Skip to main content

Advanced Prostate Imaging: Correlating Prostate Anatomy with MRI and MRI/Ultrasound Fusion

  • Chapter
  • First Online:
Prostate Ultrasound

Abstract

Conventional imaging modalities that demonstrate anatomical information fail to yield accurate information for diagnosis, staging and selection of treatment or effective monitoring of prostate cancer. Fortunately this has changed with newer imaging techniques that focus on functional and metabolic imaging, providing quantitative information and allowing investigation into changes that occur at a cellular level in prostate cancer. Multiparametric MRI combines the anatomical and functional domains of imaging to achieve this goal. Currently, the histopathological diagnosis of prostate cancer is based on transrectal ultrasound-guided biopsy, which has limited sensitivity. Technical improvements in MRI have resulted in the use of MRI to target prostate biopsies. This chapter presents a perspective on the optimal role of multiparametric MRI in prostate cancer detection and its use in targeted biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2013. Ann Oncol. 2013;24:792–800.

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Ward E, Thun M. Declining death rates reflect progress against cancer. PLoS One. 2010;5:e9584.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jang TL, Yossepowitch O, Bianco F, Scardino PT. Low risk prostate cancer in men under age 65: the case for definitive treatment. Urol Oncol. 2007;25:510.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ. Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics. 2011;31:677–703.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Merkle EM, Dale BM, Paulson EK. Abdominal MR imaging at 3 T. Magn Reson Imaging Clin N Am. 2006;14:17.

    Article  PubMed  Google Scholar 

  7. Barth MM, Smith MP, Pedrosa I, Lenkinski RE, Rofsky NM. Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics. 2007;27:1445–62.

    Article  PubMed  Google Scholar 

  8. Zaremba L. Guidance for industry and FDA staff: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices - Guidance for Industry and Food and Drug Administration Staff. 2003:14. Available at http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm072688.pdf. Accessed on 7 Oct 2014]

  9. Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol. 2004;11:857.

    Article  PubMed  Google Scholar 

  10. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22:746–57.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Heijmink SW, Ftterer JJ, Hambrock T, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T—comparison of image quality, localization, and staging performance. Radiology. 2007;244:184–95.

    Article  PubMed  Google Scholar 

  12. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193:703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology. 1999;213:473–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kim JK, Hong SS, Choi YJ, et al. Wash in rate on the basis of dynamic contrast enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22:639–46.

    Article  CAS  PubMed  Google Scholar 

  15. Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol. 2007;188:1622–35.

    Article  Google Scholar 

  16. Morgan VA, Riches SF, Thomas K, et al. Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br J Radiol. 2011;84:31–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Giannarini G, Petralia G, Thoeny HC. Potential and limitations of diffusion-weighted magnetic resonance imaging in kidney, prostate, and bladder cancer including pelvic lymph node staging: a critical analysis of the literature. Eur Urol. 2012;61(2):326–40.

    Article  PubMed  Google Scholar 

  18. Nicholson B, Theodorescu D. Angiogenesis and prostate cancer tumor growth. J Cell Biochem. 2004;91:125–50.

    Article  CAS  PubMed  Google Scholar 

  19. Bigler SA, Deering RE, Brawer MK. Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol. 1993;24:220–6.

    Article  CAS  PubMed  Google Scholar 

  20. Siegal JA, Yu E, Brawer MK. Topography of neovascularity in human prostate carcinoma. Cancer. 1995;75:2545–51.

    Article  CAS  PubMed  Google Scholar 

  21. Tofts PS, Wicks D, Barker GJ. The MRI measurement of NMR and physiological parameters in tissue to study disease process. Prog Clin Biol Res. 1991;363:313.

    CAS  PubMed  Google Scholar 

  22. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991;15:621–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ren J, Huan Y, Wang H, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63:153–9.

    Article  CAS  PubMed  Google Scholar 

  24. Costello L, Franklin R. The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology. 2000;59:269–82.

    Article  CAS  PubMed  Google Scholar 

  25. Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5:17.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Costello LC, Liu Y, Franklin RB, Kennedy MC. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem. 1997;272:28875–81.

    Article  CAS  PubMed  Google Scholar 

  27. Glunde K, Ackerstaff E, Mori N, Jacobs MA, Bhujwalla ZM. Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm. 2006;3:496–506.

    Article  CAS  PubMed  Google Scholar 

  28. Scheenen TW, Ftterer J, Weiland E, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol. 2011;46:25–33.

    Article  PubMed  Google Scholar 

  29. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.

    Article  CAS  PubMed  Google Scholar 

  30. Riches SF, Payne GS, Morgan VA, et al. MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. Am J Roentgenol. 2009;193:1583–91.

    Article  Google Scholar 

  31. Turkbey B, Mani H, Shah V, et al. Multiparametric 3 T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186:1818–24.

    Article  PubMed  Google Scholar 

  32. Langer DL, van der Kwast TH, Evans AJ, et al. Intermixed normal tissue within prostate cancer: Effect on MR imaging measurements of apparent diffusion coefficient and T2—sparse versus dense cancers. Radiology. 2008;249:900–8.

    Article  PubMed  Google Scholar 

  33. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239:784–92.

    Article  PubMed  Google Scholar 

  34. Delongchamps NB, Beuvon F, Eiss D, et al. Multiparametric MRI is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:232–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ikonen S, Kivisaari L, Vehmas T, et al. Optimal timing of post biopsy MR imaging of the prostate. Acta Radiol. 2001;42:70–3.

    Article  CAS  PubMed  Google Scholar 

  36. Qayyum A, Coakley FV, Lu Y, et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. Am J Roentgenol. 2004;183:1079–83.

    Article  Google Scholar 

  37. White S, Hricak H, Forstner R, et al. Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology. 1995;195:385–90.

    Article  CAS  PubMed  Google Scholar 

  38. Janssen M, Huijgensz P, Bourman A, Oe P, Donker A, Van Der Meulen J. Citrate versus heparin anticoagulation in chronic haernodialysis patients. Nephrol Dial Transplant. 1993;8:1228–33.

    CAS  PubMed  Google Scholar 

  39. Peng Y, Jiang Y, Yang C, et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology. 2013;267:787–96.

    Article  PubMed  Google Scholar 

  40. Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234:804–14.

    Article  PubMed  Google Scholar 

  41. Hodge K, McNeal J, Terris M, Stamey T. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol. 1989;142:71–4. discussion 4–5.

    CAS  PubMed  Google Scholar 

  42. Raja J, Ramachandran N, Munneke G, Patel U. Current status of transrectal ultrasound-guided prostate biopsy in the diagnosis of prostate cancer. Clin Radiol. 2006;61:142–53.

    Article  CAS  PubMed  Google Scholar 

  43. Durkan G, Sheikh N, Johnson P, Hildreth A, Greene D. Improving prostate cancer detection with an extended core transrectal ultrasonography guided prostate biopsy protocol. BJU Int. 2002;89:33–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bazinet M, Karakiewicz PI, Aprikian AG, et al. Value of systematic transition zone biopsies in the early detection of prostate cancer. J Urol. 1996;155:605–6.

    Article  CAS  PubMed  Google Scholar 

  45. Liu IJ, Macy M, Lai Y-H, Terris MK. Critical evaluation of the current indications for transition zone biopsies. Urology. 2001;57:1117–20.

    Article  CAS  PubMed  Google Scholar 

  46. Mitterberger M, Pinggera G, Horninger W, et al. Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J Urol. 2007;178:464–8.

    Article  CAS  PubMed  Google Scholar 

  47. Trabulsi EJ, Sackett D, Gomella LG, Halpern EJ. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology. 2010;76:1025–33.

    Article  PubMed  Google Scholar 

  48. Cantwell CP, Hahn PF, Gervais DA, Mueller PR. Prostate biopsy after ano-rectal resection: value of CT-guided trans-gluteal biopsy. Eur Radiol. 2008;18:738–42.

    Article  PubMed  Google Scholar 

  49. Shinohara K, Gulati M, Koppie TM, Terris MK. Transperineal prostate biopsy after abdominoperineal resection. J Urol. 2003;169:141–4.

    Article  PubMed  Google Scholar 

  50. Seaman EK, Sawczuk IS, Fatal M, Olsson CA, Shabsigh R. Transperineal prostate needle biopsy guided by transurethral ultrasound in patients without a rectum. Urology. 1996;47:353–5.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level 4.0 ng per milliliter. N Engl J Med. 2004;350:2239–46.

    Article  CAS  PubMed  Google Scholar 

  52. Pondman KM, Ftterer JJ, ten Haken B, et al. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur Urol. 2008;54:517–27.

    Article  PubMed  Google Scholar 

  53. Engelhard K, Hollenbach H, Kiefer B, Winkel A, Goeb K, Engehausen D. Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol. 2006;16:1237–43.

    Article  CAS  PubMed  Google Scholar 

  54. Hambrock T, Somford DM, Hoeks C, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–8.

    Article  CAS  PubMed  Google Scholar 

  55. Chun FK-H, Steuber T, Erbersdobler A, et al. Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol. 2006;49:820–6.

    Article  PubMed  Google Scholar 

  56. Bott S, Young M, Kellett M, Parkinson M. Anterior prostate cancer: is it more difficult to diagnose? BJU Int. 2002;89:886–9.

    Article  CAS  PubMed  Google Scholar 

  57. Franiel T, Stephan C, Erbersdobler A, et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding—multiparametric MR imaging for detection and biopsy planning. Radiology. 2011;259:162–72.

    Article  PubMed  Google Scholar 

  58. Vyas L, Acher P, Kinsella J, et al. Indications, results and safety profile of transperineal sector biopsies (TPSB) of the prostate: a single centre experience of 634 cases. BJU Int. 2014;114(1):32–7.

    Article  PubMed  Google Scholar 

  59. Seitz M, Shukla-Dave A, Bjartell A, et al. Functional magnetic resonance imaging in prostate cancer. Eur Urol. 2009;55:801–14.

    Article  CAS  PubMed  Google Scholar 

  60. Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220:263–8.

    Article  CAS  PubMed  Google Scholar 

  61. Beyersdorff D, Winkel A, Hamm B, Lenk S, Loening SA, Taupitz M. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology. 2005;234:576–81.

    Article  PubMed  Google Scholar 

  62. Yakar D, Hambrock T, Hoeks C, Barentsz JO, Ftterer JJ. Magnetic resonance-guided biopsy of the prostate: feasibility, technique, and clinical applications. Top Magn Reson Imaging. 2008;19:291–5.

    Article  PubMed  Google Scholar 

  63. Zangos S, Herzog C, Eichler K, et al. MR-compatible assistance system for punction in a high-field system: device and feasibility of transgluteal biopsies of the prostate gland. Eur Radiol. 2007;17:1118–24.

    Article  PubMed  Google Scholar 

  64. Maas MC, Vos EK, Lagemaat MW, et al. Feasibility of T2 weighted turbo spin echo imaging of the human prostate at 7 tesla. Magn Reson Med. 2014;71(5):1711–9.

    Article  PubMed  Google Scholar 

  65. Kobus T, Bitz AK, van Uden MJ, et al. In vivo 31P MR spectroscopic imaging of the human prostate at 7 T: safety and feasibility. Magn Reson Med. 2012;68:1683–95.

    Article  PubMed  Google Scholar 

  66. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol. 2013;64:544–52.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Ashutosh Tewari discloses that he is the principal investigator on research grants from Intuitive Surgical, Inc. (Sunnyvale, California, USA) and Boston Scientific Corporation; he is a non-compensated director of Prostate Cancer Institute (Pune, India) and Global Prostate Cancer Research Foundation; he has received research funding from The LeFrak Family Foundation, Mr. and Mrs. Paul Kanavos, Craig Effron & Company, Charles Evans Foundation, and Christian and Heidi Lange Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh K. Tewari M.D., M. Ch. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, A., Taouli, B., Tewari, A.K. (2015). Advanced Prostate Imaging: Correlating Prostate Anatomy with MRI and MRI/Ultrasound Fusion. In: Porter, C., Wolff, E. (eds) Prostate Ultrasound. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1948-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1948-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1947-5

  • Online ISBN: 978-1-4939-1948-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics