Skip to main content

The Use and Development of TAL Effector Nucleases

  • Chapter
  • First Online:
Genome Editing

Abstract

In 2009 plant geneticists described a novel DNA binding domain derived from transcription activator-like effectors (TALEs) of the plant pathogen genus Xanthomonas. The DNA recognition domain was distinguished by a modular structure in which each building block binds to a single DNA nucleotide. The breakthrough was the identification of the key residues within each block that define its DNA binding properties and to show that specific alterations of these residues allow for the assembly of tailored DNA binding domains able to target any given sequence. This discovery set the stage for the generation of various designer proteins by fusing tailored TALE-based DNA binding domains, with either endonucleases, transcriptional modulators or chromatin remodeling domains, with the final purpose to modify the genome, the transcriptome or the epigenome. In the last few years, the exploitation of designer enzymes has expanded impressively with applications spanning from basic research to systems biology and human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev. 2010;34(2):107–33.

    Article  PubMed  CAS  Google Scholar 

  2. Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010;48:419–36.

    Article  CAS  PubMed  Google Scholar 

  3. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.

    Article  CAS  PubMed  Google Scholar 

  4. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501.

    Article  CAS  PubMed  Google Scholar 

  5. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science. 2012;335(6069):720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 2012;335(6069):716–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, et al. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9), e45383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Streubel J, Blucher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol. 2012;30(7):593–5.

    Article  CAS  PubMed  Google Scholar 

  9. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. 2012;3:968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Meckler JF, Bhakta MS, Kim MS, Ovadia R, Habrian CH, Zykovich A, et al. Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. 2013;41(7):4118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Juillerat A, Pessereau C, Dubois G, Guyot V, Marechal A, Valton J, et al. Optimized tuning of TALEN specificity using non-conventional RVDs. Sci Rep. 2015;5:8150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller JC, Zhang L, Xia DF, Campo JJ, Ankoudinova IV, Guschin DY, et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods. 2015;12(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  13. Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 2012;40(12):5368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, et al. Recognition of methylated DNA by TAL effectors. Cell Res. 2012;22(10):1502–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R, et al. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem. 2012;287(46):38427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, et al. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 2013;199(3):773–86.

    Article  PubMed  CAS  Google Scholar 

  17. Lamb BM, Mercer AC, Barbas 3rd CF. Directed evolution of the TALE N-terminal domain for recognition of all 5c bases. Nucleic Acids Res. 2013;41(21):9779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res. 2014;42(11):7436–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Juillerat A, Bertonati C, Dubois G, Guyot V, Thomas S, Valton J, et al. BurrH: a new modular DNA binding protein for genome engineering. Sci Rep. 2014;4:3831.

    Article  PubMed  CAS  Google Scholar 

  20. Stella S, Molina R, Lopez-Mendez B, Juillerat A, Bertonati C, Daboussi F, et al. BuD, a helix-loop-helix DNA-binding domain for genome modification. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 7):2042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gurlebeck D, Szurek B, Bonas U. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. Plant J. 2005;42(2):175–87.

    Article  PubMed  CAS  Google Scholar 

  22. Szurek B, Rossier O, Hause G, Bonas U. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol. 2002;46(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  23. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29(2):149–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, et al. Compact designer TALENs for efficient genome engineering. Nat Commun. 2013;4:1762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mercer AC, Gaj T, Fuller RP, Barbas 3rd CF. Chimeric TALE, recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 2012;40(21):11163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, et al. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol. 2012;78(3):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao X, Yang J, Tsang JC, Ooi J, Wu D, Liu P. Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Reports. 2013;1(2):183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31(12):1137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 2012;40(15), e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol. 2012;78(4-5):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morbitzer R, Elsaesser J, Hausner J, Lahaye T. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. 2011;39(13):5790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reyon D, Khayter C, Regan MR, Joung JK, Sander JD. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr Protoc Mol Biol. 2012;Chapter 12:Unit 12.15.

    Google Scholar 

  38. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012;30(5):460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol. 2013;31(1):76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Li J, Huang H, Wang G, Jiang M, Yin S, et al. An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew Chem Int Ed Engl. 2012;51(34):8505–8.

    Article  CAS  PubMed  Google Scholar 

  41. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S. Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5), e19722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Yuan P, Wen D, Sheng Y, Zhu S, Yu Y, et al. ULtiMATE system for rapid assembly of customized TAL effectors. PLoS One. 2013;8(9), e75649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 2011;29(8):699–700.

    Article  PubMed  CAS  Google Scholar 

  44. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. 2011;29(8):697–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12(2):238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4(5), e5553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Thieme F, Engler C, Kandzia R, Marillonnet S. Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS One. 2011;6(6), e20556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12), e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS One. 2011;6(5), e19509.

    Article  CAS  PubMed  Google Scholar 

  50. Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, et al. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells. 2013;18(4):315–26.

    Article  CAS  PubMed  Google Scholar 

  51. Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007;35(7), e55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7(1):171–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994;91(13):6064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 1995;23(24):5012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012;16(3-4):268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26(6):702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 2013;23(1):159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108(17):7052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459(7245):437–41.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A. 2010;107(26):12028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146(2):318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118(17):4599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cathomen T, Joung JK. Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008;16(7):1200–7.

    Article  CAS  PubMed  Google Scholar 

  70. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9):816–23.

    Article  CAS  PubMed  Google Scholar 

  71. Mussolino C, Cathomen T. On target? Tracing zinc-finger-nuclease specificity. Nat Methods. 2011;8(9):725–6.

    Article  CAS  PubMed  Google Scholar 

  72. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. 2011;29(8):695–6.

    Article  CAS  PubMed  Google Scholar 

  74. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhakta MS, Henry IM, Ousterout DG, Das KT, Lockwood SH, Meckler JF, et al. Highly active zinc-finger nucleases by extended modular assembly. Genome Res. 2013;23(3):530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8(1):67–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug 2nd RG, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods. 2013;10(4):329–31.

    Article  CAS  PubMed  Google Scholar 

  79. Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31(1):23–4.

    Article  CAS  PubMed  Google Scholar 

  80. Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell. 2014;14(3):323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Menon T, Firth AL, Scripture-Adams DD, Galic Z, Qualls SJ, Gilmore WB, et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell. 2015;16(4):367–72.

    Article  CAS  PubMed  Google Scholar 

  82. Sun N, Liang J, Abil Z, Zhao H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. 2012;8(4):1255–63.

    Article  CAS  PubMed  Google Scholar 

  83. Dreyer A-K, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, Siler U, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015;69:191–200.

    Google Scholar 

  84. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21(9):1718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21(6):1151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19(9):1111–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 2008;36(12):3926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mussolino C, Sanges D, Marrocco E, Bonetti C, Di Vicino U, Marigo V, et al. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med. 2011;3(3):118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med. 2002;8(12):1427–32.

    Article  CAS  PubMed  Google Scholar 

  90. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. 2013;10(3):243–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013;500(7463):472–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest. 2015;125(5):1998–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alwin S, Gere MB, Guhl E, Effertz K, Barbas 3rd CF, Segal DJ, et al. Custom zinc-finger nucleases for use in human cells. Mol Ther. 2005;12(4):610–7.

    Article  CAS  PubMed  Google Scholar 

  94. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 2007;25(7):778–85.

    Article  CAS  PubMed  Google Scholar 

  95. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007;25(7):786–93.

    Article  CAS  PubMed  Google Scholar 

  96. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41(20):9584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43(11):5560–71.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol. 2010;13(4):394–401.

    Article  CAS  PubMed  Google Scholar 

  103. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42(10):6762–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. 2013;31(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  105. Dean AB, Stanger MJ, Dansereau JT, Van Roey P, Derbyshire V, Belfort M. Zinc finger as distance determinant in the flexible linker of intron endonuclease I-TevI. Proc Natl Acad Sci U S A. 2002;99(13):8554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin J, Chen H, Luo L, Lai Y, Xie W, Kee K. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells. Nucleic Acids Res. 2015;43(2):1112–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 2012;40(16):8001–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011;8(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  109. Guo J, Gaj T, Barbas 3rd CF. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol. 2010;400(1):96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Booher NJ, Bogdanove AJ. Tools for TAL effector design and target prediction. Methods. 2014;69(2):121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    Article  PubMed  CAS  Google Scholar 

  113. Valton J, Guyot V, Marechal A, Filhol JM, Juillerat A, Duclert A, et al. A multidrug resistant engineered CAR T cell for allogeneic combination immunotherapy. Mol Ther. 2015;23(9):1507–18.

    Article  CAS  PubMed  Google Scholar 

  114. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5), e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang L, Guell M, Byrne S, Yang JL, De Los AA, Mali P, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41(19):9049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Mussolino Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Juillerat, A., Duchateau, P., Cathomen, T., Mussolino, C. (2016). The Use and Development of TAL Effector Nucleases. In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_3

Download citation

Publish with us

Policies and ethics