Skip to main content

Why Is the Siamang Larger Than Other Hylobatids?

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Abstract

Weighing between 10 and 12 kg, the siamang is nearly twice as large as most hylobatids. Why siamangs retained or acquired this larger size is not yet well understood. While small gibbons are allopatric, the siamang is sympatric with two small hylobatid species, agile gibbons on the island of Sumatra and white-handed gibbons in northern Sumatra and the Malaysian peninsula, Indonesia. Increases in body size within evolutionary lineages over time are often seen as expressions of Cope’s rule, which describes the general evolutionary tendency of all living things to increase in size with increasing lineage age, based on assumed, although often unverified, selective advantages associated with larger body size. However, when considering selection pressures that may have lead to a within-lineage body size increase over time, the more favorable mass-to-surface ratio of the larger forms should be taken into account instead of size per se. Using data on body mass and body dimension from the literature, we performed simple calculations of body proportions of small gibbons and the larger siamang and compared these to orangutan and loris body sizes in order to evaluate whether the siamang’s larger size could be explained by a more favorable mass-to-surface ratio. To calculate relative body surface areas we adopted a model in which the body is represented as a combination of five simple cylinders (i.e., body stem, 2 forelimbs, and 2 hindlimbs). As expected, we found that, within the tested primate lineages, the species with the larger mass has the relatively smaller surface area compared to the species with the smaller mass. Thus, our results are in agreement with the idea that a larger body size may have evolved in the siamang due to advantages related to a more favorable mass-to-surface ratio. At present, the exact selective advantage of a lower surface involve per kilogram body weight of siamang is unclear, but we speculate that it may be related to relatively lower energy expenditure, which may have allowed the siamang to successfully inhabit a broader range of habitats, including higher elevation areas, and thereby may have reduced competition with the sympatric smaller gibbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Body mass data were taken from Smith and Jungers (1997). We recognize that sample sizes for several hylobatid species are small, some even include only a single male and female (e.g., silvery and pileated gibbons). However, because we were interested in broad size differences we felt that the partially inadequate representation of some hylobatid species would be of no consequence to our measurements.

  2. 2.

    Six out of the 10 siamang individuals studied by Schultz were juveniles. However, also among juveniles, siamang had the lowest relative and absolute body hair counts.

References

  • Abrams P (1983) The theory of limiting similarity. Ann Rev Ecol Syst 14:359–376

    Article  Google Scholar 

  • Anandam MV, Groves CP, Molur S, Rawson BM, Richardson MC, Roos C, Whittaker DJ (2013) Species accounts of Hylobatidae. In: Mittermeier RA, Rylands AB, Wilson DE (eds) Handbook of the mammals of the world, vol 3. Primates. Lynx Edicions, Barcelona, pp 778–791

    Google Scholar 

  • Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156:390–415

    Article  Google Scholar 

  • Bartlett TQ (2011) The hylobatidae: small apes of Asia. In: Campbell CJ, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (eds) Primates in perspective. Oxford University Press, Oxford, pp 300–312

    Google Scholar 

  • Begun DR (2013) The Miocene hominoid radiations. In: Begun DR (ed) A companion to paleoanthropology. Blackwell Publishing Ltd, Oxford, pp 397–416

    Chapter  Google Scholar 

  • Bergmann C (1848) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  • Bleisch W, Chen N (1991) Ecology and behavior of wild black crested gibbons (Hylobates concolor) in China with a reconsideration of evidence of polygyny. Primates 32:539–548

    Article  Google Scholar 

  • Bonner JT (ed) (2006) Why size matters: from bacteria to blue whales. Princeton University Press, Princeton

    Google Scholar 

  • Brown WL, Wilson EO (1956) Character displacement. Syst Zool 5:49–64

    Article  Google Scholar 

  • Caldecott JO (1980) Habitat quality and populations of two sympatric gibbons (Hylobatidae) on a mountain in Malaya. Folia Primatol 33:291–309

    Article  CAS  PubMed  Google Scholar 

  • Cannon CH, Curran LM, Marshall AJ, Leighton M (2007a) Long-term reproductive behavior of woody plants across seven Bornean forest types in the Gunung Palung National Park, Indonesia: suprannual synchrony, temporal productivity, and fruiting diversity. Ecol Lett 10:956–969

    Article  PubMed  Google Scholar 

  • Cannon CH, Curran LM, Marshall AJ, Leighton M (2007b) Beyond mast-fruiting events: community asynchrony and individual sterility dominate woody plant reproductive behavior across seven Bornean forest types. Curr Sci 93:21–29

    Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter CR (1940) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). Comp Psych Monogr 16:1–201

    Google Scholar 

  • Chapman CA, Rothman JM, Lambert JE (2012) Primate foraging strategies and nutrition: behavioral and evolutionary implications. In: Mitani J, Call J, Kappeler P, Palombit R, Silk J (eds) The evolution of primate societies. University of Chicago Press, Chicago, pp 145–167

    Google Scholar 

  • Chatterjee HJ (2006) Phylogeny and biogeography of gibbons: a dispersal-vicariance analysis. Int J Primatol 27:699–712

    Article  Google Scholar 

  • Chatterjee HJ (2009) Evolutionary relationships among the gibbons: a biogeographic perspective. In: Lappan S, Whittaker DJ (eds) The Gibbons, developments in primatology: progress and prospects. Springer, New York, pp 13–36

    Google Scholar 

  • Chivers DJ (ed) (1974) The Siamang in Malaya: a field study of a primate in tropical rain forest. In: Contributions to primatology, vol 4. Karger, Basel

    Google Scholar 

  • Chivers DJ (1977) The lesser apes. In: Ranier HP, Bourne G (eds) Primate conservation. Academic Press, New York, pp 539–598

    Chapter  Google Scholar 

  • Chivers DJ, Hladik CM (1984) Diet and gut morphology in primates. In: Chivers DJ, Wood BA, Bilsborough A (eds) Food acquisition and processing in primates. Springer, New York, pp 213–230

    Chapter  Google Scholar 

  • Chivers DJ, Raemaekers JJ (1986) Natural and synthetic diets of Malayan gibbons. In: Else JG, Lee PC (eds) Primate biology and conservation. Cambridge University Press, Cambridge, pp 39–56

    Google Scholar 

  • Clarke E, Reichard UH, Zuberbühler KM (2006) The syntax and meaning in wild gibbon songs. PLoS ONE 1:e73

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke E, Reichard UH, Zuberbühler KM (2012) The anti-predator behaviour of wild white-handed gibbons (Hylobates lar). Behav Ecol Sociobiol 66:85–96

    Article  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1977a) Functional aspects of species differences in feeding and ranging behaviour in primates. In: Clutton-Brock TH (ed) Primate ecology: studies of feeding and ranging behaviour in lemurs, monkeys and apes. Academic Press, London, pp 557–579

    Chapter  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1977b) Primate ecology and social organization. J Zool 183:1–39

    Article  Google Scholar 

  • Creel N, Preuschoft H (1984) Systematics of the lesser apes: a quantitative taxonomic analysis of craniometric and other variables. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Evolutionary and behavioural biology. Edinburgh University Press, Edinpurgh, pp 562–613

    Google Scholar 

  • Danish L, Chapman CA, Hall MB, Rode KD, O’Discoll Worman C (2006) The role of sugar in diet selection in redtail and red colobus monkeys. In: Hohmann G, Robbins MM, Boesch C (eds) Feeding ecology in apes and other primates: ecological physiological, and behavioural aspects. Cambridge University Press, Cambridge, pp 473–488

    Google Scholar 

  • Elder AA (2009) Hylobatid diets revisited: the importance of body mass, fruit availability, and interspecific competition. In: Lappan S, Whittaker DJ (eds) The Gibbons, developments in primatology: progress and prospects. Springer, New York, pp 133–159

    Google Scholar 

  • Ellefson JO (1974) A natural history of white-handed gibbons in the Malayan Penisular. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 3., Natural history, social behavior, reproduction, vocalizationsPrehension. Karger, Basel, pp 1–136

    Google Scholar 

  • Garza JC, Woodruff DS (1992) A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Mol Phylogenet Evol 1:202–210

    Article  CAS  PubMed  Google Scholar 

  • Gebo DL (2004) Paleontology, terrestriality, and the intelligence of great apes. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 320–334

    Chapter  Google Scholar 

  • Geissmann T (2002) Taxonomy and evolution of gibbons. Evol Anthropol 1:28–31

    Google Scholar 

  • Gittins SP (1982) Feeding and ranging in the agile gibbon. Folia Primatol 38:39–71

    Article  CAS  PubMed  Google Scholar 

  • Grether GF, Palombit RA, Rodman PS (1992) Gibbon foraging decisions and the marginal value model. Int J Primatol 13:1–17

    Article  Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of gibbons. In: Rumbaugh D (ed) Gibbon and Siamang, vol 1. Karger, New York, pp 2–89

    Google Scholar 

  • Groves CP (1984) A new look at the taxonomy and phylogeny of the gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Evolutionary and behavioural biology. Edinburgh University Press, Edinpurgh, pp 542–561

    Google Scholar 

  • Haimoff EH, Chivers DJ, Gittins SP, Whitten T (1982) A phylogeny of gibbons (Hylobates spp.) based on morphological and behavioural characters. Folia Primatol 39:213–237

    Article  CAS  PubMed  Google Scholar 

  • Haimoff E, Yang X, He S, Chen N (1986) Census and survey of wild black crested gibbons (Hylobates concolor concolor) in Yunnan Province, People’s Republic of China. Folia Primatol 46:205–214

    Article  CAS  PubMed  Google Scholar 

  • Hall LM, Jones D, Wood B (1998) Evolution of the gibbon subgenera inferred from cytochrome b DNA sequence data. Mol Phylogenet Evol 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (2010) Apes among the tangled branches of human origins. Science 327:532–534

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (2016) The fossil record and evolutionary history of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 91–110

    Google Scholar 

  • Harvey PH, Martin RD, Clutton-Brock TH (1987) Life histories in comparative perspective. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. Chicago University Press, Chicago, pp 181–196

    Google Scholar 

  • Hayashi S, Hayasaka K, Takenaka O, Horai S (1995) Molecular phylogeny of gibbons inferred from mitochondrial DNA sequences: preliminary report. J Mol Evol 41:359–365

    Article  CAS  PubMed  Google Scholar 

  • Hone DWE, Benton MJ (2005) The evolution of large size: how does Cope’s rule work. Trends Ecol Evol 20:4–6

    Article  PubMed  Google Scholar 

  • Jablonski NG, Chaplin G (2009) The fossil record of gibbons. In: Lappan S, Whittaker DJ (eds) The Gibbons, developments in primatology: progress and prospects. Springer, New York, pp 112–130

    Google Scholar 

  • Lambert JE (2011) Primate nutritional ecology. In: Campbell CJ, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (eds) Primates in perspective. Oxford University Press, Oxford, pp 512–522

    Google Scholar 

  • Lan D (1993) Feeding and vocal behaviors of black gibbons (Hylobates concolor) in Yunnan: a preliminary study. Folia Primatol 60:94–105

    Article  CAS  PubMed  Google Scholar 

  • Leighton DR (1987) Gibbons: territoriality and monogamy. In: Smuts BB, Cheney RM, Seyfarth RW, Wrangham RW, Struhsaker TT (eds) Primate societies. Chicago University Press, Chicago, pp 135–145

    Google Scholar 

  • MacKinnon JR (1977) A comparative ecology of Asian apes. Primates 18:747–772

    Article  Google Scholar 

  • MacKinnon JR, MacKinnon KS (1980) Niche differentiation in a primate community. In: Chivers DJ, Raemaeker JJ (eds) Malayan forest primates: ten years’ study in tropical rain forest. Plenum Press, New York, pp 167–190

    Chapter  Google Scholar 

  • McNab BK (2010) Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164:13–23

    Google Scholar 

  • Marshall JT (2009) Are montane forests demographic sinks for Bornean white-bearded gibbons Hylobates albibarbis? Biotropica 41:257–267

    Article  Google Scholar 

  • Maynard Smith J (ed) (1982) Evolution and theory of games. Cambridge University Press, Cambridge

    Google Scholar 

  • Morse DH (1974) Niche breadth as a function of social dominance. Am Nat 108:818–830

    Article  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Napier JR, Napier PH (eds) (1967) A handbook of living primates. Academic Press, New York

    Google Scholar 

  • Nekaris KAI, Bearder SK (2011) The lorisiform primates of Asia and mainland Africa diversity shrouded in darkness. In: Campbell CJ, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (eds) Primates in perspective, 2nd edn. Oxford University Press, Oxford, pp 34–54

    Google Scholar 

  • O’Brien TG, Kinnaird ME, Nurcahyo A, Iqbal M, Rusmanto M (2004) Abundance and distribution of sympatric gibbons in a threatened Sumatran rain forest. Int J Primatol 25:267–284

    Article  Google Scholar 

  • Oats JF (1987) Food distribution and foraging behavior. In: Smuts BB, Cheney RM, Seyfarth RW, Wrangham RW, Struhsaker TT (eds) Primate societies. Chicago University Press, Chicago, pp 197–209

    Google Scholar 

  • Palombit RA (1997) Inter- and intra-specific variation in the diets of sympatric siamang (Hylobates syndactylus) and lar gibbons (Hylobates lar). Folia Primatol 68:321–337

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam D, Young N (2004) Hominoid evolution: synthesizing disparate data. CR Palevol 3:305–321

    Article  Google Scholar 

  • Pohl L (1911) Eine Höhenvarietät von Siamanga syndactylus. Desm Zool Anz 38:51–53

    Google Scholar 

  • Preuschoft H (2010) Selective value of big size and sexual dimorphism in primates. Abstracts, XXIII Congress of the International Primatological Society, Kyoto, Japan

    Google Scholar 

  • Preuschoft H, Schönwasser K-H, Witzel U (2016) Selective value of characteristic size parameters in hylobatids. A biomechanical approach to small ape size and morphology. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 227–263

    Google Scholar 

  • Preuschoft H, Hohn B, Stoinski S, Witzel U (2011) Why so huge? Biomechanical reasons for the acquisition of large size in sauropod and theropod dinosaurs. In: Klein N, Remes K, Gee CT, Sander PM (eds) Biology of the Sauropod Dinosaurs understanding the life of giants. Indiana University Press, Bloomington, pp 197–218

    Google Scholar 

  • Rabinowitz A (1989) The density and behavior of large cats in a dry tropical forest mosaic in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Nat Hist Bull Siam Soc 37:235–251

    Google Scholar 

  • Raemaekers JJ (1977) Gibbons and trees: comparative ecology of the siamang and lar gibbons. Dissertation, University of Cambridge

    Google Scholar 

  • Raemaekers JJ (1978) The sharing of food sources between two gibbon species in the wild. Malayan Nat J 31:181–188

    Google Scholar 

  • Raemaekers JJ (1979) Ecology of sympatric gibbons. Folia Primatol 31:227–245

    Article  CAS  PubMed  Google Scholar 

  • Raemaekers JJ (1984) Large versus small gibbons: relative roles of bioenergetics and competition in their ecological segregation in sympatry. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 209–218

    Google Scholar 

  • Raemaekers JJ, Chivers DJ (1980) Socio-ecology of Malayan forest primates. In: Chivers DJ (ed) Malayan forest primates: ten years’ study in tropical rain forest. Plenum Press, New York, pp 279–316

    Chapter  Google Scholar 

  • Richard AF (ed) (1985) Primates in nature. WH Freeman and Company, New York

    Google Scholar 

  • Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19:486–494

    Article  CAS  PubMed  Google Scholar 

  • Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler E-M, Gunga H-C, Hummel J, Mallison H, Perry SF, Preuschoft H, Rauhut OWM, Remes C, Tütken T, Wings O, Witzel U (2011) Biology of the sauropod dinosaurs: the evolution of gigantism. Biol Rev 86:117–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider G (1906) Ergebnisse zoologischer Forschungsreisen in Sumatra. Zool Jb Abt Syst Geogr Biol Tiere 23:1–172

    Google Scholar 

  • Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438

    Google Scholar 

  • Schultz AH (1931) The density of hair in primates. Hum Biol 3:303–321

    Google Scholar 

  • Schultz AH (1933) Observations on the growth, classification and evolutionary specialization of gibbons and siamangs. Hum Biol 5:212–428

    Google Scholar 

  • Schultz AH (1939) Notes on diseases and healed fractures in wild apes. Bull Hist Med 7:571–582

    Google Scholar 

  • Schultz AH (1956) Postembryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia. Handbook of primatology, vol I. Karger, Basel, pp 965–1014

    Google Scholar 

  • Schulze H (2016) Conservation database for lorises (Loris, Nycticebus) and pottos (Arctocebus, Perodicticus), prosimian primates. http://www.loris-conservation.org/database. Accessed 2 Feb 2016

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  CAS  PubMed  Google Scholar 

  • Takacs Z, Morales JC, Geissmann T, Melnick DJ (2005) A complete species level phylogeny of the Hylobatidae based on mitochodrial ND3-ND4 gene sequence. Mol Phylogenet Evol 36:456–467

    Article  CAS  PubMed  Google Scholar 

  • Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, Moisson P, Nadler T, Walter L, Roos C (2010) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyler DE (1991) The problems of the Pliopithecidae as a hylobatid ancestor. Hum Evol 6:73–80

    Article  Google Scholar 

  • Uhde NL, Sommer V (2000) Antipredatory behavior in gibbons (Hylobates lar, Khao Yai/Thailand). In: Miller LE (ed) Eat or be eaten: predator sensitive foraging among primates. Cambridge University Press, Cambridge, pp 268–291

    Google Scholar 

  • van Schaik CP, van Noordwijk MA, Warsono B, Sitriono E (1983) Party size and early detection in Sumatran forest primates. Primates 24:211–221

    Article  Google Scholar 

  • Zehr SM (1999) A nuclear and mitochondrial phylogeny of the lesser apes (Primates, genus Hylobates). Dissertation, Harvard University

    Google Scholar 

  • Zhang YP (1997) Mitochondrial DNA sequence evolution and phylogenetic relationships of gibbons. Acta Genet Sinica 24:231–237

    CAS  Google Scholar 

  • Zihlman AL, Mootnick AR, Underwood CE (2011) Anatomical contributions to hylobatids taxonomy and adaptation. Int J Primatol 32:865–877

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. Reichard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichard, U.H., Preuschoft, H. (2016). Why Is the Siamang Larger Than Other Hylobatids?. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_8

Download citation

Publish with us

Policies and ethics