Skip to main content

The Physiology of Exercise in Spinal Cord Injury (SCI): An Overview of the Limitations and Adaptations

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

For all human beings, exercise is vital to living well. Exercise promotes physical and psychological health across the lifespan, reducing risk for mortality and decreasing prevalence of health complications which contribute to chronic disease. Exercise requires integrated physiologic responses across the musculoskeletal, cardiovascular, autonomic, pulmonary, thermoregulatory, and immunologic systems. However, persons living with spinal cord injury (SCI) have difficulty achieving the minimal exercise requirements for health benefits since paralyzed skeletal muscles cannot contribute to overall oxygen consumption. Moreover, SCI can be considered as an accelerated systemic form of aging due to the severely restricted physical inactivity imposed, usually at an early age. Indeed, persons with SCI experience profound declines in function across many physiological systems and are considered, as a group, to be sedentary and among the least fit individuals. And, there are numerous considerations for exercise in those with an SCI. Alterations in function across almost all the physiological systems engaged by exercise may be compromised or altered. Nonetheless, exercise can still confer significant benefits and may be among the most important components of a healthy lifestyle for this population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astorino TA, Harness ET, Witzke KA (2013) Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol 113:3027–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkum AJ, Paulson TA, Bishop NC et al (2015) Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med 47(6):523–530

    Article  PubMed  Google Scholar 

  • Brown A, Weaver LC (2011) The dark side of neuroplasticity. Exp Neurol 235(1):133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Brurok B, Helgerud J, Karlsen T, Leivseth G, Hoff J (2011) Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil 90(5):407–414

    Article  PubMed  Google Scholar 

  • Campagnolo DI, Bartlett JA, Chatterton R et al (1999) Adrenal and pituitary hormone patterns after spinal cord injury. Am J Phys Med Rehabil 78(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Cardenas DD, Bryce TN, Shem K et al (2004) Gender and minority differences in the pain experience of people with spinal cord injury. Arch Phys Med Rehabil 85:1774–1781

    Article  PubMed  Google Scholar 

  • Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, de Leon RD (2007) Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma 24:1000–1012

    Article  PubMed  Google Scholar 

  • Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 44:341–351

    Article  CAS  PubMed  Google Scholar 

  • Cleophas TJM, Kauw FHW, Bijl C, Meijers J, Stapper G (1986) Effects of beta adrenergic receptor agonists and antagonists in diabetics with symptoms of postural hypotension: a double-blind, placebo-controlled study. Angiology 37:855–862

    Article  CAS  PubMed  Google Scholar 

  • Cragg JJ, Noonan VK, Krassioukov A, Borisoff J (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81:723–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR (2002) Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sport 12:316–322

    Article  CAS  Google Scholar 

  • Davis GM, Servedio FJ, Glaser RM, Gupta SC, Suryaprasad AG (1990) Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol 69(2):671–677

    CAS  PubMed  Google Scholar 

  • de Groot P, Crozier J, Rakobowchuk M, Hopman M, MacDonald M (2005) Electrical stimulation alters FMD and arterial compliance in extremely inactive legs. Med Sci Sports Exerc 37:1356–1364

    Article  PubMed  Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998a) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998b) Full weightbearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91

    PubMed  Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1999) Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. J Neurophysiol 81:85–94

    PubMed  Google Scholar 

  • Deley G, Denuziller J, Babault N (2015) Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Med 45(1):71–82

    Article  PubMed  Google Scholar 

  • DiCarlo SE, Collins HL, Howard MG, Chen C-Y, Scislo TJ, Patil RD (1994) Postexertional hypotension: a brief review. Sports Med Train Rehab 5:17–27

    Article  Google Scholar 

  • Dijkers M, Bryce T, Zanca J (2009) Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 46:13–29

    Article  PubMed  Google Scholar 

  • Ditor DS, Latimer AE, Ginis KA et al (2003) Maintenance of exercise participation in individuals with spinal cord injury: effects on quality of life, stress and pain. Spinal Cord 41:446–450

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27:145–167

    Article  CAS  PubMed  Google Scholar 

  • Frisbie JH, Steele DJ (1997) Postural hypotension and abnormalities of salt and water metabolism in myelopathy patients. Spinal Cord 35:303–307

    Article  CAS  PubMed  Google Scholar 

  • Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson NN, Eser P (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43:169–176

    Article  PubMed  Google Scholar 

  • Gater DR Jr, Dolbow D, Tsui B, Gorgey AS (2011) Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 28(3):231–248

    PubMed  Google Scholar 

  • Gerrits HL, de Haan SJ, van Langen H, Hopman MT (2001) Peripheral vascular changes after electrically stimulated cycle training in people with spinal cord injury. Arch Phys Med Rehabil 82:832–839

    Article  CAS  PubMed  Google Scholar 

  • Gibbons RS, McCarthy ID, Gall A, Stock CG, Shippen J, Andrews BJ (2014) Can FES-rowing mediate bone mineral density in SCI: a pilot study. Spinal Cord 52(Suppl 3):S4–S5

    Article  PubMed  Google Scholar 

  • Gibbons RS, Stock CG, Andrews BJ, Gall A, Shave RE (2016) The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord 54(10):822–829

    Article  CAS  PubMed  Google Scholar 

  • Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369

    Article  PubMed  Google Scholar 

  • Gleeson M, Bishop NC, Stensel DJ et al (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    Article  CAS  PubMed  Google Scholar 

  • Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR (2015) The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury–Part II. J Spinal Cord Med 38(1):23–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Goss FL, McDermott A, Robertson RJ (1992) Changes in peak oxygen uptake following computerized functional electrical stimulation in the spinal cord injured. Res Q Exerc Sport 63(1):76–79

    Article  CAS  PubMed  Google Scholar 

  • Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1):1–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin L, Decker MJ, Hwang JY et al (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19(4):614–622

    Article  CAS  PubMed  Google Scholar 

  • Griggs KE, Price MJ, Goosey-Tolfrey VL (2014) Cooling athletes with a spinal cord injury. Sports Med 45(1):9–21

    Article  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29:65–7057

    Article  CAS  PubMed  Google Scholar 

  • Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811

    CAS  PubMed  Google Scholar 

  • Harris P (1994) Self-induced autonomic dysreflexia (‘boosting’) practised by some tetraplegic athletes to enhance their athletic performance. Paraplegia 32:289–291

    Article  CAS  PubMed  Google Scholar 

  • Hicks AL, Martin KA, Ditor DS et al (2003) Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41:34–43

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Oeseburg B, Binkhorst RA (1992) The effect of an anti-G suit on cardiovascular responses to exercise in persons with paraplegia. Med Sci Sports Exerc 24(9):984–990

    Article  CAS  PubMed  Google Scholar 

  • Huonker M, Halle M, Keul J (1996) Structural and functional adaptations of the cardiovascular system by training. Int J Sports Med 17(Suppl 3):S164–S172

    Article  CAS  PubMed  Google Scholar 

  • Huonker M, Schmid A, Sorichter S, Schmidt-Trucksab A, Mrosek P, Keul J (1998) Cardiovascular differences between sedentary and wheelchair-trained subjects with paraplegia. Med Sci Sports Exerc 30(4):609–613

    Article  CAS  PubMed  Google Scholar 

  • Kemi OJ, Haram PM, Loennechen JP et al (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kitzman P, Cecil D, Kolpek JH (2016) The risks of polypharmacy following spinal cord injury. J Spinal Cord Med 9:1–7

    Article  Google Scholar 

  • Knutsson E, Lewenhaupt-Olsson E, Thorsen M (1973) Physical work capacity and physical conditioning in paraplegic patients. Spinal Cord 11(3):205–216

    Article  CAS  Google Scholar 

  • Kouda K, Furusawa K, Sugiyama H et al (2012) Does 20-min arm crank ergometer exercise increase plasma interleukin-6 in individuals with cervical spinal cord injury? Eur J Appl Physiol 112(2):597–604

    Article  PubMed  Google Scholar 

  • Krauss JC, Robergs RA, Depaepe JL, Kopriva LM, Aisenbury JA, Anderson MA, Lange EK (1993) Effects of electrical stimulation and upper body training after spinal cord injury. Med Sci Sports Exerc 25(9):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Lai C, Chang W, Chan W, Peng C, Shen L, Chen J, Chen S (2010) Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med 42:150–154

    Article  PubMed  Google Scholar 

  • Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM (2014) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 25:177–185

    Article  CAS  PubMed  Google Scholar 

  • Martin Ginis K, Latimer A, McKecknie K et al (2003) Using exercise to enhance subjective well-being among people with spinal cord injury: the mediating influences of stress and pain. Rehab Psychol 48:157–164

    Article  Google Scholar 

  • Miyatani M, Masani K, Oh PI, Miyachi M, Popovic MR, Craven BC (2009) Pulse wave velocity for assessment of arterial stiffness among people with spinal cord injury: a pilot study. J Spinal Cord Med 32:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrow MMB, Hurd WJ, Kaufman KR (2010) An KN. Shoulder demands in manual wheelchair users across a spectrum of activities. J Electromyogr Kinesiol 20(1):61–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulroy SJ, Gronley JK, Newsam CJ, Perry J (1996) Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil 77(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2):142–152

    Article  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center, Complete Public Version of the 2015 Annual Statistical Report for the Spinal Cord Injury Model Systems (2015). University of Alabama at Birmingham

    Google Scholar 

  • Ogawa T, Asayama M (1978) Frequency of sweat expulsion as indicator of sudomotor neural activity. In: Houdas Y, Guieu JD (eds) Trends in thermal physiology. Masson, Paris, pp. 105–107

    Google Scholar 

  • Olenik LM, Laskin JJ, Burnham R, Wheeler GD, Steadward RD (1995) Efficacy of rowing, backward wheeling and isolated scapular retractor exercise as remedial strength activities for wheelchair users: application of electromyography. Spinal Cord 33(3):148–152

    Article  CAS  Google Scholar 

  • Panisset MG, Galea MP, El-Ansary D (2016) Does early exercise attenuate muscle atrophy or bone loss after spinal cord injury? Spinal Cord 54(2):84–92

    Article  CAS  PubMed  Google Scholar 

  • Paulson TAW, Goosey-Tolfrey VL, Lenton JP et al (2013) Spinal cord injury level and the circulating cytokine response to strenuous exercise. Med Sci Sports Exerc 45(9):1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Phillips CA, Danopulos D, Kezdi P et al (1989) Muscular, respiratory and cardiovascular responses of quadriplegic persons to an F. E. S. bicycle ergometer conditioning program. Int J Rehabil Res 12:147–157

    Article  CAS  PubMed  Google Scholar 

  • Phillips AA, Cote AT, Bredin SS, Krassioukov AV, Warburton DE (2012) Aortic stiffness increased in spinal cord injury when matched for physical activity. Med Sci Sports Exerc 44:2065–2070

    Article  PubMed  Google Scholar 

  • Phillips AA, Krassioukov AV, Ainslie PN, Warburton DER (2014a) Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high level spinal cord injury: the effect of midodrine. J Appl Physiol 116:645–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV (2014b) Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab 34:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack SF, Axen K, Spielholz N, Levin N, Haas F, Ragnarsson KT (1989) Aerobic training effects of electrically induced lower extremity exercises in spinal cord injured people. Arch Phys Med Rehabil 70(3):214–219

    CAS  PubMed  Google Scholar 

  • Qui S, Alzhab S, Picard G, Taylor JA (2016) Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med Sci Sport Exerc 48(6):1111–1118

    Google Scholar 

  • Rosety-Rodriguez M, Camacho A, Rosety I et al (2014) Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil 95(2):297–302

    Article  PubMed  Google Scholar 

  • Roy RR, Harkema SJ, Edgerton VR (2012) Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 93:1487–1497

    Article  PubMed  Google Scholar 

  • Sclater A, Alagiakrishnan K (2004) Orthostatic hypotension. A primary care primer for assessment and treatment. Geriatrics 59:22–27

    PubMed  Google Scholar 

  • Scott WB, Lee SCK, Johnston TE, Binkley J, Binder-Macleod SA (2006) Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. Phys Ther 86:788–799

    PubMed  Google Scholar 

  • Sheel AW, Reid WD, Townson AF et al (2008) Effects of exercise training and inspiratory muscle training in spinal cord injury: a systematic review. J Spinal Cord Med 31:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva AC, Neder JA, Chiurciu MV et al (1998) Effect of aerobic training on ventilatory muscle endurance of spinal cord injured men. Spinal Cord 36:240–245

    Article  CAS  PubMed  Google Scholar 

  • Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN, Waters RL, Bauman WA (2003) Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Phys. 95(6):2398–2407

    Google Scholar 

  • Stanton R, Reaburn P (2014) Exercise and the treatment of depression: a review of the exercise program variables. J Sci Med Sport 17(2):177–182

    Article  PubMed  Google Scholar 

  • Subbarao JV, Klopfstein J, Turpin R (1995) Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med 18(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97:141–147

    Article  PubMed  Google Scholar 

  • Terson de Paleville D, McKay W, Aslan S et al (2013) Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir Physiol Neurobiol 189:491–497

    Article  PubMed  Google Scholar 

  • Thijssen DH, Ellenkamp R, Smits P, Hopman MT (2006) Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil 87:474–481

    Article  PubMed  Google Scholar 

  • Thijssen DH, Ellenkamp R, Kooijman M, Pickkers P, Rongen GA, Hopman MT et al (2007) A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol 27(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Turiel M, Sitia S, Cicala S et al (2011) Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol 149(3):323–329

    Article  PubMed  Google Scholar 

  • Verellen J, Vanlanderijck Y, Andrews B, Wheeler GD (2007) Cardiorespiratory responses during arm ergometry, functional electrical stimulation cycling, and two hybrid exercise conditions in spinal cord injured. Disabil Rehabil Assist Technol 2(2):127–132

    Article  PubMed  Google Scholar 

  • Washburn RA, Figoni SF (1998) Physical activity and chronic cardiovascular disease prevention in spinal cord injury: a comprehensive literature review. Top Spinal Cord Injury Rehabil 3:16–32

    Google Scholar 

  • West CR, Campbell IG, Shave RE et al (2012) Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir Physiol Neurobiol 180:275–282

    Article  PubMed  Google Scholar 

  • Wilbanks SR, Bickel CS (2016) Scapular stabilization and muscle strength in manual wheelchair users with spinal cord injury and subacromial impingement. Top Spinal Cord Injury Rehabil 22(1):60–70

    Article  Google Scholar 

  • Yamanaka M, Furusawa K, Sugiyama H et al (2010) Impaired immune response to voluntary arm-crank ergometer exercise in patients with cervical spinal cord injury. Spinal Cord 48(10):734–739

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Taylor Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Mercier, H.W., Taylor, J.A. (2016). The Physiology of Exercise in Spinal Cord Injury (SCI): An Overview of the Limitations and Adaptations. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_1

Download citation

Publish with us

Policies and ethics