Skip to main content

Gene Transfer for Chemoprotection and Enrichment of Hematopoietic Stem Cells

  • Chapter
Gene Therapy for Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Hematopoietic stem cells (HSCs) have been the archetypal target for therapeutic gene transfer strategies, due to the ease with which these cells are obtained and cultured ex vivo, as well as their capacity for reconstituting an entire tissue type. The myelosuppressive consequence of neoplastic disease treatment has provided additional thrust for the development of HSC drug-resistance and gene transfer strategies. In this regard, significant advances in vector design have been achieved by careful evaluation of different promoter and enhancer sequences, as well as exogenous elements, that contribute to high gene expression levels and resist positional effect variegation. Gene transfer efficiencies have also been improved by the identification of envelope pseudotypes that recognize receptors expressed in the more primitive hematopoietic populations. In addition, several natural and synthetic gene products have been evaluated as tools for amplifying or enriching gene-modified HSCs in vivo. These include the homeobox transcription factors, selective amplifier genes, and drug resistance genes. The ability to enrich and repopulate the hematopoietic compartment with therapeutic gene-corrected cells requires strategies that act on primitive progenitor populations, and vectors that efficiently express multiple gene products. The realization of insertional mutagenesis has demonstrated the importance of therapy-related risk assessment and the need for vectors with inherent cell-type specificities. These advances have culminated in enhanced HSC gene transfer and enrichment, while highlighting areas requiring further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artelt P, et al. Vectors for efficient expression in mammalian fibroblastoid, myeloid and lymphoid cells via transfection or infection. Gene 1988;68(2):213–219.

    PubMed  CAS  Google Scholar 

  2. Hawley G, et al. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retro-virus. J Exp Med 1992;176(4):1149–1163.

    PubMed  CAS  Google Scholar 

  3. Tumas B, et al. High-frequency cell surface expression of a foreign protein in murine hematopoietic stem cells using a new retroviral vector. Blood 1996;87(2):509–517.

    PubMed  CAS  Google Scholar 

  4. Halene S, et al. Improved expression in hematopoietic and lymphoid cells in mice after transplanta-tion of bone marrow transduced with a modified retroviral vector. Blood 1999;94(10):3349–3357.

    PubMed  CAS  Google Scholar 

  5. Baum C, Richters A, Ostertag W. Retroviral vector-mediated gene expression in hematopoietic cells. Curr Opin Mol Ther 1999;l(5):605–612.

    Google Scholar 

  6. Cherry R, et al. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 2000;20(20):7419–7426.

    PubMed  CAS  Google Scholar 

  7. Ketteler R, et al. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther 2002;9(8):477–487.

    PubMed  CAS  Google Scholar 

  8. Agarwal M, et al. Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J Virol 1998;72(5):3720–3728.

    PubMed  CAS  Google Scholar 

  9. Murray L, et al. Addition of the human interferon beta scaffold attachment region to retroviral vector backbones increases the level of in vivo transgene expression among progeny of engrafted human hematopoietic stem cells. Hum Gene Ther 2000;11(14):2039–2050.

    PubMed  CAS  Google Scholar 

  10. Inoue T, et al. Position-independent human beta-globin gene expression mediated by a recombinant adeno-associated virus vector carrying the chicken beta-globin insulator. J Hum Genet 1999;44(3):152–162.

    PubMed  CAS  Google Scholar 

  11. Emery W, et al. A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci U S A 2000;97(16):9150–9155.

    PubMed  CAS  Google Scholar 

  12. Rivella S, et al. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 2000;74(10):4679–4687.

    PubMed  CAS  Google Scholar 

  13. Popa I, et al. CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 2002;22(7):2057–2067.

    PubMed  CAS  Google Scholar 

  14. Luens KM, et al. Thrombopoietin, kit ligand, and flk2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from human CD34+Thy-1+Lin-cells with preserved ability to engraft SCID-hu bone. Blood 1998;91(4):1206–1215.

    PubMed  CAS  Google Scholar 

  15. Dao A, et al. FLT3 ligand preserves the ability of human CD34+ progenitors to sustain long-term hematopoiesis in immune-deficient mice after ex vivo retroviral-mediated transduction. Blood 1997;89(2):446–456.

    PubMed  CAS  Google Scholar 

  16. Naldini L, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272(5259):263–267.

    PubMed  CAS  Google Scholar 

  17. Sutton E, et al. Transduction of human progenitor hematopoietic stem cells by human immuno-deficiency virus type 1-based vectors is cell cycle dependent. J Virol 1999;73(5):3649–3660.

    PubMed  CAS  Google Scholar 

  18. Douglas L, et al. Efficient human immunodeficiency virus-based vector transduction of unstimulated human mobilized peripheral blood CD34+ cells in the SCID-hu Thy/Liv model of human T cell lymphopoiesis. Hum Gene Ther 2001;12(4):401–413.

    PubMed  CAS  Google Scholar 

  19. Zielske P, Gerson SL. Cytokines, including stem cell factor alone, enhance lentiviral transduction in nondividing human LTCIC and NOD/SCID repopulating cells. Mol Ther 2003;7(3):325–333.

    PubMed  CAS  Google Scholar 

  20. Zennou V, et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000;101(2):173–185.

    PubMed  CAS  Google Scholar 

  21. Sirven A, et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000;96(13):4103–4110.

    PubMed  CAS  Google Scholar 

  22. Follenzi A, et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000;25(2):217–222.

    PubMed  CAS  Google Scholar 

  23. Yu SF, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A 1986;83(10):3194–3198.

    PubMed  CAS  Google Scholar 

  24. Miyoshi H, et al. Development of a self-inactivating lentivirus vector. J Virol 1998;72(10):8150–8157.

    PubMed  CAS  Google Scholar 

  25. Zufferey R, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72(12):9873–9880.

    PubMed  CAS  Google Scholar 

  26. Salmon P, et al. High-level transgene expression in human hematopoietic progenitors and different-iated blood lineages after transduction with improved lentiviral vectors. Blood 2000;96(10):3392–3398.

    PubMed  CAS  Google Scholar 

  27. Moreau-Gaudry F, et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 2001;98(9):2664–2672.

    PubMed  CAS  Google Scholar 

  28. Lotti F, et al. Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replace-ment. J Virol 2002;76(8):3996–4007.

    PubMed  CAS  Google Scholar 

  29. Choi K, et al. Hybrid HIV/MSCV LTR enhances transgene expression of lentiviral vectors in human CD34(+) hematopoietic cells. Stem Cells 2001;19(3):236–246.

    PubMed  CAS  Google Scholar 

  30. Demaison C, et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002;13(7):803–813.

    PubMed  CAS  Google Scholar 

  31. Manilla P, et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005;16(1):17–25.

    PubMed  CAS  Google Scholar 

  32. Thomsen S, et al. Lack of functional Pit-1 and Pit-2 expression on hematopoietic stem cell lines. Acta Haematol 1998;99(3):148–155.

    PubMed  CAS  Google Scholar 

  33. Carneiro A, et al. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. J Virol 2002;76(8):3756–3764.

    PubMed  CAS  Google Scholar 

  34. Farson D, et al. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 2001;12(8):981–997.

    PubMed  CAS  Google Scholar 

  35. Pacchia AL, et al. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology 2001;282(1):77–86.

    PubMed  CAS  Google Scholar 

  36. von Laer D, et al. Amphotropic and VSV-G-pseudotyped retroviral vectors transduce human hematopoietic progenitor cells with similar efficiency. Bone Marrow Transplant 2000;25Suppl 2: S75–S79.

    Google Scholar 

  37. Kelly F, et al. RD114-pseudotyped oncoretroviral vectors. Biological and physical properties. Ann NY Acad Sci 2001;938:262–276; discussion 276-277.

    PubMed  CAS  Google Scholar 

  38. Ward M, et al. A stable murine-based RDI 14 retroviral packaging line efficiently transduces human hematopoietic cells. Mol Ther 2003;8(5):804–812.

    PubMed  CAS  Google Scholar 

  39. Hanawa H, et al. Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 2002;5(3):242–251.

    PubMed  CAS  Google Scholar 

  40. Relander T, et al. Gene Transfer to Repopulating Human CD34 (+) Cells Using Amphotropic-, GALV-, or RD114-Pseudotyped HIV-1-Based Vectors from Stable Producer Cells. Mol Ther 2005;11(3):452–459.

    PubMed  CAS  Google Scholar 

  41. Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 2004;23(43):7223–7232.

    PubMed  CAS  Google Scholar 

  42. Giampaolo A, et al. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 1994;84(11):3637–3647.

    PubMed  CAS  Google Scholar 

  43. Moretti P, et al. Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene 1994;144(2):213–219.

    PubMed  CAS  Google Scholar 

  44. Sauvageau G, et al. Differential expression of homeobox genes in functionally distinct CD34+ sub-populations of human bone marrow cells. Proc Natl Acad Sci U S A 1994;91(25):12,223-12,227.

