Skip to main content

A Prime Analogue of Roth’s Theorem in Function Fields

  • Chapter
Advances in the Theory of Numbers

Part of the book series: Fields Institute Communications ((FIC,volume 77))

Abstract

Let \(\mathbb{F}_{q}[t]\) denote the polynomial ring over the finite field \(\mathbb{F}_{q}\), and let \(\mathcal{P}_{R}\) denote the subset of \(\mathbb{F}_{q}[t]\) containing all monic irreducible polynomials of degree R. For non-zero elements r = (r 1, r 2, r 3) of \(\mathbb{F}_{q}\) satisfying r 1 + r 2 + r 3 = 0, let \(D(\mathcal{P}_{R}) = D_{\mathbf{r}}(\mathcal{P}_{R})\) denote the maximal cardinality of a set \(A_{R} \subseteq \mathcal{P}_{R}\) which contains no non-trivial solution of \(r_{1}x_{1} + r_{2}x_{2} + r_{3}x_{3} = 0\) with x i  ∈ A R  (1 ≤ i ≤ 3). By applying the polynomial Hardy-Littlewood circle method, we prove that \(D(\mathcal{P}_{R}) \ll _{q}\vert \mathcal{P}_{R}\vert /(\log \log \log \log \vert \mathcal{P}_{R}\vert )\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Balog, A. Perelli, Exponential sums over primes in an arithmetic progression. Proc. Am. Math. Soc. 93, 578–582 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. T.F. Bloom, Translation invariant equations and the method of Sanders. Bull. Lond. Math. Soc. 44, 1050–1067 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bourgain, On triples in arithmetic progression. Geom. Funct. Anal. 9, 968–984 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bourgain, Roth’s theorem on progressions revisited. J. Anal. Math. 104, 155–206 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465–588 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. B.J. Green, Roth’s theorem in the primes. Ann. Math. 161, 1609–1636 (2005)

    Article  MATH  Google Scholar 

  7. B.J. Green, T.C. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167, 481–547 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. D.R. Heath-Brown, Integer sets containing no arithmetic progressions. J. Lond. Math. Soc. 35, 385–394 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. H.A. Helfgott, A. de Roton, Improving Roth’s theorem in the primes. Int. Math. Res. Not. 2011, 767–783 (2011)

    MATH  Google Scholar 

  10. R.M. Kubota, Waring’s problem for \(\mathbf{F}_{q}[x]\). Diss. Math. (Rozpr. Mat.) 117, 60pp (1974)

    Google Scholar 

  11. T.H. Lê, Green-Tao theorem in function fields. Acta Arith. 147, 129–152 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. T.H. Lê, C.V. Spencer, Difference sets and the irreducibles in function fields. B. Lond. Math. Soc. 43, 347–358 (2011)

    Article  MATH  Google Scholar 

  13. Y.-R. Liu, A generalization of the Turán and Erdös-Kac theorem. Ph.D. thesis, Harvard University, 2003

    Google Scholar 

  14. Y.-R. Liu, C.V. Spencer, A generalization of Roth’s theorem in function fields. Int. J. Number Theory 5, 1149–1154 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Y.-R. Liu, T.D. Wooley, Waring’s problem in function fields. J. Reine Angew. Math. 638, 1–67 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Naslund, On improving Roth’s theorem in the primes. Mathematika 61, 49–62 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Riesz, Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta Math. 49, 465–497 (1927)

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Rhin, Répartition modulo 1 dans un corps de séries formelles sur un corps fini. Diss. Math. (Rozpr. Mat.) 95, 75pp (1972)

    Google Scholar 

  19. M. Rosen, Number Theory in Function Fields (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  20. K.F. Roth, On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)

    Article  MATH  Google Scholar 

  21. T. Sanders, On Roth’s theorem on progressions. Ann. Math. 174, 619–636 (2011)

    Article  MATH  Google Scholar 

  22. T. Sanders, On certain other sets of integers. J. Anal. Math. 116, 53–82 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)

    MATH  MathSciNet  Google Scholar 

  24. E. Szemerédi, Integer sets containing no arithmetic progressions. Acta Math. Hungar. 56, 155–158 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. G.O. Thorin, Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 9, 1–58 (1948)

    Google Scholar 

  26. R.C. Vaughan, The Hardy-Littlewood Method, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author is supported in part by an NSERC discovery grant. The research of the second author is supported in part by NSA Young Investigator Grants #H98230-10-1-0155, #H98230-12-1-0220, and #H98230-14-1-0164.

The authors are grateful to Trevor Wooley for many valuable discussions during the completion of this work and to Frank Thorne for providing a reference to [18]. They also would like to thank the referee for many valuable comments. This work was completed when the second author visited the University of Waterloo in 2007 and 2008, and he would like to thank the Department of Pure Mathematics for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ru Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, YR., Spencer, C.V. (2015). A Prime Analogue of Roth’s Theorem in Function Fields. In: Alaca, A., Alaca, Ş., Williams, K. (eds) Advances in the Theory of Numbers. Fields Institute Communications, vol 77. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3201-6_5

Download citation

Publish with us

Policies and ethics