Gribskov (1997) ArticleTitleCombining evidence using p-values: Application to sequence homology searches. Bioinf 14 48–54 Occurrence Handle10.1093/bioinformatics/14.1.48

    Article  Google Scholar 

  10. PL Beech PR Gilson (2000) ArticleTitleFtsZ and organelle division in Protists. Protist 151 11–16 Occurrence Handle1:CAS:528:DC%2BD3cXnsF2isrs%3D Occurrence Handle10896129

    CAS  PubMed  Google Scholar 

  11. PL Beech T Nheu T Schultz S Herbert T Lithgow PR Gilson GI McFadden (2000) ArticleTitleMitochondrial FtsZ in a chromophyte alga. Science 287 1276–1279 Occurrence Handle10.1126/science.287.5456.1276 Occurrence Handle1:CAS:528:DC%2BD3cXhtlOqsbs%3D Occurrence Handle10678836

    Article  CAS  PubMed  Google Scholar 

  12. DA Benson I Karsch-Mizrachi DJ Lipman J Ostell BA Rapp DL Wheeler (2000) ArticleTitleGenBank. Nucleic Acids Res 28 15–18 Occurrence Handle10592170

    PubMed  Google Scholar 

  13. WJ Brown DD Rockey (2000) ArticleTitleIdentification of an antigen localized to an apparent septum within dividing chlamydiae. Infect Immun 68 708–715 Occurrence Handle10.1128/IAI.68.2.708-715.2000 Occurrence Handle1:CAS:528:DC%2BD3cXotFOltA%3D%3D Occurrence Handle10639437

    Article  CAS  PubMed  Google Scholar 

  14. P Bucher A Bairoch (1994) A generalised profile syntax for biomolecular sequence motifs and its function in automatic sequence interpretation. R Altman D Brutlag P Karp R Lathrop D Searls (Eds) 2nd International Conference on Intelligent Systems for Molecular Biology. AAAI Press . 53–61

    Google Scholar 

  15. JC Chen J Beckwith (2001) ArticleTitleFtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol Microbiol 42 395–413 Occurrence Handle10.1046/j.1365-2958.2001.02640.x Occurrence Handle11703663

    Article  PubMed  Google Scholar 

  16. . Consortium (1998) ArticleTitleGenome sequence of the nematode C. elegans: A platform for investigating biology. Science 282 2012–2018 Occurrence Handle9851916

    PubMed  Google Scholar 

  17. N Din EM Quardokus MJ Sackett YV Brun (1998) ArticleTitleDominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27 1051–1063 Occurrence Handle10.1046/j.1365-2958.1998.00752.x Occurrence Handle1:CAS:528:DyaK1cXhs1ygu7w%3D Occurrence Handle9535094

    Article  CAS  PubMed  Google Scholar 

  18. O Emanuelsson H Nielsen S Brunak G von Heijne (2000) ArticleTitlePredicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300 1005–1016 Occurrence Handle10.1006/jmbi.2000.3903 Occurrence Handle1:CAS:528:DC%2BD3cXks1OntrY%3D Occurrence Handle10891285

    Article  CAS  PubMed  Google Scholar 

  19. HP Erickson (1995) ArticleTitleFtsZ, a prokaryotic homolog of tubulin? Cell 80 367–370 Occurrence Handle1:CAS:528:DyaK2MXjslWkt70%3D Occurrence Handle7859278

    CAS  PubMed  Google Scholar 

  20. HP Erickson (2000) ArticleTitleDynamin and FtsZ. Missing links in mitochondrial and bacterial division. J Cell Biol 148 1103–1105 Occurrence Handle10.1083/jcb.148.6.1103 Occurrence Handle1:CAS:528:DC%2BD3cXitVaqsb8%3D Occurrence Handle10725322

    Article  CAS  PubMed  Google Scholar 

  21. HP Erickson (2001) ArticleTitleThe FtsZ protofilament and attachment of ZipA—Structural constraints on the FtsZ power stroke. Curr Opin Cell Biol 13 55–60 Occurrence Handle10.1016/S0955-0674(00)00174-5 Occurrence Handle1:CAS:528:DC%2BD3MXht1Kgsb4%3D Occurrence Handle11163134

    Article  CAS  PubMed  Google Scholar 

  22. DM Faguy WF Doolittle (1998) ArticleTitleCytoskeletal proteins: The evolution of cell division. Curr Biol 8 R338–R341 Occurrence Handle1:CAS:528:DyaK1cXjtFygtLs%3D Occurrence Handle9601632

    CAS  PubMed  Google Scholar 

  23. ST Fitz-Gibbon H Ladner UJ Kim KO Stetter MI Simon JH Miller (2002) ArticleTitleGenome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. PNAS 99 984–989 Occurrence Handle10.1073/pnas.241636498 Occurrence Handle1:CAS:528:DC%2BD38Xht1Witr8%3D Occurrence Handle11792869

    Article  CAS  PubMed  Google Scholar 

  24. M Fujiwara S Yoshida (2001) ArticleTitleChloroplast targeting of chloroplast division Ftsz2 proteins in Arabidopsis. Biochem Biophys Res Commun 287 462–467 Occurrence Handle10.1006/bbrc.2001.5588 Occurrence Handle1:CAS:528:DC%2BD3MXms12rt74%3D Occurrence Handle11554751

    Article  CAS  PubMed  Google Scholar 

  25. H Fulgosi L Gerdes S Westphal C Glockmann J Soll (2002) ArticleTitleCell and chloroplast division requires ARTEMIS. PNAS 99 11501–11506 Occurrence Handle10.1073/pnas.172032599 Occurrence Handle1:CAS:528:DC%2BD38XmslSls70%3D Occurrence Handle12169665

    Article  CAS  PubMed  Google Scholar 

  26. DJ Gage W Margolin (2000) ArticleTitleHanging by a thread: Invasion of legume plants by Rhizobia. Curr Opin Microbiol 3 613–617 Occurrence Handle10.1016/S1369-5274(00)00149-1 Occurrence Handle1:STN:280:DC%2BD3M%2Fps12nug%3D%3D Occurrence Handle11121782

    Article  CAS  PubMed  Google Scholar 

  27. F Galibert TM Finan SR Long et al. (2001) ArticleTitleThe composite genome of the legume symbiont Sinorhizobium meliloti. Science 293 668–672 Occurrence Handle1:CAS:528:DC%2BD3MXls1KgtrY%3D Occurrence Handle11474104

    CAS  PubMed  Google Scholar 

  28. GM Garrity JG Holt (2001) Taxonomic outline of the Archaea and Bacteria. DR Boone RW Castenholz (Eds) Bergey’s manual of systematic bacteriology, 2nd ed, Vol 1. The Archaea and the deeply branching and phototrophic Bacteria. Springer-Verlag New York 155–166

    Google Scholar 

  29. PR Gilson PL Beech (2001) ArticleTitleCell division protein FtsZ: Running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152 3–10 Occurrence Handle10.1016/S0923-2508(00)01162-1 Occurrence Handle1:CAS:528:DC%2BD3MXisVCisLg%3D Occurrence Handle11281323

    Article  CAS  PubMed  Google Scholar 

  30. JI Glass EJ Lefkowitz JS Glass CR Heiner EY Chen GH Cassell (2000) ArticleTitleThe complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407 757–762 Occurrence Handle10.1038/35037619 Occurrence Handle1:CAS:528:DC%2BD3cXnsFWrsrc%3D Occurrence Handle11048724

    Article  CAS  PubMed  Google Scholar 

  31. A Goffeau BG Barrell H Bussey RW Davis B Dujon H Feldmann F Galibert JD Hoheisel C Jacq M Johnston EJ Louis HW Mewes Y Murakami P Philippsen H Tettelin SG Oliver (1996) ArticleTitleLife with 6000 genes. Science 274 546, 563–547

    Google Scholar 

  32. B Goodner G Hinkle S Gattung et al. (2001) ArticleTitleGenome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294 2323–2328 Occurrence Handle1:CAS:528:DC%2BD3MXptFGktb0%3D Occurrence Handle11743194

    CAS  PubMed  Google Scholar 

  33. CA Hale PAJ de Boer (2002) ArticleTitleZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J Bacteriol 184 2552–2556 Occurrence Handle10.1128/JB.184.9.2552-2556.2002 Occurrence Handle1:CAS:528:DC%2BD38XjvFeisLg%3D Occurrence Handle11948172

    Article  CAS  PubMed  Google Scholar 

  34. CA Hale AC Rhee PA de Boer (2000) ArticleTitleZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182 5153–5166 Occurrence Handle10.1128/JB.182.18.5153-5166.2000 Occurrence Handle1:CAS:528:DC%2BD3cXmsVOqurg%3D Occurrence Handle10960100

    Article  CAS  PubMed  Google Scholar 

  35. SA Haney E Glasfeld C Hale D Keeney ZZ He P de Boer (2001) ArticleTitleGenetic analysis of the Escherichia coli FtsZ · ZipA interaction in the yeast two-hybrid system—Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 276 11980–11987 Occurrence Handle10.1074/jbc.M009810200 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyltrw%3D Occurrence Handle11278571

    Article  CAS  PubMed  Google Scholar 

  36. CW Hogue (1997) ArticleTitleCn3D: A new generation of three-dimensional molecular structure viewer. Trends Biochem Sci 22 314–316 Occurrence Handle10.1016/S0968-0004(97)01093-1 Occurrence Handle1:CAS:528:DyaK2sXlsF2jtrw%3D Occurrence Handle9270306

    Article  CAS  PubMed  Google Scholar 

  37. J Huang C Cao J Lutkenhaus (1996) ArticleTitleInteraction between FtsZ and inhibitors of cell division. J Bacteriol 178 5080–5085 Occurrence Handle1:CAS:528:DyaK28XltlarsL0%3D Occurrence Handle8752322

    CAS  PubMed  Google Scholar 

  38. JP Huelsenbeck F Ronquist (2001) ArticleTitleMRBAYES: Bayesian inference of phylogenetic trees. Bioinform 17 754–755 Occurrence Handle10.1093/bioinformatics/17.8.754 Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D Occurrence Handle11524383

    Article  CAS  PubMed  Google Scholar 

  39. C Jenkins R Samudrala I Anderson BP Hedlund G Petroni N Michailova N Pinel R Overbeek G Rosati JT Staley (2002) ArticleTitleGenes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. PNAS 99 17049–17054 Occurrence Handle10.1073/pnas.012516899 Occurrence Handle1:CAS:528:DC%2BD3sXhvV2ksw%3D%3D Occurrence Handle12486237

    Article  CAS  PubMed  Google Scholar 

  40. T Kaneko Y Nakamura S Sato E Asamizu T Kato S Sasamoto A Watanabe K Idesawa A Ishikawa K Kawashima T Kimura Y Kishida C Kiyokawa M Kohara M Matsumoto A Matsuno Y Mochizuki S Nakayama N Nakazaki S Shimpo M Sugimoto C Takeuchi M Yamada S Tabata (2000a) ArticleTitleComplete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7 331–338 Occurrence Handle1:CAS:528:DC%2BD3MXpsVOnuw%3D%3D

    CAS  Google Scholar 

  41. T Kaneko Y Nakamura S Sato E Asamizu T Kato S Sasamoto A Watanabe K Idesawa A Ishikawa K Kawashima T Kimura Y Kishida C Kiyokawa M Kohara M Matsumoto A Matsuno Y Mochizuki S Nakayama N Nakazaki S Shimpo M Sugimoto C Takeuchi M Yamada S Tabata (2000b) ArticleTitleComplete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). DNA Res 7 381–406 Occurrence Handle1:CAS:528:DC%2BD3MXpsVOlsw%3D%3D

    CAS  Google Scholar 

  42. T Kaneko Y Nakamura S Sato K Minamisawa T Uchiumi S Sasamoto A Watanabe K Idesawa M Iriguchi K Kawashima M Kohara M Matsumoto S Shimpo H Tsuruoka T Wada M Yamada S Tabata (2002) ArticleTitleComplete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9 189–286 Occurrence Handle12597275

    PubMed  Google Scholar 

  43. Y Kawarabayasi Y Hino H Horikawa et al. (2001) ArticleTitleComplete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res 8 123–140 Occurrence Handle1:CAS:528:DC%2BD3MXms1Snt7s%3D Occurrence Handle11572479

    CAS  PubMed  Google Scholar 

  44. H Kuroiwa T Mori M Takahara SY Miyagishima T Kuroiwa (2002) ArticleTitleChloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215 185–190 Occurrence Handle10.1007/s00425-002-0734-4 Occurrence Handle1:CAS:528:DC%2BD38Xjsl2rtrs%3D Occurrence Handle12029466

    Article  CAS  PubMed  Google Scholar 

  45. Z Liu A Mukherjee J Lutkenhaus (1999) ArticleTitleRecruitment of ZipA to the division site by interaction with FtsZ. Mol Microbiol 31 1853–1861 Occurrence Handle10.1046/j.1365-2958.1999.01322.x Occurrence Handle1:CAS:528:DyaK1MXisVenuro%3D Occurrence Handle10209756

    Article  CAS  PubMed  Google Scholar 

  46. J Lowe LA Amos (1998) ArticleTitleCrystal structure of the bacterial cell-division protein FtsZ. Nature 391 203–206 Occurrence Handle1:CAS:528:DyaK1cXmt1KisA%3D%3D Occurrence Handle9428770

    CAS  PubMed  Google Scholar 

  47. J Lutkenhaus SG Addinall (1997) ArticleTitleBacterial cell division and the Z ring. Annu Rev Biochem 66 93–116 Occurrence Handle1:CAS:528:DyaK2sXktFOjurs%3D Occurrence Handle9242903

    CAS  PubMed  Google Scholar 

  48. JF Lutkenhaus H Wolf-Watz WD Donachie (1980) ArticleTitleOrganization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). J Bacteriol 142 615–620 Occurrence Handle1:CAS:528:DyaL3cXkt1antbg%3D Occurrence Handle6991482

    CAS  PubMed  Google Scholar 

  49. X Ma DW Ehrhardt W Margolin (1996) ArticleTitleColocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. PNAS 93 12998–13003 Occurrence Handle10.1073/pnas.93.23.12998 Occurrence Handle1:CAS:528:DyaK28XmvV2ksbY%3D Occurrence Handle8917533

    Article  CAS  PubMed  Google Scholar 

  50. X Ma W Margolin (1999) ArticleTitleGenetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181 7531–7544 Occurrence Handle1:CAS:528:DyaK1MXotVKjtbc%3D Occurrence Handle10601211

    CAS  PubMed  Google Scholar 

  51. X Ma Q Sun R Wang G Singh EL Jonietz W Margolin (1997) ArticleTitleInteractions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 179 6788–6797 Occurrence Handle1:CAS:528:DyaK2sXnt1arsrY%3D Occurrence Handle9352931

    CAS  PubMed  Google Scholar 

  52. W Margolin (2000a) ArticleTitleOrganelle division: Self-assembling GTPase caught in the middle. Curr Biol 10 R328–R330 Occurrence Handle1:CAS:528:DC%2BD3cXjt1Cjtb0%3D

    CAS  Google Scholar 

  53. W Margolin (2000b) ArticleTitleThemes and variations in prokaryotic cell division. FEMS Microbiol Rev 24 531–548 Occurrence Handle1:CAS:528:DC%2BD3cXmt1Sjtrk%3D

    CAS  Google Scholar 

  54. W Margolin SR Long (1994) ArticleTitle Rhizobium meliloti contains a novel second homolog of the cell division gene ftsZ. J Bacteriol 176 2033–2043 Occurrence Handle1:CAS:528:DyaK2cXksFWjs7Y%3D Occurrence Handle8144471

    CAS  PubMed  Google Scholar 

  55. W Margolin JC Corbo SR Long (1991) ArticleTitleCloning and characterization of a Rhizobium meliloti homolog of the Escherichia coli cell division gene ftsZ. J Bacteriol 173 5822–5830 Occurrence Handle1:CAS:528:DyaK38XkvVCgt78%3D Occurrence Handle1653222

    CAS  PubMed  Google Scholar 

  56. W Margolin R Wang M Kumar (1996) ArticleTitleIsolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: Implications for the evolution of FtsZ and tubulin. J Bacteriol 178 1320–1327 Occurrence Handle1:CAS:528:DyaK28XhsVSqurg%3D Occurrence Handle8631708

    CAS  PubMed  Google Scholar 

  57. RS McAndrew JE Froehlich S Vitha KD Stokes KW Osteryoung (2001) ArticleTitleColocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol 127 1656–1666 Occurrence Handle10.1104/pp.127.4.1656 Occurrence Handle1:CAS:528:DC%2BD38XjtVWmtw%3D%3D Occurrence Handle11743110

    Article  CAS  PubMed  Google Scholar 

  58. PG McKean S Vaughan K Gull (2001) ArticleTitleThe extended tubulin superfamily. J Cell Sci 114 2723–2733 Occurrence Handle1:CAS:528:DC%2BD3MXmt1Wgu74%3D Occurrence Handle11683407

    CAS  PubMed  Google Scholar 

  59. S Miyagishima M Takahara T Mori H Kuroiwa T Higashiyama T Kuroiwa (2001) ArticleTitlePlastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13 2257–2268 Occurrence Handle11595800

    PubMed  Google Scholar 

  60. T Mori H Kuroiwa M Takahara S Miyagishima T Kuroiwa (2001) ArticleTitleVisualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol 42 555–559 Occurrence Handle1:CAS:528:DC%2BD3MXks1CrtbY%3D Occurrence Handle11427673

    CAS  PubMed  Google Scholar 

  61. L Mosyak Y Zhang E Glasfeld S Haney M Stahl J Seehra WS Somers (2000) ArticleTitleThe bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19 3179–3191 Occurrence Handle10.1093/emboj/19.13.3179 Occurrence Handle1:CAS:528:DC%2BD3cXlt1ajtb8%3D Occurrence Handle10880432

    Article  CAS  PubMed  Google Scholar 

  62. E Nogales KH Downing LA Amos J Lowe (1998a) ArticleTitleTubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5 451–458 Occurrence Handle1:CAS:528:DyaK1cXjslCktLY%3D

    CAS  Google Scholar 

  63. E Nogales SG Wolf KH Downing (1998b) ArticleTitleStructure of the alpha beta tubulin dimer by electron crystallography. Nature 391 199–203 Occurrence Handle1:CAS:528:DyaK1cXmt1Kisw%3D%3D

    CAS  Google Scholar 

  64. RT Okinaka K Cloud O Hampton AR Hoffmaster KK Hill P Keim TM Koehler G Lamke S Kumano J Mahillon D Manter Y Martinez D Ricke R Svensson PJ Jackson (1999) ArticleTitleSequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181 6509–6515 Occurrence Handle1:CAS:528:DyaK1MXmvVWqs74%3D Occurrence Handle10515943

    CAS  PubMed  Google Scholar 

  65. KW Osteryoung RS McAndrew (2001) ArticleTitleThe plastid division machine. Ann Rev Plant Physiol Plant Mol Biol 52 315–333 Occurrence Handle10.1146/annurev.arplant.52.1.315 Occurrence Handle1:CAS:528:DC%2BD3MXkslWgsLc%3D

    Article  CAS  Google Scholar 

  66. KW Osteryoung KD Stokes SM Rutherford AL Percival WY Lee (1998) ArticleTitleChloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10 1991–2004 Occurrence Handle1:CAS:528:DyaK1MXhvV2ntw%3D%3D Occurrence Handle9836740

    CAS  PubMed  Google Scholar 

  67. H Oyaizu B Debrunner-Vossbrinck L Mandelco JA Studier CR Woese (1987) ArticleTitleThe green non-sulfur bacteria: A deep branching in the eubacterial line of descent. Syst Appl Micro biol 9 47–53 Occurrence Handle1:CAS:528:DyaL2sXkt1SntLk%3D

    CAS  Google Scholar 

  68. J Pannucci RT Okinaka R Sabin CR Kuske (2002) ArticleTitle Bacillus anthracis pX01 plamid sequence conservation among closely related bacterial species. J Bacteriol 184 134–141 Occurrence Handle10.1128/JB.184.1.134-141.2002 Occurrence Handle1:CAS:528:DC%2BD3MXpt1CmtL8%3D Occurrence Handle11741853

    Article  CAS  PubMed  Google Scholar 

  69. D RayChaudhuri (1999) ArticleTitleZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J 18 2372–2383 Occurrence Handle10.1093/emboj/18.9.2372 Occurrence Handle1:CAS:528:DyaK1MXjtlKhsrY%3D Occurrence Handle10228152

    Article  CAS  PubMed  Google Scholar 

  70. TD Read RC Brunham C Shen SR Gill JF Heidelberg O White EK Hickey J Peterson T Utterback K Berry S Bass K Linher J Weidman H Khouri B Craven C Bowman R Dodson M Gwinn W Nelson R DeBoy J Kolonay G McClarty SL Salzberg J Eisen CM Fraser (2000) ArticleTitleGenome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28 1397–1406 Occurrence Handle10.1093/nar/28.6.1397 Occurrence Handle1:CAS:528:DC%2BD3cXit1GgsLg%3D Occurrence Handle10684935

    Article  CAS  PubMed  Google Scholar 

  71. L Rothfield S Justice J Garcia-Lara (1999) ArticleTitleBacterial cell division. Annu Rev Genet 33 423–448 Occurrence Handle1:CAS:528:DC%2BD3cXhtVSms7s%3D Occurrence Handle10690414

    CAS  PubMed  Google Scholar 

  72. J Schachter PB Wyrick (1994) ArticleTitleCulture and isolation of Chlamydia trachomatis. Methods Enzymol 236 377–390 Occurrence Handle1:CAS:528:DyaK2cXmslGlsrw%3D Occurrence Handle7968623

    CAS  PubMed  Google Scholar 

  73. TD Schneider RM Stephens (1990) ArticleTitleSequence logos: A new way to display consensus sequences. Nucleic Acids Res 18 6097–6100 Occurrence Handle1:CAS:528:DyaK3MXitVGmuw%3D%3D Occurrence Handle2172928

    CAS  PubMed  Google Scholar 

  74. JM Shaw J Nunnari (2002) ArticleTitleMitochondrial dynamics and division in budding yeast. Trends Cell Biol 12 178–184 Occurrence Handle10.1016/S0962-8924(01)02246-2 Occurrence Handle1:CAS:528:DC%2BD38XjtVehs7g%3D Occurrence Handle11978537

    Article  CAS  PubMed  Google Scholar 

  75. Q She RK Singh F Confalonieri et al. (2001) ArticleTitleThe complete genome of the crenarchaeon Sulfolobus solfataricus P2. PNAS 98 7835–7840 Occurrence Handle10.1073/pnas.141222098 Occurrence Handle1:CAS:528:DC%2BD3MXlt1Kntr0%3D Occurrence Handle11427726

    Article  CAS  PubMed  Google Scholar 

  76. E Smirnova L Griparic DL Shurland AM van Der Bliek (2001) ArticleTitleDynamin-related protein drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12 2245–2256 Occurrence Handle1:CAS:528:DC%2BD3MXmtFKgtb8%3D Occurrence Handle11514614

    CAS  PubMed  Google Scholar 

  77. B Striepen MJ Crawford MK Shaw LG Tilney F Seeber DS Roos (2000) ArticleTitleThe plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151 4123–1434 Occurrence Handle10.1083/jcb.151.7.1423

    Article  Google Scholar 

  78. DL Swofford (1998) Phylogenetic analysis using parsimony (*and other methods). Sinauer Sunderland, MA

    Google Scholar 

  79. M Takahara H Takahashi S Matsunaga A Sakai S Kawano T Kuroiwa (1999) ArticleTitleTwo types of ftsZ genes isolated from the unicellular primitive red alga Galdieria sulphuraria. Plant Cell Physiol 40 784–791 Occurrence Handle1:CAS:528:DyaK1MXlsVOhsLo%3D Occurrence Handle10555302

    CAS  PubMed  Google Scholar 

  80. K Teng M Li W Yu H Li D Shen D Liu (1994) ArticleTitleComparison of PCR with culture for detection of Ureaplasma urealyticum in clinical samples from patients with urogenital infections. J Clin Microbiol 32 2232–2234 Occurrence Handle1:STN:280:ByqC3MvgtlI%3D Occurrence Handle7814552

    CAS  PubMed  Google Scholar 

  81. S Trachtenberg (1998) ArticleTitleMollicutes—Wall-less bacteria with internal cytoskeletons. J Struct Biol 124 244–256 Occurrence Handle1:CAS:528:DyaK1MXhtlKls7k%3D Occurrence Handle10049810

    CAS  PubMed  Google Scholar 

  82. S Vitha RS McAndrew KW Osteryoung (2001) ArticleTitleFtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153 111–120 Occurrence Handle1:CAS:528:DC%2BD3MXisVyhtLY%3D Occurrence Handle11285278

    CAS  PubMed  Google Scholar 

  83. X Wang J Lutkenhaus (1996) ArticleTitleFtsZ ring: The eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21 313–319 Occurrence Handle10.1046/j.1365-2958.1996.6421360.x Occurrence Handle1:CAS:528:DyaK28XkvVansrw%3D Occurrence Handle8858586

    Article  CAS  PubMed  Google Scholar 

  84. X Wang J Huang A Mukherjee C Cao J Lutkenhaus (1997) ArticleTitleAnalysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179 5551–5559 Occurrence Handle1:CAS:528:DyaK2sXlvFWgt7w%3D Occurrence Handle9287012

    CAS  PubMed  Google Scholar 

  85. DL Wheeler C Chappey AE Lash DD Leipe TL Madden GD Schuler TA Tatusova BA Rapp (2000) ArticleTitleDatabase resources of the National Center for Biotechnology Information. Nucleic Acids Res 28 10–14 Occurrence Handle1:CAS:528:DC%2BD3cXhvVGqurg%3D Occurrence Handle10592169

    CAS  PubMed  Google Scholar 

  86. S Whelan N Goldman (2001) ArticleTitleA general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Mol Biol Evol 18 691–699 Occurrence Handle1:CAS:528:DC%2BD3MXjtFyktr4%3D Occurrence Handle11319253

    CAS  PubMed  Google Scholar 

  87. DC Wienke ML Knetsch EM Neuhaus MC Reedy DJ Manstein (1999) ArticleTitleDisruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol Biol Cell 10 225–243 Occurrence Handle1:CAS:528:DyaK1MXitFKmtb0%3D Occurrence Handle9880338

    CAS  PubMed  Google Scholar 

  88. V Wood R Gwilliam MA Rajandream et al. (2002) ArticleTitleThe genome sequence of Schizosaccharomyces pombe. Nature 415 871–880 Occurrence Handle1:CAS:528:DC%2BD38Xhs1ygtbk%3D Occurrence Handle11859360

    CAS  PubMed  Google Scholar 

  89. K Yan KH Pearce DJ Payne (2000) ArticleTitleA conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem Biophys Res Commun 270 387–392 Occurrence Handle10.1006/bbrc.2000.2439 Occurrence Handle1:CAS:528:DC%2BD3cXit1CqsbY%3D Occurrence Handle10753635

    Article  CAS  PubMed  Google Scholar 

  90. Z Yang (1993) ArticleTitleMaximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10 1396–1401 Occurrence Handle1:CAS:528:DyaK2cXisF2gsA%3D%3D Occurrence Handle8277861

    CAS  PubMed  Google Scholar 

  91. T Yaoi P Laksanalamai A Jiemjit HK Kagawa T Alton JD Trent (2000) ArticleTitleCloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 275 936–945 Occurrence Handle10.1006/bbrc.2000.3401 Occurrence Handle1:CAS:528:DC%2BD3cXmtFGltr4%3D Occurrence Handle10973825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to K.G. (Principal Fellow) and S.G.A. (Research Career Development Fellow) from the Wellcome Trust. We thank Professor T.K. Attwood and Dr. P. Scordis for early discussions of this work and Dr. T.M. Embley for help with phylogenetic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Addinall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, S., Wickstead, B., Gull, K. et al. Molecular Evolution of FtsZ Protein Sequences Encoded Within the Genomes of Archaea, Bacteria, and Eukaryota . J Mol Evol 58, 19–29 (2004). https://doi.org/10.1007/s00239-003-2523-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2523-5

Keywords

Navigation