Skip to main content

Psychiatry of the Cerebellum

  • Chapter
Psychiatry for Neurologists

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1423 Accesses

Abstract

Since the pioneering early 19th-century studies of Luigi Rolando, the cerebellum has been recognized as a critical modulator of movement. Landmarks include the descriptions of hereditary disorders affecting the cerebellum by Friedreich in 1863 and Marie in 1893, and the pre-World War II work of Holmes, who established much of the terminology and many of the methods for assessing the motor functions of the cerebellum still in clinical use today. Every contemporary neurology text, and every neurology course for students, emphasizes the anatomy and physiology underlying the motor role of the cerebellum, and the motor signs and symptoms to be elicited in the clinical examination of cerebellar function. In contrast, the normal role of the cerebellum in cognition and emotion, and the potential impact of cerebellar damage on cognition and emotion, receives scant attention. In textbooks of neuropsychiatry, the cerebellum is hardly mentioned at all (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fadda F, Rossetti ZL. Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 1998;56:385–431.

    Article  PubMed  CAS  Google Scholar 

  2. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution’s experience. Neurosurgery 2003;53:1061–1065.

    Article  PubMed  Google Scholar 

  3. Pandolfo M. Friedreich ataxia. Semin Pediatr Neurol 2003;10:163–172.

    Article  PubMed  Google Scholar 

  4. Margolis RL. The spinocerebellar ataxias: order emerges from chaos. Curr Neurol Neurosci Rep 2002;2:447–456.

    Article  PubMed  Google Scholar 

  5. Sadock BJ, Sadock VA, eds. Comprehensive Textbook of Psychiatry, Eighth Edition. Baltimore, MD: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  6. Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 1978;101:251–283.

    Article  PubMed  CAS  Google Scholar 

  7. Glickstein M, May JG III, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 1985;235:343–359.

    Article  PubMed  CAS  Google Scholar 

  8. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 1989;289:53–73.

    Article  PubMed  CAS  Google Scholar 

  9. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol 1991;48:1178–1187.

    PubMed  CAS  Google Scholar 

  10. Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 1993;337:94–112.

    Article  PubMed  CAS  Google Scholar 

  11. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett 1995;199:175–178.

    Article  PubMed  CAS  Google Scholar 

  12. Brodal P. The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 1979;4:193–208.

    Article  PubMed  CAS  Google Scholar 

  13. Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res 1997;114:553–566.

    PubMed  CAS  Google Scholar 

  14. Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 2000;42:183–200.

    Article  PubMed  CAS  Google Scholar 

  15. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–381.

    Article  PubMed  CAS  Google Scholar 

  16. Dempesy CW, Tootle DM, Fontana CJ, Fitzjarrell AT, Garey RE, Heath RG. Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol Psychiatry 1983;18:127–132.

    PubMed  CAS  Google Scholar 

  17. Marcinkiewicz M, Morcos R, Chretien M. CNS connections with the median raphe nucleus: retrograde tracing with WGAapoHRP-Gold complex in the rat. J Comp Neurol 1989;289:11–35.

    Article  PubMed  CAS  Google Scholar 

  18. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations Int Rev Neurobiol 1997;41:83–107.

    PubMed  CAS  Google Scholar 

  19. Brodal A. Neurological Anatomy. New York: Oxford University Press; 1981:1053–1053.

    Google Scholar 

  20. O’Hearn E, Molliver M. Organizational principles and microcircuitry of the cerebellum. Int Rev Psychiatry 2001;13:232–246.

    Article  Google Scholar 

  21. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 2003;10:427–455.

    Article  PubMed  Google Scholar 

  22. Thompson RF, Bao S, Chen L, et al. Associative learning. Int Rev Neurobiol 1997;41:151–189.

    Article  PubMed  CAS  Google Scholar 

  23. Miller MJ, Chen NK, Li L, et al. fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation. J Neurosci 2003;23:11,753–11,758.

    PubMed  CAS  Google Scholar 

  24. Lee T, Kim JJ. Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats. J Neurosci 2004;24:3242–3250.

    Article  PubMed  CAS  Google Scholar 

  25. Colombel C, Lalonde R, Caston J. The effects of unilateral removal of the cerebellar hemispheres on spatial learning and memory in rats. Brain Res 2004;1004:108–115.

    Article  PubMed  CAS  Google Scholar 

  26. Lalonde R, Strazielle C. The effects of cerebellar damage on maze learning in animals. Cerebellum 2003;2:300–309.

    Article  PubMed  CAS  Google Scholar 

  27. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 2000;31:236–250.

    Article  PubMed  CAS  Google Scholar 

  28. Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res 1976;2:133–146.

    Article  PubMed  CAS  Google Scholar 

  29. Berman AJ. Amelioration of aggression: response to selective cerebellar lesions in the rhesus monkey. Int Rev Neurobiol 1997;41:111–119..

    PubMed  CAS  Google Scholar 

  30. Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA 2002;99:8406–8411.

    Article  PubMed  CAS  Google Scholar 

  31. Gebhart AL, Petersen SE, Thach W. Role of the posterolateral cerebellum in language. Ann NY Acad Sci 2002;978:318–333.

    Article  PubMed  Google Scholar 

  32. Raichle ME, Fiez JA, Videen TO, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 1994;4:8–26.

    Article  PubMed  CAS  Google Scholar 

  33. Ackermann H, Graber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang 1997;60:323–331.

    Article  PubMed  CAS  Google Scholar 

  34. Appollonio IM, Grafman J, Schwartz V, Massaquoi S, Hallett M. Memory in patients with cerebellar degeneration. Neurology 1993;43,1536–1544.

    PubMed  CAS  Google Scholar 

  35. Desmond JE. Cerebellar involvement in cognitive function: evidence from neuroimaging. Int Rev Psychiatry 2001;13:283–294.

    Article  Google Scholar 

  36. Gerwig M, Dimitrova A, Kolb FP, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 2003;126:71–94.

    Article  PubMed  CAS  Google Scholar 

  37. Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in classical eyeblink conditioning in humans. Neuropsychology 1996;10:443–458.

    Article  Google Scholar 

  38. Thach WT. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 1998;70:177–188.

    Article  PubMed  CAS  Google Scholar 

  39. Parsons LM, Bower JM, Gao JH, Xiong J, Li J, Fox PT. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Mem 1997;4:49–62.

    Article  PubMed  CAS  Google Scholar 

  40. Courchesne E, Townsend J, Akshoomoff NA, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 1994;108:848–865.

    Article  PubMed  CAS  Google Scholar 

  41. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 2002;87:1336–1347.

    PubMed  Google Scholar 

  42. Akshoomoff NA, Courchesne E, Townsend J. Attention coordination and anticipatory control. Int Rev Neurobiol 1997;41:575–598.

    PubMed  CAS  Google Scholar 

  43. Gomez BM, Garcia-Monco JC, Quintana JM, Llorens V, Rodeno E. Diaschisis and neuropsychological performance after cerebellar stroke. Eur Neurol 1997;37:82–89.

    Google Scholar 

  44. Hausen HS, Lachmann EA, Nagler W. Cerebral diaschisis following cerebellar hemorrhage. Arch Phys Med Rehabil 1997;78:546–549.

    Article  PubMed  CAS  Google Scholar 

  45. Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol (Amst) 2004;115:271–289.

    Article  Google Scholar 

  46. Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatry 2001;13:247–260.

    Article  Google Scholar 

  47. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001;81:1143–1195.

    PubMed  CAS  Google Scholar 

  48. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol 2004;14:225–232.

    Article  PubMed  CAS  Google Scholar 

  49. Paradiso S, Johnson DL, Andreasen NC, et al. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry 1999;156:1618–1629.

    PubMed  CAS  Google Scholar 

  50. Lee GP, Meador KJ, Loring DW, et al. Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol 2004;17:9–17.

    Article  PubMed  Google Scholar 

  51. Gunder H, O’Connoer MF, Littrell L, Fort C, Lane RD. Functional neuroanatomy of grief: an fMRI study. Am J Psychiatry 2004;160:1946–1953.

    Article  Google Scholar 

  52. Parvizi J, Anderson SW, Martin CO, Damasio H, Damasio AR. Pathological laughter and crying: a link to the cerebellum. Brain 2001;124:1708–1719.

    Article  PubMed  CAS  Google Scholar 

  53. Schmahmann JD. The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychiatry 2001;13:313–322.

    Article  Google Scholar 

  54. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998;121(Pt 4):561–579.

    Article  PubMed  Google Scholar 

  55. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand 2000;102:363–370.

    Article  PubMed  CAS  Google Scholar 

  56. Hoffmann M, Schmitt F. Cognitive impairment in isolated subtentorial stroke. Acta Neurol Scand 2004;109:14–24.

    Article  PubMed  Google Scholar 

  57. Pollack I. Neurobehavioral abnormalities after posterior fossa surgery in children. Int Rev Psychiatry 2001;13:302–312.

    Article  Google Scholar 

  58. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 2000;123:1051–1061.

    Article  PubMed  Google Scholar 

  59. Kish SJ, el Awar M, Schut, L, Leach L, Oscar-Berman M, Freedman M. Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer’s dementia. Ann Neurol 1988;24:200–206.

    Article  PubMed  CAS  Google Scholar 

  60. Kish SJ, el-Awar M, Stuss D, et al. Neuropsychological test performance in patients with dominantly inherited spinocerebellar ataxia: relationship to ataxia severity. Neurology 1994;44:1738–1746.

    PubMed  CAS  Google Scholar 

  61. Brandt J, Munro C. Memory Disorders in Subcortical Dementia. (Baddeley AD, Kopelman MD, Wilson BA, eds.), Hoboken, NJ: Wiley, 2001. 591–614.

    Google Scholar 

  62. Hirono N, Yamadori A, Kameyama M, Mezaki T, Abe K. Spinocerebellar degeneration (SCD): cognitive disturbances. Acta Neurol Scand 1991;84:226–230.

    PubMed  CAS  Google Scholar 

  63. Brandt J, Leroi I, O’Hearn E, Rosenblatt A, Margolis RL. Cognitive impairments in cerebellar degeneration: a comparison with Huntington’s disease. J Neuropsychiatry Clin Neurosci 2004;16:176–184.

    PubMed  Google Scholar 

  64. Burk K, Globas C, Bosch S, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 2003;250:207–211.

    Article  PubMed  CAS  Google Scholar 

  65. Zawacki TM, Grace J, Friedman JH, Sudarsky L. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord 2002;17:1004–1010.

    Article  PubMed  Google Scholar 

  66. Schelhaas HJ, van de Warrenburg BP, Hageman G, Ippel EE, van Hout M, Kremer B. Cognitive impairment in SCA-19. Acta Neurol Belg 2003;103:199–205.

    PubMed  Google Scholar 

  67. White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich’s ataxia. Acta Neurol Scand 2000;102:222–226.

    Article  PubMed  CAS  Google Scholar 

  68. Wollmann T, Barroso J, Monton F, Nieto A. Neuropsychological test performance of patients with Friedreich’s ataxia. J Clin Exp Neuropsychol 2002;24:677–686.

    Article  PubMed  Google Scholar 

  69. Le Ber I, Moreira MC, Rivaud-Pechoux S, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 2003;126:2761–2772.

    Article  PubMed  Google Scholar 

  70. Starkstein, SE, Robinson RG, Berthier ML, Price TR. Depressive disorders following posterior circulation as compared with middle cerebral artery infarcts. Brain 1988;111:375–387.

    Article  PubMed  Google Scholar 

  71. Woodworth JA, Beckett RS, Netsky MG. A composite of hereditary ataxias. Arch Int Med 1959;104:594–606.

    Google Scholar 

  72. Kutty IN, Prendes JL. Psychosis and cerebellar degeneration. J Nerv Ment Dis 1981;169:390–391.

    Article  PubMed  CAS  Google Scholar 

  73. Tashiro H, Suzuki SO, Hitotsumatsu T, Iwaki T. An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropathol 1999;18:198–204.

    PubMed  CAS  Google Scholar 

  74. Skre H. A study of certain traits accompanying some inherited neurological disorders. Clin Genet 1975;8:117–135.

    Article  PubMed  CAS  Google Scholar 

  75. Leroi I, O’Hearn E, Marsh L, et al. Psychopathology in degenerative cerebellar diseases: A comparison to Huntington’s disease and normal controls. Am J Psychiatry 2002;159:1306–1314.

    Article  PubMed  Google Scholar 

  76. Liszewski CM, O’Hearn E, Leroi I, Gourley L, Ross CA, Margolis RL. Cognitive Impairment and Psychiatric Symptoms in 133 patients with diseases associated with cerebellar degeneration. J Neuropsychiatry Clin Neurosci 2004;16:109–112.

    PubMed  Google Scholar 

  77. Weintraub D, Lippmann SB. Electroconvulsive therapy in the acute poststroke period. J ECT 2004;16:415–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Margolis, R.L. (2006). Psychiatry of the Cerebellum. In: Jests, D.V., Friedman, J.H. (eds) Psychiatry for Neurologists. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-59259-960-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-960-8_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-483-8

  • Online ISBN: 978-1-59259-960-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics