Skip to main content

Neocortical Epilepsy

α-Methyl-L-Tryptophan and Positron Emission Tomography Studies

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 699 Accesses

Abstract

A review of the use of a radioactively labeled tracer, α-methyl-L-tryptophan (α-MTrp), proposed for the study of the brain serotonin synthesis in normal and diseased brain, is presented. Serotonin is one of many brain neurotransmitters shown to be involved in many brain processes, and an alteration of its biochemistry has been proposed to be present in many brain diseases and disorders. Labeled α-MTrp in normal brain and probably in affective disorders can be used for the measurement of the regional serotonin synthesis, but in some diseases like epilepsy the uptake of the tracer is probably related more to the altered tryptophan metabolism, mainly via the kynurenine pathway. A summary of the published data indicates that positron emission tomography after injection of α-[11C]MTrp could be very valuable in determining the epileptic focus; however, it is not possible to get identification in all cases evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhar MJ, Aghajanian GK, Roth RH. Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesions: correlations with serotonin levels and histochemical fluorescence. Brain Res 1972;44:165–176.

    Article  PubMed  CAS  Google Scholar 

  2. Samanin R, Valzelli L, Gumulka W. Inhibitory effect of midbrain raphe stimulation on cortical evoked potentials in rats. Psychopharmacologia 1972;24:373–379.

    Article  PubMed  CAS  Google Scholar 

  3. Kovacs DA, Zoll JG. Seizure inhibition by median raphe nucleus stimulation in rat. Brain Res 1974;70:165–169.

    Article  PubMed  CAS  Google Scholar 

  4. Dailey JW, Reigel CE, Mishra PK, Jobe PC. Neurobiology of seizure predisposition in the genetically epilepsy-prone rat. Epilepsy Res 1989;3:3–17.

    Article  PubMed  CAS  Google Scholar 

  5. Dailey JW, Mishra PK, Ko KH, Penny JE, Jobe PC. Serotonergic abnormalities in the central nervous system of seizure-naive genetically epilepsy-prone rats. Life Sci 1992;50:319–326.

    Article  PubMed  CAS  Google Scholar 

  6. Yan QS, Jobe PC, Dailey JW. Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Eur J Pharmacol 1994;252:105–112.

    Article  PubMed  CAS  Google Scholar 

  7. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG. Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 1994;35:1–11.

    Article  PubMed  CAS  Google Scholar 

  8. Statnick MA, Dailey JW, Jobe PC, Browning RA. Abnormalities in brain serotonin concentration, high-affinity uptake, and tryptophan hydroxylase activity in severe-seizure genetically epilepsy-prone rats. Epilepsia 1996;37:311–321.

    Article  PubMed  CAS  Google Scholar 

  9. Salgado-Commissariat D, Alkadhi KA. Effects of serotonin on induced epileptiform activity in CA1 pyramidal neurons of genetically epilepsy prone rats. Brain Res 1996;743:212–216.

    Article  PubMed  CAS  Google Scholar 

  10. Louw D, Sutherland GR, Glavin GB, Girvin J. A study of monoamine metabolism in human epilepsy. Can J Neurol Sci 1989;16:394–397.

    PubMed  CAS  Google Scholar 

  11. Pintor M, Mefford IN, Hutter I, Pocotte SL, Wyler AR, Nadi NS. Levels of biogenic amines, their metabolites, and tyrosine hydroxylase activity in the human epileptic temporal cortex. Synapse 1990;5:152–156.

    Article  PubMed  CAS  Google Scholar 

  12. Trottier S, Evrard B, Vignal JP, Scarabin JM, Chauvel P. The serotonergic innervation of the cerebral cortex in man and its changes in focal cortical dysplasia. Epilepsy Res 1996;25:79–106.

    Article  PubMed  CAS  Google Scholar 

  13. Eccleston DJ, Ashcroft GW, Crawford TBB. 5-Hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. II Applications and drug studies. J Neurochem 1965;12:493–503.

    Article  PubMed  CAS  Google Scholar 

  14. Kuhar MJ, Aghajanian GH, Roth RH. Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesions: correlation with serotonin levels and histochemical fluorescence. Brain Res 1972;44:165–176.

    Article  PubMed  CAS  Google Scholar 

  15. Burns D, London J, Brunswick DJ, Pring M, Garfinkel D, Rabinowitz JL, Mendels J. A kinetic analysis of 5-hydroxyindoleacetic acid excretion from rat brain and csf. Biol Psychiat 1976;11:125–157

    PubMed  CAS  Google Scholar 

  16. Wolf WA, Youdim MBH, Kuhn DM. Does brain 5-HIAA indicate serotonin release or monoamine oxidase activity? Eur J Pharmacol 1985; 109:381–387.

    Article  PubMed  CAS  Google Scholar 

  17. King JT Jr, LaMotte CC. El mouse as a model of focal epilepsy: a review. Epilepsia 1989;30:257–265.

    PubMed  CAS  Google Scholar 

  18. Broderick PA, Pacia SV, Doyle WK, Devinsky O. Monoamine neurotransmitters in resected hippocampal subparcellations from neocortical and mesial temporal lobe epilepsy patients: in situ microvoltammetric studies. Brain Res 2000;878:48–63.

    Article  PubMed  CAS  Google Scholar 

  19. Pacia SV, Doyle WK, Broderick PA. Biogenic amines in the human neocortex in patients with neocortical and mesial temporal lobe epilepsy: identification with in situ microvoltammetry. Brain Res 2001;899:106–111.

    Article  PubMed  CAS  Google Scholar 

  20. Reynolds JN, Baskys A, Carlen PL. The effects of serotonin on N-methyl-D-aspartate and synaptically evoked depolarizations in rat neocortical neurons. Brain Res 1988;456:286–292.

    Article  PubMed  CAS  Google Scholar 

  21. Nedergaard S, Engberg I, Flatman JA. Serotonin facilitates NMDA responses of cat neocortical neurones. Acta Physiol Scand 1986;128:323–325.

    Article  PubMed  CAS  Google Scholar 

  22. Flint RS, Murphy JM, Calkins PM, McBride WJ. Monoamine, amino acid and cholinergic interactions in slices of rat cerebral cortex. Brain Res Bull 1985;15:197–202.

    Article  PubMed  CAS  Google Scholar 

  23. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab 1990;10:1–12.

    PubMed  CAS  Google Scholar 

  24. Gharib A, Balende C, Sarda N, Weissmann D, Plenevaux A, Luxen A, et al. Biochemical and autoradiographic measurements of brain serotonin synthesis rate in the freely moving rat: a reexamination of the α-methyl-L-tryptophan method. J Neurochem 1999;72:2593–2600.

    Article  PubMed  CAS  Google Scholar 

  25. Sourkes TL. A-methyltryptophan and its actions on tryptophan metabolism. Fed Proc 1971;30:897–903.

    PubMed  CAS  Google Scholar 

  26. Saito K, Nowak TS Jr, Suyama K, et al. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem 1993;61:2061–2070.

    Article  PubMed  CAS  Google Scholar 

  27. Heyes MP, Saito K, Crowley JS, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 1992;115:1249–1273.

    Article  PubMed  Google Scholar 

  28. Chugani DC, Chugani HT, Muzik O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using α-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol 1998;44:858–866.

    Article  PubMed  CAS  Google Scholar 

  29. Roberge AG, Missala K, Sourkes TL. α-Methyltryptophan: effects on synthesis and degradation of serotonin in the brain. Neuropharmacology 1972;11:197–209.

    Article  PubMed  CAS  Google Scholar 

  30. Vanier M, Tsuiki K, Grdisa M, Worsley K, Diksic M. Determination of the lumped constant for the α-methyltryptophan method of estimating the rate of serotonin synthesis. J Neurochem 1995;64:624–635.

    Article  PubMed  CAS  Google Scholar 

  31. Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 1976;230:94–98.

    PubMed  CAS  Google Scholar 

  32. Pardridge WM, Oldendorf WH. Transport of metabolic substrates through the blood-brain barrier. J Neurochem 1977;28:5–12.

    Article  PubMed  CAS  Google Scholar 

  33. Takada A, Grdisa M, Diksic M, Gjedde A, Yamamoto YL. Rapid steady-state analysis of the blood-brain transfer of L-Trp in rat, with special reference to the plasma protein bindig. Neurochem Int 1993;23:351–359.

    Article  PubMed  CAS  Google Scholar 

  34. Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RSJ. The relationship between global and local changes in PET studies. J Cereb Blood Flow Metab 1990;10:458–466.

    PubMed  CAS  Google Scholar 

  35. Fedi M, Reutens D, Okazawa H, et al. Localizing value of α-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology 2001;57:1629–1636.

    PubMed  CAS  Google Scholar 

  36. Natsume J, Kumakura Y, Bernasconi N, et al. A-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. Neurology 2003;60:756–761.

    PubMed  CAS  Google Scholar 

  37. Fedi M, Reutens DC, Andermann F, et al. α-[11C]-Methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res 2003;52:203–213.

    Article  PubMed  Google Scholar 

  38. Juhasz C, Chugani DC, Muzik O, et al. α-methyl-l-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 2003;60:960–968.

    PubMed  CAS  Google Scholar 

  39. Saito K, Nowak TS, Jr., Suyama K, et al. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem 1993;61:2061–2070.

    Article  PubMed  CAS  Google Scholar 

  40. Chugani DC, Muzik O. A[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab 2000;20:2–9.

    Article  PubMed  CAS  Google Scholar 

  41. Gomez MR. Tuberous Sclerosis. 2nd ed. New York: Raven Press;1988.

    Google Scholar 

  42. Avellino AM, Berger MS, Rostomily RC, Shaw CM, Ojemann GA. Surgical management and seizure outcome in patients with tuberous sclerosis. J Neurosurg 1997;87:391–396.

    PubMed  CAS  Google Scholar 

  43. Bebin EM, Kelly PJ, Gomez MR. Surgical treatment for epilepsy in cerebral tuberous sclerosis. Epilepsia 1993;34:651–657.

    Article  PubMed  CAS  Google Scholar 

  44. Guerreiro MM, Andermann F, Andermann E, et al. Surgical treatment of epilepsy in tuberous sclerosis: strategies and results in 18 patients. Neurology 1998;51:1263–1269.

    PubMed  CAS  Google Scholar 

  45. Asano E, Chugani DC, Muzik O, et al. Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology 2000;54:1976–1984.

    PubMed  CAS  Google Scholar 

  46. O’Brien TJ, So EL, Mullan BP, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998;50:445–454.

    PubMed  CAS  Google Scholar 

  47. Koh S, Jayakar P, Resnick T, Alvarez L, Liit RE, Duchowny M. The localizing value of ictal SPECT in children with tuberous sclerosis complex and refractory partial epilepsy. Epileptic Disord 1999;1:41–46.

    PubMed  CAS  Google Scholar 

  48. Koh S, Jayakar P, Dunoyer C, et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia 2000;41:1206–1213.

    Article  PubMed  CAS  Google Scholar 

  49. Ebner A, Buschsieweke U, Tuxhorn I, Witte OW, Seitz RJ. Supplementary sensorimotor area seizure and ictal single-photon emission tomography. Adv Neurol 1996;70:363–368.

    PubMed  CAS  Google Scholar 

  50. Runge U, Kirsch G, Petersen B, et al. Ictal and interictal ECD-SPECT for focus localization in epilepsy. Acta Neurol Scand 1997;96:271–276.

    Article  PubMed  CAS  Google Scholar 

  51. Jambaque I, Cusmai R, Curatolo P, Cortesi F, Perrot C, Dulac O. Neuropsychological aspects of tuberous sclerosis in relation to epilepsy and MRI findings. Dev Med Child Neurol 1991;33:698–705.

    Article  PubMed  CAS  Google Scholar 

  52. Hunt A, Shepherd C. A prevalence study of autism in tuberous sclerosis. J Autism Dev Disord 1993;23:323–339.

    Article  PubMed  CAS  Google Scholar 

  53. Smalley SL. Autism and tuberous sclerosis. J Autism Dev Disord 1998;28:407–414.

    Article  PubMed  CAS  Google Scholar 

  54. Gillberg IC, Gillberg C, Ahlsen G. Autistic behaviour and attention deficits in tuberous sclerosis: a population-based study. Dev Med Child Neurol 1994;36:50–56.

    Article  PubMed  CAS  Google Scholar 

  55. Asano E, Chugani DC, Muzik O, et al. Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction. Neurology 2001;57:1269–1277.

    PubMed  CAS  Google Scholar 

  56. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971;34:369–387.

    PubMed  CAS  Google Scholar 

  57. Palmini A, Andermann F, Olivier A, Tampieri D, Robitaille Y. Focal neuronal migration disorders and intractable partial epilepsy: results of surgical treatment. Ann Neurol 1991;30:750–757.

    Article  PubMed  CAS  Google Scholar 

  58. Kloss S, Pieper T, Pannek H, Holthausen H, Tuxhorn I. Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome. Neuropediatrics 2002;33:21–26.

    Article  PubMed  CAS  Google Scholar 

  59. Kral T, Clusmann H, Blumcke I, et al. Outcome of epilepsy surgery in focal cortical dysplasia. J Neurol Neurosurg Psychiatry 2003;74:183–188.

    Article  PubMed  CAS  Google Scholar 

  60. Hirabayashi S, Binnie CD, Janota I, Polkey CE. Surgical treatment of epilepsy due to cortical dysplasia: clinical and EEG findings. J Neurol Neurosurg Psychiatry 1993;56:765–770.

    PubMed  CAS  Google Scholar 

  61. Siegel AM, Jobst BC, Thadani VM, et al. Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 2001;42:883–888.

    Article  PubMed  CAS  Google Scholar 

  62. da Silva EA, Chugani DC, Muzik O, Chugani HT. Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia 1997;38:1198–1208.

    Article  PubMed  Google Scholar 

  63. Ryvlin P, Bouvard S, Le Bars D, et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998;121:2067–2081.

    Article  PubMed  Google Scholar 

  64. Henry TR, Sutherling WW, Engel J Jr., et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res 1991;10:174–182.

    Article  PubMed  CAS  Google Scholar 

  65. Henry TR, Mazziotta JC, Engel J Jr. The functional anatomy of frontal lobe epilepsy studied with PET. Adv Neurol 1992;57:449–463.

    PubMed  CAS  Google Scholar 

  66. Olsen RW, McCabe RT, Wamsley JK. GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 1990;3:59–76.

    PubMed  CAS  Google Scholar 

  67. Maziere M, Hantraye P, Prenant C, Sastre J, Comar D. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 1984;35:973–976.

    Article  PubMed  CAS  Google Scholar 

  68. Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988;2:863–866.

    Article  PubMed  CAS  Google Scholar 

  69. Savic I, Thorell JO, Roland P. [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 1995;36:1225–1232.

    Article  PubMed  CAS  Google Scholar 

  70. Richardson MP, Koepp MJ, Brooks DJ, Duncan JS. 11C-flumazenil PET in neocortical epilepsy. Neurology 1998;51:485–492.

    PubMed  CAS  Google Scholar 

  71. Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 2003;126:1300–1318.

    Article  PubMed  Google Scholar 

  72. Muzik O, da Silva EA, Juhasz C, et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000;54:171–179.

    PubMed  CAS  Google Scholar 

  73. Arnold S, Berthele A, Drzezga A, et al. Reduction of benzodiazepine receptor binding is related to the seizure onset zone in extratemporal focal cortical dysplasia. Epilepsia 2000;41:818–824.

    Article  PubMed  CAS  Google Scholar 

  74. Richardson MP, Koepp MJ, Brooks DJ, Fish DR, Duncan JS. Benzodiazepine receptors in focal epilepsy with cortical dysgenesis: an 11C-flumazenil PET study. Ann Neurol 1996;40:188–198.

    Article  PubMed  CAS  Google Scholar 

  75. Sasaki M, Kuwabara Y, Yoshida T, et al. Carbon-11-methionine PET in focal cortical dysplasia: a comparison with fluorine-18-FDG PET and technetium-99m-ECD SPECT. J Nucl Med 1998;39:974–977.

    PubMed  CAS  Google Scholar 

  76. Rosa P, Andermann F, Natsume J, et al. PET studies using amino acids tracers: multimodal analysis. Epilepsia 2000;41(Suppl 7):58–59.

    Google Scholar 

  77. Toczek MT, Carson RE, Lang L, et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 2003;60:749–756.

    Article  PubMed  CAS  Google Scholar 

  78. Hajek M, Antonini A, Leenders KL, Wieser HG. Epilepsia partialis continua studied by PET. Epilepsy Res 1991;9:44–48.

    Article  PubMed  CAS  Google Scholar 

  79. Sztriha L, Pavics L, Ambrus E. Epilepsia partialis continua: follow-up with 99mTc-HMPAO-SPECT. Neuropediatrics 1994;25:250–254.

    PubMed  CAS  Google Scholar 

  80. Volkmann J, Seitz RJ, Muller-Gartner HW, Witte OW. Extrarolandic origin of spike and myoclonus activity in epilepsia partialis continua: a magnetoencephalographic and positron emission tomography study. J Neuroimaging 1998;8:103–106.

    PubMed  CAS  Google Scholar 

  81. Sheth RD, Riggs JE. Persistent occipital electrographic status epilepticus. J Child Neurol 1999;14:334–336.

    PubMed  CAS  Google Scholar 

  82. Lapin IP, Prakhie IB, Kiseleva IP. Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice. J Neural Transm 1982;54:229–238.

    Article  PubMed  CAS  Google Scholar 

  83. Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982;247:184–187.

    Article  PubMed  CAS  Google Scholar 

  84. Gusel WA, Mikhailov IB. Effect of tryptophan metabolites on activity of the epileptogenic focus in the frog hippocampus. J Neural Transm 1980;47:41–52.

    Article  PubMed  CAS  Google Scholar 

  85. Vezzani A, Stasi MA, Wu HQ, Castiglioni M, Weckermann B, Samanin R. Studies on the potential neurotoxic and convulsant effects of increased blood levels of quinolinic acid in rats with altered blood-brain barrier permeability. Exp Neurol 1989;106:90–98.

    Article  PubMed  CAS  Google Scholar 

  86. Chugani DC, Heyes MP, Kuhn DM, Chugani HT. Evidence that α-[C-11]methyl-L-tryptophan PET traces tryptophan metabolism via the kynurenine pathway in tuberous sclerosis complex. Soc Neurosci Abstr 1998;24:1757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Natsume, J., Bernasconi, A., Diksic, M. (2005). Neocortical Epilepsy. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_11

Download citation

Publish with us

Policies and ethics