    Google Scholar 

  45. Grier DG, et al. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005;205(2):154–171.

    PubMed  CAS  Google Scholar 

  46. Sauvageau G, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995;9(14):1753–1765.

    PubMed  CAS  Google Scholar 

  47. Thorsteinsdottir U, Sauvageau G, Humphries RK. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 1999;94(8):2605–2612.

    PubMed  CAS  Google Scholar 

  48. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002;109(1):39–45.

    PubMed  CAS  Google Scholar 

  49. Amsellem S, et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003;9(11):1423–1427 Epub 2003 Oct 26.

    PubMed  CAS  Google Scholar 

  50. Krosl J, et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003;9(11):1428–1432 Epub 2003 Oct 26.

    PubMed  CAS  Google Scholar 

  51. Schiedlmeier B, et al. High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34+ cells, but impairs lymphomyeloid differentiation. Blood 2003;101(5):1759–1768 Epub 2002 Oct 24.

    PubMed  CAS  Google Scholar 

  52. Beslu N, et al. Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. Blood 2004;104(8):2307–2314 Epub 2004 Jun 29.

    PubMed  CAS  Google Scholar 

  53. Blau A, et al. A proliferation switch for genetically modified cells. Proc Natl Acad Sci USA 1997;94(7):3076–3081.

    PubMed  CAS  Google Scholar 

  54. Jin L, Asano H, Blau CA, Stimulating cell proliferation through the pharmacologie activation of c-kit. Blood 1998;91(3):890–897.

    PubMed  CAS  Google Scholar 

  55. Jin L, et al. Targeted expansion of genetically modified bone marrow cells. Proc Natl Acad Sci U S A 1998;95(14):8093–8097.

    PubMed  CAS  Google Scholar 

  56. Richard E, et al. Expansion of genetically modified primary human hemopoietic cells using chemi-cal inducers of dimerization. Blood 2000;95(2):430–436.

    PubMed  CAS  Google Scholar 

  57. Zhao S, et al. In vivo selection of genetically modified erythroid cells using a jak2-based cell growth switch. Mol Ther 2004;10(3):456–468.

    PubMed  CAS  Google Scholar 

  58. Ueda K, et al. High-level in vivo gene marking after gene-modified autologous hematopoietic stem cell transplantation without marrow conditioning in nonhuman primates. Mol Ther 2004;10(3):469–477.

    PubMed  CAS  Google Scholar 

  59. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455(1):152–162.

    PubMed  CAS  Google Scholar 

  60. Kartner N, et al. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal anti-bodies. Nature 1985;316(6031):820–823.

    PubMed  CAS  Google Scholar 

  61. Galski H, et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol Cell Biol 1989;9(10):4357–4363.

    PubMed  CAS  Google Scholar 

  62. Mickisch GH, et al. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 1991;51(19):5417–5424.

    PubMed  CAS  Google Scholar 

  63. Mickisch GH, et al. Transplantation of bone marrow cells from transgenic mice expressing the human MDR1 gene results in long-term protection against the myelosuppressive effect of chemotherapy in mice. Blood 1992;79(4):1087–1093.

    PubMed  CAS  Google Scholar 

  64. Podda S, et al. Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci U S A 1992;89(20):9676–9680.

    PubMed  CAS  Google Scholar 

  65. Sorrentino BP, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992;257(5066):99–103.

    PubMed  CAS  Google Scholar 

  66. Hanania EG, Deisseroth AB. Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1994;l(1):21–25.

    Google Scholar 

  67. Carpinteiro A, et al. Genetic protection of repopulating hematopoietic cells with an improved MDR1-retrovirus allows administration of intensified chemotherapy following stem cell transplantation in mice. Int J Cancer 2002;98(5):785–792.

    PubMed  CAS  Google Scholar 

  68. Hanania EG, Deisseroth AB. Simultaneous genetic chemoprotection of normal marrow cells and genetic chemosensitization of breast cancer cells in a mouse cancer gene therapy model. Clin Cancer Res 1997;3(2):281–286.

    PubMed  CAS  Google Scholar 

  69. Schiedlmeier B, et al. Multidrug resistance 1 gene transfer can confer chemoprotection to human peri-pheral blood progenitor cells engrafted in immunodeficient mice. Hum Gene Ther 2002;13(2):233–242.

    PubMed  CAS  Google Scholar 

  70. Hanania EG, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following inten-sive systemic therapy. Proc Natl Acad Sci U S A 1996;93(26):15,346-15,351.

    Google Scholar 

  71. Hesdorffer C, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell trans-plantation. J Clin Oncol 1998;16(1):165–172.

    PubMed  CAS  Google Scholar 

  72. Vahdat LT, et al. Phase I trial of sequential high-dose chemotherapy with escalating dose paclitaxel, melphalan, and cyclophosphamide, thiotepa, and carboplatin with peripheral blood progenitor support in women with responding metastatic breast cancer. Clin Cancer Res 1998;4(7):1689–1695.

    PubMed  CAS  Google Scholar 

  73. Moscow JA, et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999;94(1):52–61.

    PubMed  CAS  Google Scholar 

  74. Cowan KH, et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraft-ment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance comple-mentary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 1999;5(7):1619–1628.

    PubMed  CAS  Google Scholar 

  75. Abonour R, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into auto-logous human long-term repopulating hematopoietic stem cells. Nat Med 2000;6(6):652–658.

    PubMed  CAS  Google Scholar 

  76. Abbott BL. ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol 2003;21(3):115–130.

    PubMed  Google Scholar 

  77. Goodell MA, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183(4):1797–1806.

    PubMed  CAS  Google Scholar 

  78. Zhou S, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001;7(9):1028–1034.

    PubMed  CAS  Google Scholar 

  79. Zhou S, et al. Bcrpl gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002;99(1):12,339-12,344 Epub 2002 Sep 06.

    Google Scholar 

  80. Bunting KD, et al. Enforced P-glycoprotein pump function in murine bone marrow cells results in expan-sion of side population stem cells in vitro and repopulating cells in vivo. Blood 2000;96(3):902–909.

    PubMed  CAS  Google Scholar 

  81. Modlich U, et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005;15:15.

    Google Scholar 

  82. Kim M, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 2002;8(1):22–28.

    PubMed  CAS  Google Scholar 

  83. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99(2):507–512.

    PubMed  CAS  Google Scholar 

  84. Uchida N, Leung FY, Eaves CJ. Liver and marrow of adult mdr-la/lb(-/-) mice show normal generation, function, and multi-tissue trafficking of primitive hematopoietic cells. Exp Hematol 2002;30(8):862–869.

    PubMed  CAS  Google Scholar 

  85. Sellers SE, et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood 2001;97(6):1888–1891.

    PubMed  CAS  Google Scholar 

  86. Hafkemeyer P, et al. Chemoprotection of hematopoietic cells by a mutant P-glycoprotein resistant to a potent chemosensitizer of multidrug-resistant cancers. Hum Gene Ther 2000;11(4):555–565.

    PubMed  CAS  Google Scholar 

  87. Ujhelly O, et al. Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum Gene Ther 2003;14(4):403–412.

    PubMed  CAS  Google Scholar 

  88. Pegg AE, et al. Purification and properties of O6-methylguanine-DNA transmethylase from rat liver. J Biol Chem 1983;258(4):2327–2333.

    PubMed  CAS  Google Scholar 

  89. Srivenugopal KS, et al. Ubiquitination-dependent proteolysis of O6- methylguanine-DNA methyl-transferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-l-nitrosourea. Biochemistry 1996;35(4):1328–1334.

    PubMed  CAS  Google Scholar 

  90. Gerson SL, Miller K, Berger NA. O6 alkylguanine-DNA alkyltransferase activity in human myeloid cells. J Clin Invest 1985;76(6):2106–2114.

    PubMed  CAS  Google Scholar 

  91. Gerson SL, et al. Repair of O6-alkylguanine during DNA synthesis in murine bone marrow hematopoietic precursors. Cancer Res 1987;47(1):89–95.

    PubMed  CAS  Google Scholar 

  92. Moriwaki S, et al. Analysis of N-methyl-N-nitrosourea-induced mutations in a shuttle vector plasmid propagated in mouse O6-methylguanine-DNA methyltransferase-deficient cells in comparison with proficient cells. Cancer Res 1991;51 (2 Pt 1):6219–6223.

    PubMed  CAS  Google Scholar 

  93. Karran P, Bignami M. DNA damage tolerance, mismatch repair and genome instability. Bioessays 1994;16(1):833–839.

    PubMed  CAS  Google Scholar 

  94. Dolan ME, et al. Effect of O6-methylguanine on DNA interStrand cross-link formation by chloroethyl-nitrosoureas and 2-chloroethyl(methylsulfonyl)methanesulfonate. Cancer Res 1988;48(1):3603–3606.

    PubMed  CAS  Google Scholar 

  95. Gonzaga PE, Brent TP. Affinity purification and characterization of human O6-alkylguanine-DNA alkyltransferase complexed with BCNU-treated, synthetic oligonucleotide. Nucleic Acids Res 1989;17(1):6581–6590.

    PubMed  CAS  Google Scholar 

  96. Margison GP, Cooper DP, Brennand J. Cloning of the E. coli O6-methylguanine and methylphospho-triester methyltransferase gene using a functional DNA repair assay. Nucleic Acids Res 1985;13(6):1939–1952.

    PubMed  CAS  Google Scholar 

  97. Brennand J, Margison GP. Reduction of the toxicity and mutagenicity of alkylating agents in mam-malian cells harboring the Escherichia coli alkyltransferase gene. Proc Natl Acad Sci U S A 1986;83(1):6292–6296.

    PubMed  CAS  Google Scholar 

  98. Samson L, Derfler B, Waldstein EA. Suppression of human DNA alkylation-repair defects by Escherichia coli DNA-repair genes. Proc Natl Acad Sci U S A 1986;83(1):5607–5610.

    PubMed  CAS  Google Scholar 

  99. Ishizaki K, et al. Transfer of the E. coli O6-methylguanine methyltransferase gene into repair-deficient human cells and restoration of cellular resistance to iV-methyl-iV’-nitro-iV-nitrosoguanidine. Mutat Res 1986;166(2):135–141.

    PubMed  CAS  Google Scholar 

  100. Jelinek J, et al. Transfection of murine multi-potent haemopoietic stem cells with an E. coli DNA alkyltransferase gene confers resistance to the toxic effects of alkylating agents. Carcinogenesis 1988;9(1):81–87.

    PubMed  CAS  Google Scholar 

  101. Harris LC, et al. Retroviral transfer of a bacterial alkyltransferase gene into murine bone marrow protects against chloroethylnitrosourea cytotoxicity. Clin Cancer Res 1995;1(1):1359–1368.

    PubMed  CAS  Google Scholar 

  102. Allay JA, et al. Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 1995;85(1):3342–3351.

    PubMed  CAS  Google Scholar 

  103. Moritz T, et al. Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 1995;55(1):2608–2614.

    PubMed  CAS  Google Scholar 

  104. Allay JA, Davis BM, Gerson SL. Human alkyltransferase-transduced murine myeloid progenitors are enriched in vivo by BCNU treatment of transplanted mice. Exp Hematol 1997;25(1):1069–1076.

    PubMed  CAS  Google Scholar 

  105. Allay JA, et al. Retroviral-mediated gene transduction of human alkyltransferase complementary DNA confers nitrosourea resistance to human hematopoietic progenitors. Clin Cancer Res 1996;2(8):1353–1359.

    PubMed  CAS  Google Scholar 

  106. Citron M, et al. O6-methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung, and ovary. Cancer Res 1991;51(1):4131–4134.

    PubMed  CAS  Google Scholar 

  107. Schold SC, Jr, et al. O6-alkylguanine-DNA alkyltransferase and sensitivity to procarbazine in human brain-tumor xenografts. J Neurosurg 1989;70(4):573–577.

    PubMed  Google Scholar 

  108. Brent TP, Houghton PJ, Houghton JA. O6-Alkylguanine-DNA alkyltransferase activity correlates with the therapeutic response of human rhabdomyosarcoma xenografts to 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-l-nitrosourea. Proc Natl Acad Sci U S A 1985;82(9):2985–2989.

    PubMed  CAS  Google Scholar 

  109. Dolan ME, Moschel RC, Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A 1990;87(14):5368–5372.

    PubMed  CAS  Google Scholar 

  110. Dolan ME, et al. Effect of O6-benzylguanine on the sensitivity of human colon tumor xenografts to l,3-bis(2-chloroethyl)-l-nitrosourea (BCNU). Biochem Pharmacol 1993;46(2):285–290.

    PubMed  CAS  Google Scholar 

  111. Pegg AE, et al. Increased killing of prostate, breast, colon, and lung tumor cells by the combination of inactivators of O6-alkylguanine-DNA alkyltransferase and N,N′-bis(2-chloroethyl)—nitrosourea. Biochem Pharmacol 1995;50(8):1141–1148.

    PubMed  CAS  Google Scholar 

  112. Fairbairn LJ, et al. O6-benzylguanine increases the sensitivity of human primary bone marrow cells to the cytotoxic effects of temozolomide. Exp Hematol 1995;23(2):112–116.

    PubMed  CAS  Google Scholar 

  113. Crone TM, et al. Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res 1994;54(2):6221–6227.

    PubMed  CAS  Google Scholar 

  114. Christians FC, et al. Creation of human alkyltransferases resistant to O6-benzylguanine. Cancer Res 1997;57(1):2007–2012.

    PubMed  CAS  Google Scholar 

  115. Xu-Welliver M, Kanugula S, Pegg AE. Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res 1998;58(9):1936–1945.

    PubMed  CAS  Google Scholar 

  116. Reese JS, et al. Retroviral transduction of a mutant methylguanine DNA methyltransferase gene into human CD34 cells confers resistance to O6-benzylguanine plus l,3-bis(2-chloroethyl)-l-nitrosourea. Proc Natl Acad Sci U S A 1996. 93(24):14,088–14,093.

    CAS  Google Scholar 

  117. Hickson I, et al. Chemoprotective gene transfer I: transduction of human haemopoietic progenitors with O6-benzylguanine-resistant O6-alkylguanine-DNA alkyltransferase attenuates the toxic effects of O6-alkylating agents in vitro. Gene Ther 1998;5(6):835–841.

    PubMed  CAS  Google Scholar 

  118. Davis BM, et al. Selection for G156A O6- methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and l,3-bis(2-chloroethyl)-l-nitrosourea. Cancer Res 1997;57(2):5093–5099.

    PubMed  CAS  Google Scholar 

  119. Chinnasamy N, et al. Chemoprotective gene transfer II: multilineage in vivo protection of haemopoiesis against the effects of an antitumour agent by expression of a mutant human O6-alkyl-guanine-DNA alkyltransferase. Gene Ther 1998;5(6):842–847.

    PubMed  CAS  Google Scholar 

  120. Ragg S, et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 2000;60(1):5187–5195.

    PubMed  CAS  Google Scholar 

  121. Davis BM, Koc ON, Gerson SL. Limiting numbers of G156A O(6)-methylguanine-DNA methyl-transferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood 2000;95(1):3078–3084.

    PubMed  CAS  Google Scholar 

  122. Pollok KE, et al. In vivo selection of human hematopoietic cells in a xenograft model using com-bined pharmacologie and genetic manipulations. Hum Gene Ther 2003;14(1):1703–1714.

    PubMed  CAS  Google Scholar 

  123. Zielske SP, et al. In vivo selection of MGMT (P140K) lentivirus-transduced human NOD/SCID repop-ulating cells without pretransplant irradiation conditioning. J Clin Invest 2003;112(1):1561–1570.

    PubMed  CAS  Google Scholar 

  124. Neff T, et al. Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J Clin Invest 2003;l 12(1):1581–1588.

    Google Scholar 

  125. Neff T, et al. Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 2005;105(3):997–1002 Epub 2004 Oct 19.

    PubMed  CAS  Google Scholar 

  126. Koc ON, et al. DeltaMGMT-transduced bone marrow infusion increases tolerance to O6-benzylgua-nine and l,3-bis(2-chloroethyl)-l-nitrosourea and allows intensive therapy of l,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum Gene Ther 1999;10(6):1021–1030.

    PubMed  CAS  Google Scholar 

  127. Reese JS, et al. Simultaneous protection of G156A methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and sensitization of tumor cells using O6-benzylguanine and temozolomide. Clin Cancer Res 1999;5(1):163–169.

    PubMed  CAS  Google Scholar 

  128. Kreklau EL, et al. Hematopoietic expression of O(6)-methylguanine DNA methyltransferase-P140K allows intensive treatment of human glioma xenografts with combination O (6)-benzylguanine and l,3-bis-(2-chloroethyl)-l-nitrosourea. Mol Cancer Ther 2003;2(1):1321–1329.

    PubMed  CAS  Google Scholar 

  129. Reese JS, et al. Preliminary results of a phase I trial using retroviral gene transfer of G156A MGMT to protect hematopoiesis during BG and BCNU therapy of advanced malignancies. Mol Ther 2004;9: S385.

    Google Scholar 

  130. Kaiser J. Gene Therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 2003;299(506):495.

    PubMed  CAS  Google Scholar 

  131. Eliopoulos N, et al. Retroviral transfer and long-term expression of human cytidine deaminase cDNA in hematopoietic cells following transplantation in mice. Gene Ther 1998;5(1):1545–1551.

    PubMed  CAS  Google Scholar 

  132. Beausejour CM, et al. Selection of drug-resistant transduced cells with cytosine nucleoside analogs using the human cytidine deaminase gene. Cancer Gene Ther 2001;8(9):669–676.

