Skip to main content

Circadian Regulation of Renal Function

  • Chapter
  • First Online:
Circadian Clocks: Role in Health and Disease

Abstract

The biological clock allows living organisms to anticipate periodic changes in the external environment and this feature allows a competitive advantage at both the species and individual level. Among the physiological parameters which need accurate adjustment during a 24-h period are fluid, electrolyte, acid–base balance, urine production, and maintenance of blood pressure. These functions are all mediated by the kidneys—organs that are critical for the regulation of blood pressure and the maintenance of body homeostasis. Developing evidence clearly demonstrates a role for the molecular circadian clock in the regulation of several renal ion transporters and channels with implications for circadian control of renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R (2010) Regulation of circadian blood pressure: from mice to astronauts. Curr Opin Nephrol Hypertens 19(1):51–58

    Article  PubMed Central  PubMed  Google Scholar 

  • Badura L, Swanson T, Adamowicz W et al (2007) An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 322(2):730–738. doi:10.1124/jpet.107.122846

    Article  PubMed  CAS  Google Scholar 

  • Bonny O, Vinciguerra M, Gumz ML, Mazzoccoli G (2013) Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol Dial Transplant 28(10):2421–2431. doi:10.1093/ndt/gft319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Cameron MA, Baker LA, Maalouf NM, Moe OW, Sakhaee K (2007) Circadian variation in urine pH and uric acid nephrolithiasis risk. Nephrol Dial Transplant 22(8):2375–2378

    Article  PubMed  Google Scholar 

  • Castagna A, Pizzolo F, Chiecchi L et al (2015) Circadian exosomal expression of renal thiazide-sensitive NaCl cotransporter (NCC) and prostasin in healthy individuals. Proteomics Clin Appl 9(5–6):623–629. doi:10.1002/prca.201400198

    Article  PubMed  CAS  Google Scholar 

  • Chappuis S, Ripperger JA, Schnell A et al (2013) Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab 2(3):184–193. doi:10.1016/j.molmet.2013.05.002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen L, Yang G (2015) Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6:71. doi:10.3389/fphar.2015.00071

    PubMed Central  PubMed  Google Scholar 

  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA (2007) Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA 104(9):3450–3455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson MB, Hix JK, Vidt DG, Brotman DJ (2006) Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med 166(8):846–852. doi:10.1001/archinte.166.8.846

    Article  PubMed  Google Scholar 

  • De Santo RM, Bartiromo M, Cesare MC, De Santo NG, Cirillo M (2006) Sleeping disorders in patients with end-stage renal disease and chronic kidney disease. J Ren Nutr 16(3):224–228

    Article  PubMed  Google Scholar 

  • DeForrest JM, Davis JO, Freeman RH, Stephens GA, Watkins BE (1979) Circadian changes in plasma renin activity and plasma aldosterone concentration in two-kidney hypertension rats. Hypertension 1(2):142–149

    Article  PubMed  CAS  Google Scholar 

  • Dhaun N, Moorhouse R, MacIntyre IM et al (2014) Diurnal variation in blood pressure and arterial stiffness in chronic kidney disease: the role of endothelin-1. Hypertension 64(2):296–304. doi:10.1161/HYPERTENSIONAHA.114.03533

    Article  PubMed  CAS  Google Scholar 

  • Doi M, Takahashi Y, Komatsu R et al (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 16(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Eladari D, Chambrey R, Picard N, Hadchouel J (2014) Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 71(15):2879–2895. doi:10.1007/s00018-014-1585-4

    Article  PubMed  CAS  Google Scholar 

  • Fallone F, Britton S, Nieto L, Salles B, Muller C (2013) ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene 32(37):4387–4396. doi:10.1038/onc.2012.462

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Goto N, Kimura G (2006) Hypothesis on renal mechanism of non-dipper pattern of circadian blood pressure rhythm. Med Hypotheses 67(4):802–806

    Article  PubMed  Google Scholar 

  • Garcia-Ortiz L, Gomez-Marcos MA, Martin-Moreiras J et al (2009) Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study). Blood Press Monit 14(4):145–151

    Article  PubMed  Google Scholar 

  • Gatzka CD, Schobel HP, Klingbeil AU, Neumayer HH, Schmieder RE (1995) Normalization of circadian blood pressure profiles after renal transplantation. Transplantation 59(9):1270–1274

    Article  PubMed  CAS  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL et al (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):399–410. doi:10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  • Gumz ML, Popp MP, Wingo CS, Cain BD (2003) Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 285(4):F664–F673. doi:10.1152/ajprenal.00353.2002

    Article  PubMed  CAS  Google Scholar 

  • Gumz ML, Stow LR, Lynch IJ et al (2009) The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119(8):2423–2434. doi:10.1172/JCI36908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gumz ML, Cheng KY, Lynch IJ et al (2010) Regulation of alphaENaC expression by the circadian clock protein Period 1 in mpkCCD(c14) cells. Biochim Biophys Acta 1799(9):622–629. doi:10.1016/j.bbagrm.2010.09.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gumz ML, Rabinowitz L (2013) Role of circadian rhythms in potassium homeostasis. Semin Nephrol 33(3):229–236. doi:10.1016/j.semnephrol.2013.04.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hartner A, Cordasic N, Klanke B, Veelken R, Hilgers KF (2003) Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant 18(10):1999–2004. doi:10.1093/ndt/gfg29918/10/1999

    Article  PubMed  CAS  Google Scholar 

  • Hermida RC, Ayala DE, Calvo C, Portaluppi F, Smolensky MH (2007) Chronotherapy of hypertension: administration-time-dependent effects of treatment on the circadian pattern of blood pressure. Adv Drug Deliv Rev 59(9–10):923–939

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Chang FC, Ng HY et al (2012) Disrupted circadian rhythm in rats with nephrectomy-induced chronic kidney disease. Life Sci 91(3–4):127–131. doi:10.1016/j.lfs.2012.06.024

    Article  PubMed  CAS  Google Scholar 

  • Huang XM, Chen WL, Yuan JP, Yang YH, Mei QH, Huang LX (2013) Altered diurnal variation and localization of clock proteins in the remnant kidney of 5/6 nephrectomy rats. Nephrology 18(8):555–562. doi:10.1111/nep.12111

    Article  PubMed  CAS  Google Scholar 

  • Hwang YS, Hsieh TJ, Lee YJ, Tsai JH (1998) Circadian rhythm of urinary endothelin-1 excretion in mild hypertensive patients. Am J Hypertens 11(11 Pt 1):1344–1351. doi:10.1016/S0895-7061(98)00170-8

    Article  PubMed  CAS  Google Scholar 

  • Isobe S, Ohashi N, Fujikura T et al (2015) Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin Exp Nephrol 19(2):231–239. doi:10.1007/s10157-014-0973-2

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Cugini P, Uezono K et al (1990) Circadian variations of total renin, active renin, plasma renin activity and plasma aldosterone in clinically healthy young subjects. Horm Metab Res 22(12):636–639. doi:10.1055/s-2007-1004991

    Article  PubMed  CAS  Google Scholar 

  • Ki Y, Ri H, Lee H, Yoo E, Choe J, Lim C (2015) Warming Up Your Tick-Tock: Temperature-Dependent Regulation of Circadian Clocks. Neuroscientist. doi:10.1177/1073858415577083

    PubMed  Google Scholar 

  • Koch BC, Nagtegaal JE, Kerkhof GA, ter Wee PM (2009) Circadian sleep-wake rhythm disturbances in end-stage renal disease. Nat Rev Nephrol 5(7):407–416

    Article  PubMed  Google Scholar 

  • Koch BC, Nagtegaal JE, Hagen EC, Wee PM, Kerkhof GA (2010a) Different melatonin rhythms and sleep-wake rhythms in patients on peritoneal dialysis, daytime hemodialysis and nocturnal hemodialysis. Sleep Med 11(3):242–246. doi:10.1016/j.sleep.2009.04.006

    Article  PubMed  Google Scholar 

  • Koch BC, van der Putten K, Van Someren EJ et al (2010b) Impairment of endogenous melatonin rhythm is related to the degree of chronic kidney disease (CREAM study). Nephrol Dial Transplant 25(2):513–519. doi:10.1093/ndt/gfp493

    Article  PubMed  CAS  Google Scholar 

  • Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77(1):105–111

    Article  CAS  Google Scholar 

  • Koulouridis E, Koulouridis I (2014) The loop of Henle as the milestone of mammalian kindey concentrating ability: a historical review. Acta Med Hist Adriat 12(2):413–428

    PubMed  Google Scholar 

  • Landgraf D, Achten C, Dallmann F, Oster H (2015) Embryonic development and maternal regulation of murine circadian clock function. Chronobiol Int 32(3):416–427. doi:10.3109/07420528.2014.986576

    Article  PubMed  CAS  Google Scholar 

  • Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci USA 108(39):16451–16456. doi:10.1073/pnas.1107178108

    Article  PubMed Central  PubMed  Google Scholar 

  • Leibowitz D (2014) Left ventricular hypertrophy and chronic renal insufficiency in the elderly. Cardiorenal Med 4(3–4):168–175. doi:10.1159/000366455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liddle GW (1966) Analysis of circadian rhythms in human adrenocortical secretory activity. Arch Intern Med 117(6):739–743

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288(5465):483–492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O (2012) Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287(1):660–671. doi:10.1074/jbc.M111.298919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Manchester RC (1933) The diurnal rhythm in water and mineral exchange. J Clin Invest 12(6):995–1008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martino TA, Oudit GY, Herzenberg AM et al (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294(5):R1675–R1683

    Article  PubMed  CAS  Google Scholar 

  • Mazzoccoli G, Francavilla M, Giuliani F et al (2012a) Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. J Biol Regul Homeost Agents 26(2):303–311

    PubMed  CAS  Google Scholar 

  • Mazzoccoli G, Piepoli A, Carella M et al (2012b) Altered expression of the clock gene machinery in kidney cancer patients. Biomed Pharmacother 66(3):175–179. doi:10.1016/j.biopha.2011.11.007

    Article  PubMed  CAS  Google Scholar 

  • Mazzoccoli G, De Cata A, Piepoli A, Vinciguerra M (2014) The circadian clock and the hypoxic response pathway in kidney cancer. Tumour Biol 35(1):1–7. doi:10.1007/s13277-013-1076-5

    Article  PubMed  CAS  Google Scholar 

  • Meszaros K, Pruess L, Szabo AJ, Gondan M, Ritz E, Schaefer F (2014) Development of the circadian clockwork in the kidney. Kidney Int 86(5):915–922. doi:10.1038/ki.2014.199

    Article  PubMed  CAS  Google Scholar 

  • Min HK, Jones JE, Flink EB (1966) Circadian variations in renal excretion of magnesium, calcium, phosphorus, sodium, and potassium during frequent feeding and fasting. Fed Proc 25(3):917–921

    PubMed  CAS  Google Scholar 

  • Mochel JP, Fink M, Bon C et al (2014) Influence of feeding schedules on the chronobiology of renin activity, urinary electrolytes and blood pressure in dogs. Chronobiol Int 31(5):715–730. doi:10.3109/07420528.2014.897711

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250(5 Pt 2):R737–R752

    PubMed  CAS  Google Scholar 

  • Morf J, Rey G, Schneider K et al (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338(6105):379–383. doi:10.1126/science.1217726

    Article  PubMed  CAS  Google Scholar 

  • Nikolaeva S, Pradervand S, Centeno G et al (2012) The circadian clock modulates renal sodium handling. J Am Soc Nephrol 23(6):1019–1026. doi:10.1681/ASN.2011080842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohnishi N, Tahara Y, Kuriki D, Haraguchi A, Shibata S (2014) Warm water bath stimulates phase-shifts of the peripheral circadian clocks in PER2::LUCIFERASE mouse. PLoS One 9(6), e100272. doi:10.1371/journal.pone.0100272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998) Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 253(2):199–203. doi:10.1006/bbrc.1998.9779

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Fukui H, Ishida N (2000) Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem Biophys Res Commun 268(1):164–171. doi:10.1006/bbrc.1999.2054

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Uchida D, Itoh N (2012) Low-carbohydrate, high-protein diet affects rhythmic expression of gluconeogenic regulatory and circadian clock genes in mouse peripheral tissues. Chronobiol Int 29(7):799–809. doi:10.3109/07420528.2012.699127

    Article  PubMed  CAS  Google Scholar 

  • Okabe T, Kumagai M, Nakajima Y et al (2014) The impact of HIF1alpha on the Per2 circadian rhythm in renal cancer cell lines. PLoS One 9(10), e109693. doi:10.1371/journal.pone.0109693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okazaki H, Matsunaga N, Fujioka T et al (2014) Circadian regulation of mTOR by the ubiquitin pathway in renal cell carcinoma. Cancer Res 74(2):543–551. doi:10.1158/0008-5472.CAN-12-3241

    Article  PubMed  CAS  Google Scholar 

  • Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10(1):135–146. doi:10.2215/CJN.05760513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Polonia J, Diogo D, Caupers P, Damasceno A (2003) Influence of two doses of irbesartan on non-dipper circadian blood pressure rhythm in salt-sensitive black hypertensives under high salt diet. J Cardiovasc Pharmacol 42(1):98–104

    Article  PubMed  CAS  Google Scholar 

  • Pons M, Cambar J, Waterhouse JM (1996a) Renal hemodynamic mechanisms of blood pressure rhythms. Ann N Y Acad Sci 783:95–112

    Article  PubMed  CAS  Google Scholar 

  • Pons M, Forpomes O, Espagnet S, Cambar J (1996b) Relationship between circadian changes in renal hemodynamics and circadian changes in urinary glycosaminoglycan excretion in normal rats. Chronobiol Int 13(5):349–358

    Article  PubMed  CAS  Google Scholar 

  • Portaluppi F, Montanari L, Massari M, Di Chiara V, Capanna M (1991) Loss of nocturnal decline of blood pressure in hypertension due to chronic renal failure. Am J Hypertens 4(1 Pt 1):20–26

    PubMed  CAS  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241(4870):1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Richards J, Greenlee MM, Jeffers LA et al (2012) Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1delta/epsilon. Am J Physiol Renal Physiol 303(7):F918–F927. doi:10.1152/ajprenal.00678.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richards J, Cheng KY, All S et al (2013) A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol 305(12):F1697–F1704. doi:10.1152/ajprenal.00472.2013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML (2014a) A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 289(17):11791–11806. doi:10.1074/jbc.M113.531095

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richards J, Welch AK, Barilovits SJ et al (2014b) Tissue-specific and time-dependent regulation of the endothelin axis by the circadian clock protein Per1. Life Sci 118(2):255–262. doi:10.1016/j.lfs.2014.03.028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodbard S (1947) Body temperature-arterial pressure relationship as a basis for physiological interpretation of diurnal rhythm. Fed Proc 6(1 Pt 2):191

    Google Scholar 

  • Routledge FS, McFetridge-Durdle JA, Dean CR (2007) Night-time blood pressure patterns and target organ damage: a review. Can J Cardiol 23(2):132–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Russcher M, Nagtegaal JE, Nurmohamed SA et al (2015) The effects of kidney transplantation on sleep, melatonin, circadian rhythm and quality of life in kidney transplant recipients and living donors. Nephron 129(1):6–15. doi:10.1159/000369308

    Article  PubMed  CAS  Google Scholar 

  • Saifur Rohman M, Emoto N, Nonaka H et al (2005) Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int 67(4):1410–1419

    Article  PubMed  Google Scholar 

  • Scott RP, Quaggin SE (2015) The cell biology of renal filtration. J Cell Biol 209(2):199–210. doi:10.1083/jcb.201410017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Solocinski K, Richards J, All SC, Cheng KY, Khundmiri SJ, Gumz ML (2015) Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Renal Physiol. doi: 10.1152/ajprenal.00197.2014. [Epub ahead of print]

    Google Scholar 

  • Soltesova D, Monosikova J, Koysova L, Vesela A, Mravec B, Herichova I (2013) Effect of streptozotocin-induced diabetes on clock gene expression in tissues inside and outside the blood–brain barrier in rat. Exp Clin Endocrinol Diabetes 121(8):466–474. doi:10.1055/s-0033-1349123

    Article  PubMed  CAS  Google Scholar 

  • Stow LR, Gumz ML (2011) The circadian clock in the kidney. J Am Soc Nephrol 22(4):598–604. doi:10.1681/ASN.2010080803

    Article  PubMed  CAS  Google Scholar 

  • Stow LR, Richards J, Cheng KY et al (2012) The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 59(6):1151–1156. doi:10.1161/HYPERTENSIONAHA.112.190892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Su W, Xie Z, Guo Z, Duncan MJ, Lutshumba J, Gong MC (2012) Altered clock gene expression and vascular smooth muscle diurnal contractile variations in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol 302(3):H621–H633. doi:10.1152/ajpheart.00825.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Susa K, Sohara E, Isobe K et al (2012) WNK-OSR1/SPAK-NCC signal cascade has circadian rhythm dependent on aldosterone. Biochem Biophys Res Commun 427(4):743–747. doi:10.1016/j.bbrc.2012.09.130

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa H, Shimizu K, Izumiya Y et al (2002) Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism. Hypertens Res 25(5):737–742

    Article  PubMed  CAS  Google Scholar 

  • Tokonami N, Mordasini D, Pradervand S et al (2014) Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol 25(7):1430–1439. doi:10.1681/ASN.2013060641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turek FW (2008) Staying off the dance floor: when no rhythm is better than bad rhythm. Am J Physiol Regul Integr Comp Physiol 294(5):R1672–R1674. doi:10.1152/ajpregu.00160.2008

    Article  PubMed  CAS  Google Scholar 

  • Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116. doi:10.1128/MCB.25.8.3109-3116.2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uzu T, Kimura G (1999) Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 100(15):1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Uzu T, Kazembe FS, Ishikawa K, Nakamura S, Inenaga T, Kimura G (1996) High sodium sensitivity implicates nocturnal hypertension in essential hypertension. Hypertension 28(1):139–142

    Article  PubMed  CAS  Google Scholar 

  • Uzu T, Nishimura M, Fujii T et al (1998) Changes in the circadian rhythm of blood pressure in primary aldosteronism in response to dietary sodium restriction and adrenalectomy. J Hypertens 16(12 Pt 1):1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Uzu T, Fujii T, Nishimura M et al (1999) Determinants of circadian blood pressure rhythm in essential hypertension. Am J Hypertens 12(1 Pt 1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Vagnucci AH, Shapiro AP, McDonald RH Jr (1969) Effects of upright posture on renal electrolyte cycles. J Appl Physiol 26(6):720–731

    PubMed  CAS  Google Scholar 

  • Vukolic A, Antic V, Van Vliet BN, Yang Z, Albrecht U, Montani JP (2010) Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am J Physiol Regul Integr Comp Physiol 298(3):R627–R634

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Maillard M, Schibler U, Burnier M, Gachon F (2010) Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 299(4):R1013–R1019. doi:10.1152/ajpregu.00241.2010

    Article  PubMed  CAS  Google Scholar 

  • White WB (2000) Ambulatory blood pressure monitoring: dippers compared with non-dippers. Blood Press Monit 5(Suppl 1):S17–S23

    Article  PubMed  Google Scholar 

  • White WB (2008) Relating cardiovascular risk to out-of-office blood pressure and the importance of controlling blood pressure 24 hours a day. Am J Med 121(Suppl 8):S2–S7

    Article  PubMed  Google Scholar 

  • Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P (1998) Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1(8):701–707. doi:10.1038/3703

    Article  PubMed  CAS  Google Scholar 

  • Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404(6773):87–91. doi:10.1038/35003589

    Article  PubMed  CAS  Google Scholar 

  • Williams D, Croal B, Furnace J et al (2006) The prevalence of a raised aldosterone-renin ratio (ARR) among new referrals to a hypertension clinic. Blood Press 15(3):164–168

    Article  PubMed  CAS  Google Scholar 

  • Williams JM, Murphy S, Burke M, Roman RJ (2010) 20-hydroxyeicosatetraeonic acid: a new target for the treatment of hypertension. J Cardiovasc Pharmacol 56(4):336–344. doi:10.1097/FJC.0b013e3181f04b1c

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu T, Ni Y, Dong Y et al (2010) Regulation of circadian gene expression in the kidney by light and food cues in rats. Am J Physiol Regul Integr Comp Physiol 298(3):R635–R641

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101(15):5339–5346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111(45):16219–16224. doi:10.1073/pnas.1408886111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zuber AM, Centeno G, Pradervand S et al (2009) Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA 106(38):16523–16528

    Article  PubMed Central  PubMed  Google Scholar 

  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20(6):1103–1110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Gumz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Solocinski, K., Mazzoccoli, G., Gumz, M.L. (2016). Circadian Regulation of Renal Function. In: Gumz, M. (eds) Circadian Clocks: Role in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3450-8_6

Download citation

Publish with us

Policies and ethics