Skip to main content
Log in

Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The intrarenal renin-angiotensin system (RAS) plays an important role in the development of hypertension and renal damage. Disruption of diurnal blood pressure (BP) variation is an additional risk factor for renal damage. However, little is known regarding whether intrarenal RAS circadian rhythm exists or if it influences the disruption of diurnal BP and renal damage.

Methods

We investigated the circadian rhythm of urinary angiotensinogen (U-AGT) that reflects intrarenal RAS activity in 14 individuals without chronic kidney disease (CKD) and 36 CKD patients classified according to circadian BP rhythms.

Results

BP values were higher during the daytime than during the nighttime in both individuals without CKD and CKD patients. U-AGT levels were not different between the daytime and nighttime in individuals without CKD, but were significantly higher in the daytime in CKD patients (log U-AGT/creatinine: daytime, 2.39 ± 0.99; nighttime, 2.24 ± 1.06; p = 0.001). Furthermore, in CKD patients showing a riser pattern of circadian BP, U-AGT levels did not decrease during the nighttime compared with those in the daytime (log U-AGT/creatinine: daytime, 2.51 ± 0.65; nighttime, 2.52 ± 0.71; p = 0.78). Circadian fluctuation of albuminuria and proteinuria occurred parallel to that of the U-AGT levels. U-AGT levels were significantly and positively correlated with the levels of BP and circadian fluctuation of U-AGT was correlated with diurnal BP changes.

Conclusion

These data suggest that the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which are associated with diurnal BP variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kala R, Fyhrquist F, Eisalo A. Diurnal variation of plasma angiotensin II in man. Scand J Clin Lab Invest. 1973;31:363–5.

    Article  CAS  PubMed  Google Scholar 

  2. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–87.

    Article  CAS  PubMed  Google Scholar 

  3. Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension. 2002;39:316–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kobori H, Ohashi N, Katsurada A, Miyata K, Satou R, Saito T, Yamamoto T. Urinary angiotensinogen as a potential biomarker of severity of chronic renal disease. J Am Soc Hypertens. 2008;2:349–54.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8.

    Article  PubMed  Google Scholar 

  6. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Björklund-Bodegärd K, Richart T, Ohkubo T, Kuznetsova T, Torp-Pedersen C, Lind L, Ibsen H, Imai Y, Wang J, Sandoya E, O’Brien E, Staessen JA. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370:1219–29.

    Article  PubMed  Google Scholar 

  7. Kario K, Shimada K. Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens. 2004;26:177–89.

    Article  PubMed  Google Scholar 

  8. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, Batlle D. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347:797–805.

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal R, Andersen MJ. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69:1175–80.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura G, Dohi Y, Fukuda M. Salt sensitivity and circadian rhythm of blood pressure: the key to connect CKD with cardiovascular events. Hypertens Res. 2010;33:515–20.

    Article  PubMed  Google Scholar 

  11. Farmer CK, Goldsmith DJ, Cox J, Dallyn P, Kingswood JC, Sharpstone P. An investigation of the effect of advancing uremia, renal replacement therapy and renal transplantation on blood pressure diurnal variability. Nephrol Dial Transplant. 1997;12:2301–7.

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda M, Munemura M, Usami T, Nakao N, Takeushi O, Kamiya Y, Yoshida A, Kimura G. Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int. 2004;65:621–5.

    Article  PubMed  Google Scholar 

  13. Fukuda M, Urushihara M, Wakamatus T, Oikawa T, Hiroyuki K. Proximal tubular angiotensinogen in renal biopsy suggests nondipper BP rhythm accompanied by enhanced tubular sodium reabsorption. J Hypertens. 2012;30:1453–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hermida RC, Avala DE, Fernández JR, Calvo C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension. 2007;50:715–22.

    Article  CAS  PubMed  Google Scholar 

  15. Fukuda M, Wakamatsu-Yamanaka T, Mizuno M, Miura T, Tomonari T, Kato Y, Ichikawa T, Miyagi S, Shirasawa Y, Ito A, Yoshida A, Kimura G. Angiotensin receptor blockers shift the circadian rhythm of blood pressure by suppressing tubular sodium reabsorption. Am J Physiol Renal Physiol. 2011;301:953–7.

    Article  Google Scholar 

  16. Fukuda M, Munemura M, Usami T, Nakano N, Takeuchi O, Kamiya Y, Yoshida A, Kimura G. Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int. 2004;65:621–5.

    Article  PubMed  Google Scholar 

  17. Fukuda M, Yamanaka T, Mizuno M, Motokawa M, Shirasawa Y, Miyagi S, Nishio T, Yoshida A, Kimura G. Angiotensin II type 1 receptor blocker, olmesartan, restores nocturnal blood pressure decline by enhancing daytime natriuresis. J Hypertens. 2008;26:583–8.

    Article  CAS  PubMed  Google Scholar 

  18. Katsurada A, Hagiwara Y, Miyashita K, Satou R, Miyata K, Ohashi N, Navar LG, Kobori H. Novel sandwich ELISA for human angiotensinogen. Am J Physiol Renal Physiol. 2007;293:956–60.

    Article  Google Scholar 

  19. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A. Revised equation for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  20. Mills KT, Kobori H, Hamm LL, Alper AB, Khan IE, Rahman M, Navar LG, Liu Y, Browne GM, Batuman V, He J, Chen J. Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrol Dial Transplant. 2012;27:3176–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Terada Y, Tomita K, Nonoguchi H, Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 1993;43:1251–9.

    Article  CAS  PubMed  Google Scholar 

  22. Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, Nishiyama A, Ichikawa I. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23:1181–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H, Nishiyama A, Peti-Peterdi J. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol. 2012;23:1847–56.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gonzalez-Villalobos RA, Seth DM, Satou R, Horton H, Ohashi N, Miyata K, Katsurada A, Tran DV, Kobori H, Navar LG. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295:F283–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12:431–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kamiyama M, Zsombok A, Kobori H. Urinary angiotensinogen as a novel early biomarker of intrarenal renin-angiotensin system activation in experimental type 1 diabetes. J Pharmacol Sci. 2012;119:314–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kobori H, Alper AB Jr, Shenva R, Katsurada A, Saito T, Ohashi N, Urushihara M, Miyata K, Satou R, Hamm LL, Navar LG. Urinaly angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension. 2009;53:344–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Beilin LJ, Deacon J, Michael CA, Vandongen R, Lalor CM, Barden AF, Davidson L, Rouse I. Diurnal rhythms of blood pressure, plasma renin activity, angiotensin II and catecholamines in normotensive and hypertensive pregnancies. Clin Exp Hypertens B. 1983;2:271–93.

    CAS  PubMed  Google Scholar 

  29. Naito Y, Tsujino T, Fujioka Y, Ohyanagi M, Iwasaki T. Augmented diurnal variations of the cardiac renin–angiotensin system in hypertensive rats. Hypertension. 2002;40:827–33.

    Article  CAS  PubMed  Google Scholar 

  30. Nishijima Y, Kobori H, Sofue T, Kaifu K, Moriwaki K, Hara T, Hitomi H, Kohno M, Nishiyama A. Important Aspects of urine sampling for angiotensinogen measurement: time and preservation condition in healthy individuals. Tohoku J Exp Med. 2012;228:333–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nishimura M, Uzu T, Fujii T, Kimura G. Disturbed circadian rhythm of urinary albumin excretion in non-dipper type of essential hypertension. Am J Nephrol. 2002;22:455–62.

    Article  PubMed  Google Scholar 

  32. Kobori H, Ozawa Y, Satou R, Katsurada A, Miyata K, Ohashi N, Hase N, Suzaki Y, Sigmund CD, Navar LG. Kidney-specific enhancement of Ang II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice. Am J Physiol Renal Physiol. 2007;293:F938–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Coffman TM, Crowley SD. Kidney in hypertension: guyton redux. Hypertension. 2008;51:811–6.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda M, Mizuno M, Yamanaka T, Motokawa M, Shirasawa Y, Nishio T, Miyagi S, Yoshida A, Kimura G. Patients with renal dysfunction require a longer duration until blood pressure dips during the night. Hypertension. 2008;52:1155–60.

    Article  CAS  PubMed  Google Scholar 

  35. Ingert C, Grima M, Coquard C, Barthelmebs M, Imbs JL. Effects of dietary salt changes on renal renin-angiotensin system in rats. Am J Physiol Renal Physiol. 2002;283:F995–1002.

    Article  PubMed  Google Scholar 

  36. Nishiyama A, Yoshizumi M, Rahman M, Kobori H, Seth DM, Miyatake A, Zhang GX, Yao L, Hitomi H, Shokoji T, Kiyomoto H, Kimura S, Tamaki T, Kohno M, Abe Y. Effect of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitivity rats. Kidney Int. 2004;65:972–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Huang Y, Yamamoto T, Misaki T, Suzuki H, Togawa A, Ohashi N, Fukasawa H, Fujigaki Y, Ichihara A, Nishiyama A, Senbonmatsu T, Ikegaya N, Hishida A. Enhanced intrarenal receptor-mediated prorenin activation in chronic progressive anti-thymocyte serum nephritis rats on high salt intake. Am J Physiol Renal Physiol. 2012;303:F130–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ramkumar N, Stuart D, Ying J, Kohan DE. A possible interaction between systemic and renal angiotensinogen in the control of blood pressure. Am J Hypertens. 2013;26:473–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Konishi Y, Nishiyama A, Morikawa T, Kitabayashi C, Shibata M, Hamada M, Kishida M, Hitomi H, Kiyomoto H, Miyashita T, Mori N, Urushihara M, Kobori H, Imanishi M. Relationship between urinary angiotensinogen and salt sensitivity of blood pressure in patients with IgA nephropathy. Hypertension. 2011;58:205–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Uzu T, Kimura G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1999;100:1635–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Salt Science Research Foundation (Awarded to Naro OHASHI, no. 1230) and Young Investigator Research Projects of Hamamatsu University School of Medicine in 2011 (Awarded to Naro OHASHI) and in 2012 (Awarded to Naro OHASHI and Shinsuke ISOBE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naro Ohashi.

About this article

Cite this article

Isobe, S., Ohashi, N., Fujikura, T. et al. Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin Exp Nephrol 19, 231–239 (2015). https://doi.org/10.1007/s10157-014-0973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0973-2

Keywords

Navigation