    PubMed  CAS  Google Scholar 

  133. Zhao SC, et al. Long-term protection of recipient mice from lethal doses of methotrexate by marrow infected with a double-copy vector retrovirus containing a mutant dihydrofolate reductase. Cancer Gene Ther 1994;l(1):27–33.

    Google Scholar 

  134. Lewis WS, et al. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J Biol Chem 1995;270(1):5057–5064.

    PubMed  CAS  Google Scholar 

  135. Corey CA, et al. Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells. Blood 1990;75(2):337–343.

    PubMed  CAS  Google Scholar 

  136. Allay JA, et al. Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleo-side transport inhibitors. Blood 1997;90(9):3546–3554.

    PubMed  CAS  Google Scholar 

  137. Allay JA, et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med 1998;4(1):1136–1143.

    PubMed  CAS  Google Scholar 

  138. Persons DA, et al. Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood 2004;103(3):796–803 Epub 2003 Aug 14.

    PubMed  CAS  Google Scholar 

  139. Zhou Y, et al. Co-expression of human adenosine deaminase and multidrug resistance using a bicistronic retroviral vector. Hum Gene Ther 1998;9(3):287–293.

    PubMed  CAS  Google Scholar 

  140. Yu X, et al. Lentiviral vectors with two independent internal promoters transfer high-level expres-sion of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003;7(6):827–838.

    PubMed  CAS  Google Scholar 

  141. Creancier L, et al. Fibroblast growth factor 2 internal ribosome entry site (1RES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol 2000;150(1):275–281.

    PubMed  CAS  Google Scholar 

  142. Warnakulasuriyarachchi D, et al. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 2004;279(1):17,148-17,157 Epub 2004 Feb 11.

    Google Scholar 

  143. Jelinek J, et al. A novel dual function retrovirus expressing multidrug resistance 1 and O6-alkylgua-nine-DNA-alkyltransferase for engineering resistance of haemopoietic progenitor cells to multiple chemotherapeutic agents. Gene Ther 1999;6(8):1489–1493.

    PubMed  CAS  Google Scholar 

  144. de Felipe P, et al. Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther 1999;6(2):198–208.

    PubMed  Google Scholar 

  145. Milsom MD, et al. Enhanced in vivo selection of bone marrow cells by retroviral-mediated coexpression of mutant O6-methylguanine-DNA-methyltransferase and HOXB4. Mol Ther 2004;10(5):862–873.

    PubMed  CAS  Google Scholar 

  146. de Felipe P. Skipping the co-expression problem: the new 2A “CHYSEL” technology. Genet Vaccines Ther 2004;2(1):13.

    PubMed  Google Scholar 

  147. Lengler J, et al. FMDV-2A sequence and protein arrangement contribute to functionality of CYP2B1-reporter fusion protein. Anal Biochem 2005;12:12.

    Google Scholar 

  148. Bowtell DD, et al. Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes. J Virol 1988;62(7):2464–2473.

    PubMed  CAS  Google Scholar 

  149. Zhu Y, et al. Multigene lentiviral vectors based on differential splicing and translational control. Mol Ther 2001;4(4):375–382.

    PubMed  CAS  Google Scholar 

  150. Emerman M, Temin HM. Genes with promoters in retrovirus vectors can be independently sup-pressed by an epigenetic mechanism. Cell 1984;39 (3 Pt 2):449–467.

    PubMed  CAS  Google Scholar 

  151. Amendola M, et al. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bi-directional promoters. Nat Biotechnol 2005;23(1):108–116 Epub 2004 Dec 26.

    PubMed  CAS  Google Scholar 

  152. Reiser J, et al. Development of multigene and regulated lentivirus vectors. J Virol 2000;74(2):10,589-10,599.

    Google Scholar 

  153. Frimpong K, Spector SA. Cotransduction of nondividing cells using lentiviral vectors. Gene Ther 2000;7(1):1562–1569.

    PubMed  CAS  Google Scholar 

  154. Kittler EL, et al. Cytokine-facilitated transduction leads to low-level engraftment in nonablated hosts. Blood 1997;90(2):865–872.

    PubMed  CAS  Google Scholar 

  155. Gothot A, et al. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34 (+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998;92(8):2641–2649.

    PubMed  CAS  Google Scholar 

  156. Etienne-Julan M, et al. The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker. J Gen Virol 1992;73 (Pt 12):3251–3255.

    PubMed  CAS  Google Scholar 

  157. Etienne-Julan M, et al. Cell targeting by murine recombinant retroviruses. Bone Marrow Trans 1992;9:139–142.

    Google Scholar 

  158. Roux P, Jeanteur P, Piechaczyk M. A versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc Natl Acad Sci U S A 1989;86(2):9079–9083.

    PubMed  CAS  Google Scholar 

  159. Han X, Kasahara N, Kan YW. Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci U S A 1995;92(2):9747–9751.

    PubMed  CAS  Google Scholar 

  160. Kasahara N. Tissue-Specific Targeting of Retroviral Vectors Through Ligand-Receptor Interactions. Science 1994;266:1373–1376.

    PubMed  CAS  Google Scholar 

  161. Nguyen TH, et al. Amphotropic retroviral vectors displaying hepatocyte growth factor-envelope fusion proteins improve transduction efficiency of primary hepatocytes. Hum Gene Ther 1998;9(1):2469–2479.

    PubMed  CAS  Google Scholar 

  162. Cosset F-L. Retroviral Retargeting by Envelopes Expressing an N-Terminal Binding Domain. J Virol 1995;69(1):6314–6322.

    PubMed  CAS  Google Scholar 

  163. Chu TH, Dornburg R. Retroviral vector particles displaying the antigen-binding site of an antibody enable cell-type-specific gene transfer. J Virol 1995;69(4):2659–2663.

    PubMed  CAS  Google Scholar 

  164. Somia NV, Zoppe M, Verma IM. Generation of targeted retroviral vectors by using single-chain vari-able fragment: an approach to in vivo gene delivery. Proc Natl Acad Sci U S A 1995;92(1):7570–7574.

    PubMed  CAS  Google Scholar 

  165. Russell SJ. Retroviral vectors displaying functional antibody fragments. Nucl Acids Res 1993;21(5):1081–1085.

    PubMed  CAS  Google Scholar 

  166. Marin M. Targeted Infection of Human Cells via Major Histocompatibility Complex Class I Molecules by Moloney Murine Leukemia Virus-Derived Viruses Displaying Single-Chain Antibody Fragment-Envelope Fusion Proteins. J Virol 1996;70(5):2957–2962.

    PubMed  CAS  Google Scholar 

  167. Ager S, et al. Retroviral display of antibody fragments: interdomain spacing strongly influences vector infectivity. Hum Gene Ther 1996;7(1):2157–2164.

    PubMed  CAS  Google Scholar 

  168. Konishi H. Targeting Strategy for Gene Delivery to Carcinoembryonic Antigen-Producing Cancer Cells by Retrovirus Displaying a Sigle-Chain Fragment Antibody. Hum Gene Ther 1998;9:235–248.

    PubMed  CAS  Google Scholar 

  169. Jiang A, et al. Cell-type-specific gene transfer into human cells with retroviral vectors that display single-chain antibodies. J Virol 1998;72(1):10,148-10,156.

    Google Scholar 

  170. Valsesia-Wittmann S, et al. Improvement of retroviral retargeting by using amino acid spacers between an additional binding domain and the N terminus of Moloney murine leukemia virus SU. J Virol 1996;70(3):2059–2064.

    PubMed  CAS  Google Scholar 

  171. Chandrashekran A, Gordon MY, Casimir C. Targeted retroviral transduction of c-kit+ hematopoietic cells using novel ligand display technology. Blood 2004;104(9):2697–2703 Epub 2004 Jul 15.

    PubMed  CAS  Google Scholar 

  172. Bupp K, Roth MJ. Altering retroviral tropism using a random-display envelope library. Mol Ther 2002;5(3):329–335.

    PubMed  CAS  Google Scholar 

  173. Roth J, Gerson S. Screening mutant ecotropic MuLV envelope libraries for altered host range. Mol Ther 2002;5(5):S177.

    Google Scholar 

  174. Hacein-Bey-Abina S, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348(3):255–256.

    PubMed  Google Scholar 

  175. Woods NB, et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003;101(4):1284–1289.

    PubMed  CAS  Google Scholar 

  176. Laufs S, et al. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 2003;101(6):2191–2198.

    PubMed  CAS  Google Scholar 

  177. Kustikova OS, et al. Dose finding with retroviral vectors: correlation of retroviral vector copy num-bers in single cells with gene transfer efficiency in a cell population. Blood 2003;102(1):3934–3937 Epub 2003 Jul 24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roth, J.C., Gerson, S.L. (2007). Gene Transfer for Chemoprotection and Enrichment of Hematopoietic Stem Cells. In: Hunt, K.K., Vorburger, S.A., Swisher, S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-222-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-222-9_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-472-2

  • Online ISBN: 978-1-59745-222-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics