Skip to main content

CD4+ T-Cell-Mediated Immunity to Cancer

  • Chapter
Cancer Immunotherapy at the Crossroads

Abstract

A major clinical focus has been dedicated to the design and application of immunotherapies for the promotion of antitumor cytotoxic T lymphocyte (CTL) responses (1,2). In their purest form, such strategies take the form of adoptively transferred, enriched populations of tumor-reactive CD8+ T cells. These approaches have occasionally been shown to be capable of mediating the regression of lesions in cancer patients (3). However, more often, high circulating frequencies of such cancer-specific CD8+ T cells fail to provide any demonstrable clinical benefit, despite the co-application of supportive biologic response modifiers, such as interleukin-2 (IL-2) (4,5). Although it is not the purpose of this chapter to survey all of the potential mechanisms that may underlie the ineffectiveness of such immune effector cells in situ, one must consider deviation in the functional antitumor CD4+ T “helper” compartment as a major confounding variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jager D, Jager E, Knuth A. Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. J Clin Pathol 2001; 54: 669–674.

    Article  PubMed  CAS  Google Scholar 

  2. Jager E, Jager D, Knuth A. CTL-defined cancer vaccines: perspectives for active immunotherapeutic interventions in minimal residual disease. Cancer Metastasis Rev 1999; 18: 143–150.

    Article  PubMed  CAS  Google Scholar 

  3. Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S, et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995; 154: 3961–3968.

    PubMed  CAS  Google Scholar 

  4. Cohen PA, Peng L, Kjaergaard J, Plautz GE, Finke JH, Koski GK, et al. T-cell adoptive therapy of tumors: mechanisms of improved therapeutic performance. Crit Rev Immunol 2001; 21: 215–248.

    PubMed  CAS  Google Scholar 

  5. Labarriere N, Pandolfino MC, Gervois N, Khammari A, Tessier MH, Dreno B, et al. Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients. Cancer Immunol Immunother 2002; 51: 532–538.

    Article  PubMed  CAS  Google Scholar 

  6. Topalian SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 1994; 6: 741–745.

    Article  PubMed  CAS  Google Scholar 

  7. Giuntoli RL 2nd, Lu J, Kobayashi H, Kennedy R, Celis E. Direct costimulation of tumor-reactive CTL by helper T cells potentiate their proliferation, survival, and effector function. Clin Cancer Res 2002; 8: 922–931.

    Google Scholar 

  8. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, et al. Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol 2000; 165: 6047–6055.

    PubMed  CAS  Google Scholar 

  9. Kunische-Hoppe M, Hoppe M, Bohle RM, Rauber K, Weimar B, Friemann S, et al. Metastatic RCC arising in a transplant kidney. Eur Radiol 1998; 8: 1441–1443.

    Article  Google Scholar 

  10. Kliem V, Kolditz M, Behrend M, Ehlerding G, Pichlmayr R, Koch KM, et al. Risk of renal cell carcinoma after kidney transplantation. Clin Transplant 1997; 11: 255–258.

    PubMed  CAS  Google Scholar 

  11. Jain A, Nalesnik M, Reyes J, Pokharna R, Mazariegos G, Green M, et al. Posttransplant lymphoproliferative disorders in liver transplantation: a 20-year experience. Ann Surg 2002; 236: 429–436.

    Article  PubMed  Google Scholar 

  12. Ramsay HM, Hawley CM, Smith AG, Harden PN. Non-melanoma skin cancer risk in the Queensland renal transplant population. Br J Dermatol 2002; 147: 950–956.

    Article  PubMed  CAS  Google Scholar 

  13. Van den Hove LE, Van Gool SW, Van Poppel H, Baert L, Coorrevits L, van Damme B, et al. Phenotype, cytokine production and cytolytic capacity of fresh (uncultured) tumor-infiltrating T lymphocytes in human renal cell carcinoma. Clin Exp Immunol 1997; 109: 501–509.

    Article  PubMed  Google Scholar 

  14. Finke JH, Rayman P, Hart L, Alexander JP, Edinger MG, Tubbs RR, et al. Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon-y secretion, and proliferation. J Immunother Emphas Tumor Immunol 1994; 15: 91–104.

    Article  CAS  Google Scholar 

  15. Puisieux I, Bain C, MerroucheY, Malacher P, Kourilsky P, Even J, et al. Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes from nine patients with renal-cell carcinoma. Relevance of the CDR3 length analysis for the identification of in situ clonal T-cell expansions. Int J Cancer 1996; 66: 201–208.

    Article  PubMed  CAS  Google Scholar 

  16. Caignard A, Guillard M, Gaudin M, Escudier B, Treibel F, Dietrich PY. In situ demonstration of renal-cell-carcinoma-specific T-cell clones. Int J Cancer 1996; 66: 564–570.

    Article  PubMed  CAS  Google Scholar 

  17. Seliger B, Hohne A, Knuth A, Bernhard H, Meyer T, Tampe R, et al. Analysis of major histocompatibility complex class I antigen presentation machinery in normal and malignant renal cells: evidence for deficiencies associated with transformation and progression. Cancer Res 1996; 56: 1756–1760.

    PubMed  CAS  Google Scholar 

  18. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature 2002; 419: 845–849.

    Article  PubMed  CAS  Google Scholar 

  19. Little AM, Parham P. Polymorphism and evolution of HLA class I and II genes and molecules. Rev Immunogenet 1999; 1: 105–123.

    PubMed  CAS  Google Scholar 

  20. Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell 2002; 109: S21 - S33.

    Article  PubMed  CAS  Google Scholar 

  21. Ricaniadis N, Kataki A, Agnantis N, Androulakis G, Karakousis CP. Long-term prognostic significance of HSP-70, c-myc and HLA-DR expression in patients with malignant melanoma. Eur J Surg Oncol 2001; 27: 88–93.

    Article  PubMed  CAS  Google Scholar 

  22. Cabrera T, Ruiz-Cabello F, Garrido F. Biological implications of HLA-DR expression in tumours. Scand J Immunol 1995; 41: 398–406.

    Article  PubMed  CAS  Google Scholar 

  23. Nouri-Shirazi M, Banchereau J, Bell D, Burkeholder S, Kraus ET, Davoust J, et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol 2000; 165: 3797–3803.

    PubMed  CAS  Google Scholar 

  24. Qi L, Rojas JM, Ostrand-Rosenberg S. Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J. Immunol. 2000; 165: 5451–5461.

    PubMed  CAS  Google Scholar 

  25. Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol 1998; 16: 201–223.

    Article  PubMed  CAS  Google Scholar 

  26. Sikorska B, Danilewicz M, Wagrowska-Danilewicz M. HLA-DR expression is a significant prognostic factor in laryngeal cancer. A morphometric study. APMIS 1999; 107: 383–388.

    Article  PubMed  CAS  Google Scholar 

  27. Kunihiro M, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, et al. Combined expression of HLA-DR antigen and proliferating cell nuclear antigen correlate with colorectal cancer prognosis. Oncology 1998; 55: 326–333.

    Article  PubMed  CAS  Google Scholar 

  28. Liu B, Su Z, Chen S. A study of HIA-DR antigen expression in nasopharyngeal carcinoma and its relation with clinical pathology and prognosis. Zhonghua Bing Li Xue Za Zhi 1996; 25: 162–164.

    PubMed  CAS  Google Scholar 

  29. Sheen-Chen SM, Chou FF, Eng HL, Chen WJ. An evaluation of the prognostic significance of HLA-DR expression in axillary-node-negative breast cancer. Surgery 1994; 116: 510–515.

    PubMed  CAS  Google Scholar 

  30. Tisch M, Kyrberg H, Weidauer H, Mytilineos J, Conradt C, Opelz G, et al. Human leukocyte antigens and prognosis in patients with head and neck cancer: results of a prospective follow-up study. Laryngoscope 2002; 112: 651–657.

    Article  PubMed  CAS  Google Scholar 

  31. Lee JE, Abdalla J, Porter GA, Bradford L, Grimm EA, Reveille JD, et al. Presence of the human leukocyte antigen class II gene DRB 1 * 1101 predicts interferon gamma levels and disease recurrence in melanoma patients. Ann Surg Oncol 2002; 9: 587–593.

    PubMed  Google Scholar 

  32. Azuma H, Sada M, Tsuji T, Ueda H, Katsuoka Y. Relationship between HLA-DR antigen and HLA-DRB1 alleles and prostate cancer in Japanese men. Int Urol Nephrol 1999; 31: 343–349.

    Article  PubMed  CAS  Google Scholar 

  33. Ruiter DJ, Mattijssen V, Broecker EB, Ferrone S. MHC antigens in human melanomas. Semin Cancer Biol 1991; 2: 35–45.

    PubMed  CAS  Google Scholar 

  34. Colloby PS, West KP, Fletcher A. Is poor prognosis really related to HLA-DR expression by malignant melanoma cells? Histopathology 1992; 20: 411–416.

    Article  PubMed  CAS  Google Scholar 

  35. Trieb K, Lechleitner T, Lang S, Windhager R, Kotz R, Dirnhofer S. Evaluation of HLA-DR expression and T-lymphocyte infiltration in osteosarcoma. Pathol Res Pract 1998; 194: 679–684.

    Article  PubMed  CAS  Google Scholar 

  36. Assenmacher M, Lohning M, Scheffold A, Richter A, Miltenyi S, Schmitz J, et al. Commitment of individual Thl-like lymphocytes to expression of IFN-gamma versus IL-4 and IL-10: selective induction of IL-10 by sequential stimulation of naïve Th cells with IL-12 and IL-4. Jlmmunol 1998; 161: 2825–2832.

    CAS  Google Scholar 

  37. Tsai SL, Liaw YF, Chen MH, Huang CY, Kuo GC. Detection of type 2-like T-helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology 1997; 25: 449–458.

    Article  PubMed  CAS  Google Scholar 

  38. Chakraborty NG, Li L, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B. Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines. J Immunol 1999; 162: 5576–5583.

    PubMed  CAS  Google Scholar 

  39. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    PubMed  CAS  Google Scholar 

  40. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microhiol Rev 1996; 9: 532–562.

    CAS  Google Scholar 

  41. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348–2357.

    PubMed  CAS  Google Scholar 

  42. Mosmann TR, Li L, Hengartner H, Kagi D, Fu W, and Sad S. Differentiation and functions of T cell subsets. Ciba Found Sym 1997; 204: 148–154.

    CAS  Google Scholar 

  43. Omiya R, Buteau C, Kobayashi H, Paya CV, Celis E. Inhibition of EBV-induced lymphoproliferation by CD4+ T cells specific for an MHC class II promiscuous epitope. J Immunol 2002; 169: 2172–2179.

    PubMed  CAS  Google Scholar 

  44. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Thl, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  PubMed  CAS  Google Scholar 

  45. McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. JAllergy Clin Immunol 2002; 110: 693–702.

    Article  CAS  Google Scholar 

  46. Weiner HL. Induction and mechanism of action of transforming growth factor-betasecreting Th3 regulatory cells. Immunol Rev 2001; 182: 207–214.

    Article  PubMed  CAS  Google Scholar 

  47. Grakoui A, Donermeyer DL, Kanagawa O, Murphy KM, Allen PM. TCR-independent pathways mediate the effects of antigen dose and altered peptide ligands on Th cell polarization. J Immunol 1999; 162: 1923–1930.

    PubMed  CAS  Google Scholar 

  48. Kato T, Nariuchi H. Polarization of naive CD4+ T cells toward the Thl subset by CTLA-4 costimulation. J Immunol 2000; 164: 3554–3562.

    PubMed  CAS  Google Scholar 

  49. Ruedl C, Bachmann MF, Kopf M. The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur J Immunol 2000; 30: 2056–2064.

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Thl/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 2000; 192: 405–412.

    Article  PubMed  CAS  Google Scholar 

  51. DiMolfetto L, Neal HA, Wu A, Reilly C, Lo D. The density of the class II MHC T cell receptor ligand influences IFN-gamma/IL-4 ratios in immune responses in vivo. Cell Immunol 1998; 183: 70–79.

    Article  PubMed  CAS  Google Scholar 

  52. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999; 283: 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  53. Coffman RL, Mocci S, O’Garra A. The stability and reversibility of Th I and Th2 populations. Curr Top Microbiol Immunol 1999; 238: 1–12.

    PubMed  CAS  Google Scholar 

  54. Kourilsky P, Truffa-Bachi P. Cytokine fields and the polarization of the immune response. Trends Immunol 2001 Sep; 22 (9): 502–509.

    Article  PubMed  CAS  Google Scholar 

  55. Mitchison NA, Schuhbauer D, Muller B. Natural and induced regulation of Thl/Th2 balance. Springer Semin Immunopathol 1999; 21: 199–210.

    Article  PubMed  CAS  Google Scholar 

  56. Annunziato F, Galli G, Cosmi L, Romagnani P, Manetti R, Maggi E, et al. Molecules associated with human Thl or Th2 cells. Eur Cytokine Netw 1998; 9: S12 - S16.

    Google Scholar 

  57. Smeltz RB, Chen J, Ehrhardt R, Shevach EM. Role of IFN-gamma in Thl differentiation: IFN-y regulates IL-18Ra expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor beta 2 expression. J Immunol 2002; 168: 6165–6172.

    PubMed  CAS  Google Scholar 

  58. Shevach EM, Chang JT, Segal BM. The critical role of IL-12 and the IL-12Rß2 subunit in the generation of pathogenic autoreactive Thl cells. Springer Semin Immunopathol 1999; 21: 249–262.

    PubMed  CAS  Google Scholar 

  59. Lecart S, Lecointe N, Subramaniam A, Alkan S, Ni D, Chen R, et al. Activated, but not resting human Th2 cells, in contrast to Thl and T regulatory cells, produce soluble ST2 and express low levels of ST2L at the cell surface. Eur J Immunol 2002; 32: 2979–2987.

    Article  PubMed  CAS  Google Scholar 

  60. Yamamoto J, Adachi Y, Onoue Y, Kanegane H, Miyawaki T, Toyoda M, et al. CD30 expression on circulating memory CD4+ T cells as a Th2-dominated situation in patients with atopic dermatitis. Allergy 2000; 55: 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  61. Cosmi L, Annunziato F, Galli G, Manetti R, Maggi E, Romagnani S. CRTH2: marker for the detection of human Th2 and Tc2 cells. Adv Exp Med Biol 2001; 495: 25–29.

    Article  PubMed  CAS  Google Scholar 

  62. Scotet E, Schroeder S, Lanzavecchia A. Molecular regulation of CC-chemokine receptor 3 expression in human T helper 2 cells. Blood 2001; 98: 2568–2570.

    Article  PubMed  CAS  Google Scholar 

  63. Levings MK, Sangregorio R, Roncarolo MG. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; I93: 1295–1302.

    Article  Google Scholar 

  64. Wing K, EkmarkA, Karlsson H, Rudin A, Suri-Payer E. Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology 2002; 106: 190–199.

    CAS  Google Scholar 

  65. Antony PA, Restifo NP. Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 2002; 25: 202–206.

    Article  PubMed  CAS  Google Scholar 

  66. Gately MK, Gubler U, Brunda MJ, Nadeau RR, Anderson TD, Lipman JM, et al. Interleukin12: a cytokine with therapeutic potential in oncology and infectious diseases. Ther Immunol 1994; 1: 187–196.

    PubMed  CAS  Google Scholar 

  67. Qin Z, Blankenstein T. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12: 677–686.

    Article  PubMed  CAS  Google Scholar 

  68. O’Garra A, Hosken N, Macatonia S, Wenner CA, Murphy K. The role of macrophage-and dendritic cell-derived IL-12 in Thl phenotype development. Res Immunol 1995; 146: 466–472.

    Article  PubMed  Google Scholar 

  69. Trinchieri G. Role of IL-12 in human Thl response. Chem Immunol 1996; 63: 14–29.

    Article  PubMed  CAS  Google Scholar 

  70. Hussell T, Khan U, Openshaw P. IL-12 treatment attentuates T helper type 2 and B cell responses but does not improve vaccine-enhanced lung illness. J Immunol 1997; 159: 328–334.

    PubMed  CAS  Google Scholar 

  71. Scott P, Hondowicz B, Eatron A, Scharton-Kersten T. The role of IL-12 in regulation of T helper cell subsets in vivo. Lessons from experimental cutaneous leishmaniasis. Ann NY Acad Sci 1 996; 795: 250–256.

    Google Scholar 

  72. Annunziano F, Cosmi L, Manetti R, Brugnolo F, Parronchi P, Maggi E, et al. Reversal of human allergen-specific CRTH2+ Th2 T cells by IL-12 or the PS-DSP30 oligodeoxynucleotide. J Allergy Clin Immunol 2001; 108: 815–821.

    Article  CAS  Google Scholar 

  73. Kalinski P, Smits HH, Schuitemaker JH, Vieira PL, van Eijk M, de Jong EC, et al. IL-4 is a mediator of IL-12p70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol 2000; 165: 1877–1881.

    PubMed  CAS  Google Scholar 

  74. Smits HH, van Rietschoten JG, Hilkens CM, Sayilir R, Stiekema F, Kapsenberg ML, et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur J Immunol 2001; 31: 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  75. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254: 1643–1647.

    Article  PubMed  Google Scholar 

  76. Sloan JM, Kershaw MH, Touloukian CE, Lapointe R, Robbins PF, Restifo NP, et al. MHC class I and class II presentation of tumor antigen in retrovirally and adenovirally transduced dendritic cells. Cancer Gene Ther 2002; 9: 946–950.

    Article  PubMed  CAS  Google Scholar 

  77. Storkus WJ, Zarour HM. Melanoma antigens recognised by CD8+ and CD4+ T cells. Forum (Genova) 2000; 10: 256–270.

    CAS  Google Scholar 

  78. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev 1999; 170: 85–100.

    Article  PubMed  CAS  Google Scholar 

  79. Asai T, Storkus WJ, Whiteside TL. Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines. Clin Diagn Lab Immunol 2000; 7: 145–154.

    PubMed  CAS  Google Scholar 

  80. Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, et al. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 2002; 25: 97–138.

    Article  PubMed  Google Scholar 

  81. Herr W, Ranieri E, Gambotto A, Kierstead LS, Amoscato AA, Gesualdo L, et al. Identification of naturally-processed HLA-presented Epstein-Barr virus peptides recognized by ex vivo CD4+ or CD8+ T lymphocytes from human blood. Proc Natl Acad Sci USA 1999;96:12, 033–12, 038.

    Google Scholar 

  82. Kierstead LS, Ranieri E, Olson W, Brusic V, Sidney J, Sette A, et al. gp100/pme117 and tyrosinase encode multiple epitopes recognized by Th I -type CD4+ T cells. Br J Cancer 2001; 85: 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  83. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH, et al. MAGE-6 encodes DR?1 *0401-presented epitopes recognized by CD4+ T cells derived from patients with melanoma or renal cell carcinoma. Clin Cancer Res 2003; 9: 947–954.

    PubMed  CAS  Google Scholar 

  84. Kolbeck PC, Kaveggia FF, Johansson SL, Grune MT, Taylor RJ. The relationships among tumor-infiltrating lymphocytes, histopathologic findings, and long-term clinical follow-up in renal cell carcinoma. Mod Pathol 1992; 5: 420–425.

    PubMed  CAS  Google Scholar 

  85. Storkel S, Keymer R, Steinbach F, Thoenes W. Reaction pattern of tumor infiltrating lymphocytes in different renal cell carcinomas and oncocytomas. Prog Clin Biol Res 1992; 378: 217–223.

    PubMed  CAS  Google Scholar 

  86. Burger UL, Chang MP, Nagoshi M, Goedegebuure PS, Eberlein TJ. Improved in vivo efficacy of tumor-infiltrating lymphocytes after restimulation with irradiated tumor cells in vitro. Ann Surg Oncol 1996; 3: 580–587.

    Article  PubMed  CAS  Google Scholar 

  87. Schirrmacher V, Schild HJ, Guckel B, von Hoegen P. Tumour-specific CTL response requiring interactions of four different cell types and recognition of MHC class I and class II restricted tumour antigens. Immunol Cell Biol 1993; 71: 311–326.

    Article  PubMed  CAS  Google Scholar 

  88. To WC, Seeley BM, Barthel SW, Shu S. Therapeutic efficacy of Th I and Th2 L-selectinCD4+ tumor-reactive T cells. Laryngoscope 2000; 110: 1648–1654.

    Article  PubMed  CAS  Google Scholar 

  89. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex II negative tumors. J Exp Med 1998; 187: 693–702.

    Article  PubMed  CAS  Google Scholar 

  90. Surman DR, Dudley ME, Overwijk WW, Restifo NP. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 2000; 164: 562–565.

    PubMed  CAS  Google Scholar 

  91. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998; 188: 2357–2368.

    Article  PubMed  CAS  Google Scholar 

  92. Levitsky HI, Lazenby A, Hayashi RI, Pardoll DM. In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J Exp Med 1994; 179: 1215–1224.

    Article  PubMed  CAS  Google Scholar 

  93. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  94. Fallarino F, Grohmann U, Bianchi R, Vacca C, Fioretti MC, Puccetti P. Thl and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 2000; 165: 5495–5501.

    PubMed  CAS  Google Scholar 

  95. Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M. Elimination of CD4+ T cells enhances anti-tumor effect of locally secreted interleukin-12 on B16 mouse melanoma and induces vitiligo-like coat color alteration. J Investig Dermatol 2000; 115: 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  96. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. Distinct role of antigen-specific T helper type 1 (Thl) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190: 617–627.

    Article  PubMed  CAS  Google Scholar 

  97. Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, et al. The critical role of Th 1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol 2000; 46: S52 - S61.

    Article  PubMed  CAS  Google Scholar 

  98. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001; 7: 1118–1122.

    Article  PubMed  CAS  Google Scholar 

  99. Seo N, Hayakawa S, Takigawa M, TokuraY. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of anti-tumour immunity. Immunology 2001; 103: 449–457.

    Article  PubMed  CAS  Google Scholar 

  100. Oka H, Emori Y, Hayashi Y, Nomoto K. Breakdown of Th cell immune responses and steroidogenic CYP11 A 1 expression in CD4+ T cells in a murine model implanted with B16 melanoma. Cell Immunol 2000; 206: 7–15.

    Article  PubMed  CAS  Google Scholar 

  101. Kobayashi M, Kobayashi H, Pollard RB, Suzuki F. A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol 1998; 160: 5869–5873.

    PubMed  CAS  Google Scholar 

  102. Ito N, Nakamura H, Tanaka Y, Ohgi S. Lung carcinoma: analysis of T helper type 1 and 2 cells and T cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer 1999; 85: 2359–2367.

    Article  PubMed  CAS  Google Scholar 

  103. Maeurer MJ, Martin DM, Castelli C, Elder E, Leder G, Storkus WJ, et al. Host immune response in renal cell cancer: interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunol Immunother 1995; 41: 111–121.

    Article  PubMed  CAS  Google Scholar 

  104. Schoof DD, Terashima Y, Peoples GE, Goedegebuure PS, Andrews JV, Richie JP, et al. CD4+ T cell clones isolated from human renal cell carcinoma possess the functional characteristics of Th2 helper cells. Cell Immunol 1993; 150: 114–123.

    Article  PubMed  CAS  Google Scholar 

  105. Goldman M, Druet P. The Th I /Th2 concept and its relevance to renal disorders and transplantation immunity. Nephrol Dial Transplant 1995; 10: 1282–1284.

    PubMed  CAS  Google Scholar 

  106. Elsasser-Beile U, Kolble N, Grussenmeyer T, Schultze-Seemann W, Wetterauer U, Gallati H, et al. Th I and Th2 cytokine response patterns in leukocyte cultures of patients with urinary bladder, renal cell and prostate carcinomas. Tumour Biol 1998; 19: 470–476.

    Article  PubMed  CAS  Google Scholar 

  107. Fridman WH, Tartour E. Macrophage-and lymphocyte-produced Thl and Th2 cytokines in the tumour microenvironment. Res Immunol 1998; 149: 651–653.

    Article  PubMed  CAS  Google Scholar 

  108. Angevin E, Kremer F, Gaudin C, Hercend T, Triebet F. Analysis of T-cell immune response in renal cell carcinoma: polarization to type 1-like differentiation pattern, clonal T-cell expansion and tumor-specific cytotoxicity. Int J Cancer 1997; 72: 431–440.

    Article  PubMed  CAS  Google Scholar 

  109. Knoefel B, Nuske K, Steiner T, Junker K, Kosmehl H, Rebstock K, et al. Renal cell carcinomas produce IL-6, IL-10, IL-11, and TGF-(31 in primary cultures and modulate T lymphocyte blast transformation. J Interferon Cytokine Res 1997; 17: 95–102.

    Article  PubMed  CAS  Google Scholar 

  110. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH, et al. Disease-associated bias in T helper type 1 (ThI)/Th2 CD4+ T cell responses against MAGE-6 in HLA-DRB1*0401+ patients with renal cell carcinoma or melanoma. J Exp Med 2002; 196: 619–628.

    Article  PubMed  CAS  Google Scholar 

  111. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998; 95: 7556–7561.

    Article  PubMed  CAS  Google Scholar 

  112. Biedremann T, Mailhammer R, Mai A, Sander C, Ogilvie A, Brombacher F, et al. Reversal of established delayed type hypersensitivity reactions following therapy with IL-4 or antigen-specific Th2 cells. Eur J Immunol 2001; 31: 1582–1591.

    Article  Google Scholar 

  113. Bass KK, Mastrangelo MJ. Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother 1998; 47: 1–12.

    Article  PubMed  CAS  Google Scholar 

  114. Tanaka H, Tanaka J, Kjaergaard J, Shu S. Depletion of CD4+ CD25+ regulatory cells ugments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 2002; 25: 207–217.

    Article  PubMed  CAS  Google Scholar 

  115. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO. Th2/Th I switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 2002; 50: 588–596.

    Article  PubMed  CAS  Google Scholar 

  116. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  PubMed  CAS  Google Scholar 

  117. Marth T, Zeitz M, Ludviksson BR, Strober W, Kelsall BL. Extinction of IL-12 signaling promotes Fas-mediated apoptosis of antigen-specific T cells. J Immunol 1999; 162: 7233–7240.

    PubMed  CAS  Google Scholar 

  118. Yu XZ, Anasetti C. Enhancement of susceptibility to Fas-mediated apoptosis of Thl cells by nonmitogenic anti-CD3SF(ab’)2. Transplantation 2000; 69: 104–112.

    Article  PubMed  CAS  Google Scholar 

  119. Reinhard G, Noll A, Schlebusch H, Mallmann P, Ruecker AV. Shifts in the Thl/Th2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun 1998; 245: 933–938.

    Article  PubMed  CAS  Google Scholar 

  120. Varadhachary AS, Perdow SN, Hu C, Ramanarayanan M, Salgame P. Differential ability of T cell subsets to undergo activation-induced cell death. Proc Natl Acad Sci USA 1997; 94: 5778–5783.

    Article  PubMed  CAS  Google Scholar 

  121. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, et al. Unequal death in T helper cell (Thl) and Th2 effectors: Thl, but not Th2, effectors undergo rapid Fas/FasLmediated apoptosis. J Exp Med 1997; 185: 1837–1849.

    Article  PubMed  CAS  Google Scholar 

  122. Estaquier J, Idziorek T, Zou W, Emilie D, Farber CM, Bourez JM, et al. T helper type 1/type 2 cytokines and T cell death: preventative effect of interleukin 12 on activation-induced and CD95 (Fas/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J Exp Med 1995; 182: 1759–1767.

    Article  PubMed  CAS  Google Scholar 

  123. Waldmann T. The contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for the immunotherapy of rheumatological diseases. Arthritis Res 2002; 4: S161 - S167.

    Article  PubMed  Google Scholar 

  124. Amos CL, Woetmann A, Nielsen M, Geisler C, Odum N, Brown BL, et al. The role of caspase 3 and BclxL in the action of interleukin 7 (IL-7): a survival factor in activated human T cells. Cytokine 1998; 10: 662–668.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tatsumi, T., Wesa, A., Finke, J.H., Bukowski, R.M., Storkus, W.J. (2004). CD4+ T-Cell-Mediated Immunity to Cancer. In: Finke, J.H., Bukowski, R.M. (eds) Cancer Immunotherapy at the Crossroads. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-743-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-743-7_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9844-8

  • Online ISBN: 978-1-59259-743-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics