Skip to main content

Branched Chain Amino Acids and Organ Transplantation

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1365 Accesses

Abstract

Protein-energy malnutrition is common in patients with end-stage liver disease requiring liver transplantation (LT). Pretransplant nutritional condition is closely associated with posttransplant risk of morbidity and mortality. We reported that the absence of preoperative administration of a nutrient mixture enriched with branched-chain amino acids was an independent risk factor of posttransplant sepsis. Therefore, accurate nutritional assessment as well as adequate perioperative nutritional treatment is essential for improving outcomes after LT. Moreover, the overall survival rate in patients with low skeletal muscle mass was found to be significantly lower than in patients with normal/high skeletal muscle mass. Perioperative nutritional therapy including branched-chain amino acids is useful for patients with sarcopenia, whose prognosis is poor without nutritional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Helton WS. Nutritional issues in hepatobiliary surgery. Semin Liver Dis. 1994;14:140–57.

    Article  CAS  PubMed  Google Scholar 

  2. Pikul J, Sharpe MD, Lowndes R, et al. Degree of preoperative malnutrition is predictive of postoperative morbidity in liver transplant recipients. Transplantation. 1994;57:469–72.

    Article  CAS  PubMed  Google Scholar 

  3. Selberg O, Böttcher J, Tusch G, et al. Identification of high-and low-risk patients before liver transplantation: a prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology. 1997;25:625–57.

    Article  Google Scholar 

  4. Sanchez AJ, Aranda-Michel J. Nutrition for the liver transplant patient. Liver Transpl. 2006;12:1310–6.

    Article  PubMed  Google Scholar 

  5. Stickel F, Inderbitzin D, Candinas D. Role of nutrition in liver transplantation for end-stage chronic liver disease. Nutr Rev. 2008;66:47–54.

    Article  PubMed  Google Scholar 

  6. Anderson LJ, Erceg DN, Schroeder ET. Unity of multifrequency bioelectrical impedance compared with dual-energy x-ray absorptiometry for assessment of total and regional body composition varies between men and women. Nutr Res. 2012;32:479–85.

    Article  CAS  PubMed  Google Scholar 

  7. Hoyle GE, Chua M, Soiza RL. Volaemic assessment of the elderly hyponatraemic patient: reliability of clinical assessment and validation of bioelectrical impedance analysis. QJM. 2011;104:35–9.

    Article  CAS  PubMed  Google Scholar 

  8. Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, Erceg DN, McCauley S, Schroeder ET, et al. Br J Nutr. 2008;100:859–65.

    Article  CAS  PubMed  Google Scholar 

  9. Erceg DN, Dieli-Conwright CM, Rossuello A, et al. The Stayhealthy bioelectrical impedence analyzer predicts body fat in children and adults. Nutr Res. 2010;30:297–304.

    Article  CAS  PubMed  Google Scholar 

  10. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol. 1995;6:75–81.

    CAS  PubMed  Google Scholar 

  11. Moore FD, Olsen KH, McMurrey JD, et al. The body cell mass and its supporting environment. In: Body composition analysis in health and disease. Philadelphia: W.B. Saunders; 1963. p. 1484–508.

    Google Scholar 

  12. Wang Z, St-Onge MP, Lecumberri B, et al. Body cell mass: model development and validation at the cellular level of body composition. Am J Physiol Endocrinol Metab. 2004;286:E123–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pirlich M, Schutz T, Spachos S, et al. Bioelectrical impedance analysis is a useful bedside technique to assess malnutrition in cirrhotic patients with and without ascites. Hepatology. 2000;32:1208–15.

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi T, Taniguchi E, Itou M, et al. Body cell mass is a useful parameter for assessing malnutrition and severity of disease in non-ascitic cirrhotic patients with hepatocellular carcinoma or esophageal varices. Int J Mol Med. 2008;22:589–94.

    CAS  PubMed  Google Scholar 

  15. Kaido T, Mori A, Ogura Y, et al. Pre- and perioperative factors affecting infection after living donor liver transplantation. Nutrition. 2012;28:1104–8.

    Article  PubMed  Google Scholar 

  16. Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12:433–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Evans W. Functional and metabolic consequences of sarcopenia. J Nutr. 1997;127(5 Suppl):998S–1003.

    CAS  PubMed  Google Scholar 

  18. Prado CM, Wells JC, Smith SR, et al. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31:583–601.

    Article  CAS  PubMed  Google Scholar 

  19. Peng PD, van Vledder MG, Tsai S, et al. Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. HPB (Oxford). 2011;13:439–46.

    Article  Google Scholar 

  20. van Vledder MG, Levolger S, Ayez N, et al. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg. 2012;99:550–7.

    Article  PubMed  Google Scholar 

  21. Peng P, Hyder O, Firoozmand A, et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma. J Gastrointest Surg. 2012;16:1478–86.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hayashi F, Momoki C, Yuikawa M, et al. Nutritional status in relation to lifestyle in patients with compensated viral cirrhosis. World J Gastroenterol. 2012;18:5759–70.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Englesbe MJ, Patel SP, He K, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kaido T, Ogawa K, Fujimoto Y, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transpl. 2013;13(6):1549–56.

    Article  CAS  Google Scholar 

  25. Bianchi G, Marzocchi R, Agostini F, et al. Update on branched-chain amino acid supplementation in liver diseases. Curr Opin Gastroenterol. 2005;21:197–200.

    Article  CAS  PubMed  Google Scholar 

  26. Khanna S, Gopalan S. Role of branched-chain amino acids in liver disease: the evidence for and against. Curr Opin Clin Nutr Metab Care. 2007;10:297–303.

    Article  CAS  PubMed  Google Scholar 

  27. Holecek M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition. 2010;26:482–90.

    Article  CAS  PubMed  Google Scholar 

  28. Marchesini G, Bianchi G, Merli M, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

    Article  CAS  PubMed  Google Scholar 

  29. Nakaya Y, Okita K, Suzuki K, et al. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition. 2007;23:113–20.

    Article  CAS  PubMed  Google Scholar 

  30. Urata Y, Okita K, Korebaga K, et al. The effect of supplementation with branched-chain amino acids in patients with liver cirrhosis. Hepatol Res. 2007;37:510–6.

    Article  CAS  PubMed  Google Scholar 

  31. Fan ST, Lo CM, Lai EC, et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med. 1994;331:1547–52.

    Article  CAS  PubMed  Google Scholar 

  32. Kawamura E, Habu D, Morikawa H, et al. A randomized pilot trial of oral branched-chain amino acids in early cirrhosis: validation using prognostic markers for preliver transplant status. Liver Transpl. 2009;15:790–7.

    Article  PubMed  Google Scholar 

  33. Muto Y, Sato S, Watanabe A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  34. Shirabe K, Yoshimatsu M, Motomura T, et al. Beneficial effects of supplementation with branched-chain amino acids on postoperative bacteremia in living donor liver transplant recipients. Liver Transpl. 2011;17:1073–80.

    PubMed  Google Scholar 

  35. Yoshida R, Yagi T, Sadamori H, et al. Branched-chain amino acid-enriched nutrients improve nutritional and metabolic abnormalities in the early post-transplant period after living donor liver transplantation. J Hepatobiliary Pancreat Sci. 2012;19:438–48.

    Article  PubMed  Google Scholar 

  36. Plauth M, Cabre E, Riggio O, et al. ESPEN guidelines on enteral nutrition: liver disease. Clin Nutr. 2006;25:285–94.

    Article  CAS  PubMed  Google Scholar 

  37. Tietge UJF, Bahr MJ, Manns MP, et al. Plasma amino acids in cirrhosis and after liver transplantation: influence of liver function, hepatic hemodynamics and circulating hormones. Clin Transplant. 2002;16:9–17.

    Article  PubMed  Google Scholar 

  38. Weimann A, Braga M, Harsanyi L, et al. ESPEN guidelines on enteral nutrition: surgery including organ transplantation. Clin Nutr. 2006;25:224–44.

    Article  CAS  PubMed  Google Scholar 

  39. Kaido T, Ogura Y, Hata K, et al. Effects of posttransplant enteral nutrition with an immunomodulating diet containing hydrolyzed whey peptide after liver transplantation. World J Surg. 2012;36:1666–71.

    Article  PubMed  Google Scholar 

  40. Plank LD, McCall JL, Gane EJ, et al. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: a pilot study of safety and efficacy. Clin Nutr. 2005;24:288–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Kaido M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaido, T. (2015). Branched Chain Amino Acids and Organ Transplantation. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1914-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1914-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1913-0

  • Online ISBN: 978-1-4939-1914-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics