Skip to main content

Surface Decontamination Treatments for Improving the Safety of Meat and Poultry

  • Chapter
  • First Online:
Food Processing: Strategies for Quality Assessment

Part of the book series: Food Engineering Series ((FSES))

Abstract

The microbiological safety of raw beef and poultry products continue to be one of the major concerns of the meat industry. In 2011, an estimated 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths were attributed to known foodborne pathogens in the USA including Norovirus caused the most illnesses; nontyphoidal Salmonella spp., norovirus, Campylobacter spp., and Toxoplasma gondii caused the most hospitalizations; and nontyphoidal Salmonella spp., T. gondii, Listeriamonocytogenes, and norovirus caused the most deaths [Scallan et al. (Emerg Infect Dis 17:7–15, 2011)]. Several factors influence the incidence of pathogens in the meat and poultry food supply, some of the more important factors are livestock production practices that may inadvertently foster pathogen contamination; the emergence of “new” and antibiotic-resistant pathogens in the environment; increased manipulation and handling and accelerated processing of carcasses and raw materials; modification of traditional processing practices and greater complexity of manufacturing procedures and equipment; a more complex distribution and food preparation system that increases the risk of foodborne disease; more discriminate and selective pathogen detection methods to improve confirmation and trace-back of contaminated product; and consumer habits that represent inappropriate food handling and preparation practices [Keeton and Eddy (Preharvest and postharvest food safety—contemporary issues and future directions. Blackwell, Ames, 2004)]. The surface decontamination treatments of meat and poultry could improve the safety of these products and help to reduce foodborne illnesses. Details of some surface decontamination treatments of raw meat and poultry are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur TM, Wheeler TL, Shackelford SD, Bosilevac JM, Nou XW, Koohmaraie M (2005) Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157: H7 and meat quality. J Food Prot 68(4):666–672

    Google Scholar 

  • Avens JS, Albright SN, Morton AS, Prewitt BE, Kendall PA, Sofos JN (2002) Destruction of microorganisms on chicken carcasses by steam and boiling water immersion. Food Control 13(6–7):445–450. doi:Pii S0956-7135(01)00073-1

    Google Scholar 

  • Aymerich T, Picouet PA, Monfort JM (2008) Decontamination technologies for meat products. Meat Sci 78(1–2):114–129. doi:10.1016/j.meatsci.2007.07.007

    Article  CAS  Google Scholar 

  • Bakal G, Diaz A (2005) The lowdown on lauric arginate: food antimicrobial hammers away at plasma membrane, disrupting a pathogen’s metabolic process. http://www.foodquality.com/mag/02032005/02032005_ST1-2.html. Accessed Feb 2008

  • Barkate ML, Acuff GR, Lucia LM, Hale DS (1993) Hot-water decontamination of beef carcasses for reduction of initial bacterial numbers. Meat Sci 35(3):397–401. doi:10.1016/0309-1740(93)90044-I

    Article  CAS  Google Scholar 

  • Benli H, Sanchez-Plata MX, Keeton JT (2011) Efficacy of epsilon-polylysine, lauric arginate, or acidic calcium sulfate applied sequentially for Salmonella reduction on membrane filters and chicken carcasses. J Food Prot 74(5):743–750. doi:10.4315/0362-028x.Jfp-10-463

    Article  CAS  Google Scholar 

  • Berrang ME, Dickens JA, Musgrove MT (2000) Effects of hot water application after defeathering on the levels of Campylobacter, coliform bacteria, and Escherichia coli on broiler carcasses. Poult Sci 79(11):1689–1693

    Article  CAS  Google Scholar 

  • Berrang ME, Meinersmann RJ, Cox NA, Fedorka-Cray PJ (2011) Application of chlorine dioxide to lessen bacterial contamination during broiler defeathering. J Appl Poult Res 20(1):33–39. doi:10.3382/japr.2010-00178

    Article  CAS  Google Scholar 

  • Bolder NM (1997) Decontamination of meat and poultry carcasses. Trends Food Sci Technol 8(7):221–227

    Article  CAS  Google Scholar 

  • Bolder NM (2007) Microbial challenges of poultry meat production. World Poult Sci J 63(3):401–411. doi:10.1017/S0043933907001535

    Article  Google Scholar 

  • Bolton DJ, Doherty AM, Sheridan JJ (2001) Beef HACCP: intervention and non-intervention systems. Int J Food Microbiol 66(1–2):119–129

    Article  CAS  Google Scholar 

  • Bourassa DV, Fletcher DL, Buhr RJ, Berrang ME, Cason JA (2004) Recovery of Salmonellae from trisodium phosphate-treated commercially processed broiler carcasses after chilling and after seven-day storage. Poult Sci 83(12):2079–2082

    Article  CAS  Google Scholar 

  • Breen PJ, Salari H, Compadre CM (1997) Elimination of Salmonella contamination from poultry tissues by cetylpyridinium chloride solutions. J Food Prot 60(9):1019–1021

    CAS  Google Scholar 

  • Buncic S, Sofos J (2012) Interventions to control Salmonella contamination during poultry, cattle and pig slaughter. Food Res Int 45(2):641–655. doi:10.1016/j.foodres.2011.10.018

    Article  Google Scholar 

  • Byrd JA, Hargis BM, Corrier DE, Brewer RL, Caldwell DJ, Bailey RH, McReynolds JL, Herron KL, Stanker LH (2002) Fluorescent marker for the detection of crop and upper gastrointestinal leakage in poultry processing plants. Poult Sci 81(1):70–74

    Article  CAS  Google Scholar 

  • Campus M (2010) High pressure processing of meat, meat products and seafood. Food Eng Rev 2(4):256–273. doi:10.1007/s12393-010-9028-y

    Article  Google Scholar 

  • Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR (1998a) Comparison of water wash, trimming, and combined hot water and lactic acid treatments for reducing bacteria of fecal origin on beef carcasses. J Food Prot 61(7):823–828

    CAS  Google Scholar 

  • Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR (1998b) Use of hot water for beef carcass decontamination. J Food Prot 61(1):19–25

    CAS  Google Scholar 

  • Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR (1999a) Decontamination of beef carcass surface tissue by steam vacuuming alone and combined with hot water and lactic acid sprays. J Food Prot 62(2):146–151

    CAS  Google Scholar 

  • Castillo A, Lucia LM, Kemp GK, Acuff GR (1999b) Reduction of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces using acidified sodium chlorite. J Food Prot 62(6):580–584

    CAS  Google Scholar 

  • Castillo A, Lucia LM, Mercado I, Acuff GR (2001a) In-plant evaluation of a lactic acid treatment for reduction of bacteria on chilled beef carcasses. J Food Prot 64(5):738–740

    CAS  Google Scholar 

  • Castillo A, Lucia LM, Roberson DB, Stevenson TH, Mercado I, Acuff GR (2001b) Lactic acid sprays reduce bacterial pathogens on cold beef carcass surfaces and in subsequently produced ground beef. J Food Prot 64(1):58–62

    CAS  Google Scholar 

  • Chen JH, Ren Y, Seow J, Liu T, Bang WS, Yuk HG (2012) Intervention technologies for ensuring microbiological safety of meat: current and future trends. Comprehen Rev Food Sci Food Safety 11(2):119–132. doi:10.1111/j.1541-4337.2011.00177.x

    Article  Google Scholar 

  • Corry JE, James C, James SJ, Hinton M (1995) Salmonella, Campylobacter and Escherichia coli O157:H7 decontamination techniques for the future. Int J Food Microbiol 28(2):187–196

    Article  CAS  Google Scholar 

  • Cutter CN, Dorsa WJ (1995) Chlorine dioxide spray washes for reducing fecal contamination on beef. J Food Prot 58(12):1294–1296

    Google Scholar 

  • Cutter CN, Dorsa WJ, Handie A, Rodriguez-Morales S, Zhou X, Breen PJ, Compadre CM (2000) Antimicrobial activity of cetylpyridinium chloride washes against pathogenic bacteria on beef surfaces. J Food Prot 63(5):593–600

    CAS  Google Scholar 

  • Del Rio E, Panizo-Moran M, Prieto M, Alonso-Calleja C, Capita R (2007) Effect of various chemical decontamination treatments on natural microflora and sensory characteristics of poultry. Int J Food Microbiol 115(3):268–280. doi:10.1016/j.ijfoodmicro.2006.10.048

    Article  Google Scholar 

  • Delmore LRG, Sofos JN, Reagan JO, Smith GC (1997) Hot-water rinsing and trimming washing of beef carcasses to reduce physical and microbiological contamination. J Food Sci 62(2):373–376

    Article  CAS  Google Scholar 

  • Dickens JA, Ingram KD, Hinton A (2004) Effects of applying Safe2O poultry wash to broiler wings on shelf life, Listeria monocytogenes, Pseudomonads, Staphylococcus species, and psychrotrophic bacteria levels after three, seven, and ten days of storage. Poult Sci 83(6):1047–1050

    Article  CAS  Google Scholar 

  • Dincer AH, Baysal T (2004) Decontamination techniques of pathogen bacteria in meat and poultry. Crit Rev Microbiol 30(3):197–204. doi:10.1080/10408410490468803

    Article  Google Scholar 

  • Dorsa WJ, Cutter CN, Siragusa GR (1997) Effects of steam-vacuuming and hot water spray wash on the microflora of refrigerated beef carcass surface tissue inoculated with Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes. J Food Prot 60(2):114–119

    Google Scholar 

  • Dorsa WJ, Cutter CN, Siragusa GR (1998a) Bacterial profile of ground beef made from carcass tissue experimentally contaminated with pathogenic and spoilage bacteria before being washed with hot water, alkaline solution, or organic acid and then stored at 4 or 12 °C. J Food Prot 61(9):1109–1118

    CAS  Google Scholar 

  • Dorsa WJ, Cutter CN, Siragusa GR (1998b) Long-term effect of alkaline, organic acid, or hot water washes on the microbial profile of refrigerated beef contaminated with bacterial pathogens after washing. J Food Prot 61(3):300–306

    CAS  Google Scholar 

  • Edwards JR, Fung DYC (2006) Prevention and decontamination of Escherichia coli O157:H7 on raw beef carcasses in commercial beef abattoirs. J Rapid Methods Automat Microbial 14(1):1–95

    Article  Google Scholar 

  • Fabrizio KA, Sharma RR, Demirci A, Cutter CN (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poult Sci 81(10):1598–1605

    Article  CAS  Google Scholar 

  • Farkas J (1998) Irradiation as a method for decontaminating food. A review. Int J Food Microbiol 44(3):189–204

    Article  CAS  Google Scholar 

  • Fletcher DL, Craig EW (1997) An evaluation of on-line processing on visual contamination and microbiological quality of broilers. J Appl Poult Res 6:436–442

    Article  Google Scholar 

  • Garriga M, Grèbol N, Aymerich MT, Monfort JM, Hugas M (2004) Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov Food Sci Emerg Technol 5(4):451–457

    Article  Google Scholar 

  • Geornaras I, Sofos JN (2005) Activity of ε-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. J Food Sci 70(9):M404–408

    Article  CAS  Google Scholar 

  • Geornaras I, Yoon Y, Belk KE, Smith GC, Sofos JN (2007) Antimicrobial activity of ε-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. J Food Sci 72(8):M330–334

    Article  CAS  Google Scholar 

  • Gola S, Mutti P, Manganelli E, Squarcina N, Rovere P (2000) Behaviour of E. coli O157: H7 strains in model system and in raw meat by HPP: microbial and technological aspects. High Pres Res 19(1–6):481–487

    Google Scholar 

  • Gorman BM, Sofos JN, Morgan JB, Schmidt GR, Smith GC (1995) Evaluation of hand-trimming, various sanitizing agents, and hot water spray-washing as decontamination interventions for beef brisket adipose tissue. J Food Prot 58(8):899–907

    Google Scholar 

  • Hardin MD, Acuff GR, Lucia LM, Oman JS, Savell JW (1995) Comparison of methods for decontamination from beef carcass surfaces. J Food Prot 58(4):368–374

    Google Scholar 

  • Henry FC, Silva TJP, Franco RM, Freitas MQ, De Jesus EFO (2010) Effect of gamma radiation on frozen turkey breast meat quality. J Food Saf 30(3):615–634. doi:10.1111/j.1745-4565.2010.00229.x

    Google Scholar 

  • Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW (2003) Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regul Toxicol Pharmacol 37(2):328–340

    Article  CAS  Google Scholar 

  • Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Prot 71(9):1934–1947

    CAS  Google Scholar 

  • Huffman RD (2002) Current and future technologies for the decontamination of carcasses and fresh meat. Meat Sci 62(3):285–294

    Article  CAS  Google Scholar 

  • Hwang CA, Beuchat LR (1995) Efficacy of selected chemicals for killing pathogenic and spoilage microorganisms on chicken skin. J Food Prot 58(1):19–23

    CAS  Google Scholar 

  • Jamdar SN, Harikumar P (2008) Radiation decontamination of poultry viscera. Radiat Phys Chem 77(4):467–472. doi:10.1016/j.radphyschem.2007.07.004

    Article  CAS  Google Scholar 

  • Jimenez SM, Salsi MS, Tiburzi MC, Pirovani ME (2002) A comparison between broiler chicken carcasses with and without visible faecal contamination during the slaughtering process on hazard identification of Salmonella spp. J Appl Microbiol 93(4):593–598

    Article  CAS  Google Scholar 

  • Jimenez SM, Tiburzi MC, Salsi MS, Pirovani ME, Moguilevsky MA (2003) The role of visible faecal material as a vehicle for generic Escherichia coli, coliform, and other enterobacteria contaminating poultry carcasses during slaughtering. J Appl Microbiol 95(3):451–456

    Article  CAS  Google Scholar 

  • Keeton JT, Eddy SM (2004) Chemical methods for decontamination of meat and poultry. In: Beier RC, Pillai SD, Phillips TD, Ziprin RL (eds) Preharvest and postharvest food safety - contemporary issues and future directions. Blackwell, Ames, IA, pp 319–336

    Google Scholar 

  • Keeton JT, Acuff GR, Nunez de Gonzalez MT, Ringer LJ, Lucia LM (2002) Antimicrobial effects of surface treatments and ingredients on cured RTE meat products. http://www.mionix.com/safe20_studies/food_studies.htm. Accessed Jul 2013

  • Keeton JT, Ricke S, Anderson R, Miller D, Azefor NNL (2006) Application of novel hurdle technologies to meat carcasses and trimmings for reduction of pathogens. http://www.fsis.usda.gov/PDF/New_Technology_Final_Report_C-14.pdf. Accessed Jul 2013

  • Kemp GK, Aldrich ML, Waldroup AL (2000) Acidified sodium chlorite antimicrobial treatment of broiler carcasses. J Food Prot 63(8):1087–1092

    CAS  Google Scholar 

  • Kim JW, Slavik MF (1994) Trisodium phosphate (Tsp) treatment of beef surfaces to reduce Escherichia coli O157:H7 and Salmonella Typhimurium. J Food Sci 59(1):20–22. doi:10.1111/j.1365-2621.1994.tb06887.x

    Article  CAS  Google Scholar 

  • Kim JW, Slavik MF, Pharr MD, Raben DP, Lobsinger CM, Tsai S (1994) Reduction of Salmonella on post-chill chicken carcasses by trisodium phosphate (Na3PO4) treatment. J Food Saf 14(1):9–17. doi:10.1111/j.1745-4565.1994.tb00580.x

    Article  CAS  Google Scholar 

  • King DA, Lucia LM, Castillo A, Acuff GR, Harris KB, Savell JW (2005) Evaluation of peroxyacetic acid as a post-chilling intervention for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef carcass surfaces. Meat Sci 69(3):401–407

    Article  CAS  Google Scholar 

  • Kochevar SL, Sofos JN, LeValley SB, Smith GC (1997) Effect of water temperature, pressure and chemical solution on removal of fecal material and bacteria from lamb adipose tissue by spray-washing. Meat Sci 45(3):377–388

    Article  CAS  Google Scholar 

  • Laster BA, Harris KB, Lucia LM, Castillo A, Savell JW (2012) Efficacy of trimming chilled beef during fabrication to control Escherichia coli O157:H7 surrogates on subsequent subprimals. Meat Sci 90(2):420–425. doi:10.1016/j.meatsci.2011.08.011

    Article  CAS  Google Scholar 

  • Li YB, Kim JW, Slavik MF (1996) Cetylpyridinium chloride (CPC) treatment on poultry skin to reduce attached Salmonella. J Food Prot 59(5):533–533

    Google Scholar 

  • Li YB, Slavik MF, Walker JT, Xiong H (1997) Pre-chill spray of chicken carcasses to reduce Salmonella Typhimurium. J Food Sci 62(3):605–607

    Article  CAS  Google Scholar 

  • Li Y, Yang H, Swem BL (2002) Effect of high-temperature inside-outside spray on survival of Campylobacter jejuni attached to prechill chicken carcasses. Poult Sci 81(9):1371–1377

    Article  CAS  Google Scholar 

  • Lillard HS (1988) Effect of surfactant or changes in ionic strength on the attachment of Salmonella Typhimurium to poultry skin and muscle. J Food Sci 53(3):727–730

    Article  Google Scholar 

  • Loretz M, Stephan R, Zweifel C (2010) Antimicrobial activity of decontamination treatments for poultry carcasses: a literature survey. Food Control 21(6):791–804. doi:10.1016/j.foodcont.2009.11.007

    Article  CAS  Google Scholar 

  • Luchansky JB, Call JE, Hristova B, Rumery L, Yoder L, Oser A (2005) Viability of Listeria monocytogenes on commerically-prepared hams surface treated with acidified calcium sulfate and lauric arginate and stored at 4°C. Meat Sci 71(1):92–99

    Article  CAS  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5(5):607–625

    Article  CAS  Google Scholar 

  • Mehyar G, Blank G, Han JH, Hydamaka A, Holley RA (2005) Effectiveness of trisodium phosphate, lactic acid and commercial antimicrobials against pathogenic bacteria on chicken skin. Food Prot Trends 25(5):351–362

    Google Scholar 

  • Mendonca AF, Amoroso TL, Knabel SJ (1994) Destruction of gram-negative food-borne pathogens by high Ph involves disruption of the cytoplasmic membrane. Appl Environ Microbiol 60(11):4009–4014

    CAS  Google Scholar 

  • Morales P, Calzada J, Avila M, Nunez M (2008) Inactivation of Escherichia coli O157: H7 in ground beef by single-cycle and multiple-cycle high-pressure treatments. J Food Prot 71(4):811–815

    Google Scholar 

  • Morrison GJ, Fleet GH (1985) Reduction of Salmonella on chicken carcasses by immersion treatments. J Food Prot 48(11):939–943

    Google Scholar 

  • Njongmeta NLA, Benli H, Dunkley KD, Dunkley CS, Miller DR, Anderson RC, O’Bryan CA, Keeton JT, Nisbet DJ, Crandall PG, Ricke SC (2011) Application of acidic calcium sulfate and ε-polylysine to pre-rigor beef rounds for reduction of pathogens. J Food Saf 31(3):395–400. doi:10.1111/j.1745-4565.2011.00312.x

    Article  CAS  Google Scholar 

  • Northcutt JK, Berrang ME, Dickens JA, Fletcher DL, Cox NA (2003a) Effect of broiler age, feed withdrawal, and transportation on levels of coliforms, Campylobacter, Escherichia coli and Salmonella on carcasses before and after immersion chilling. Poult Sci 82(1):169–173

    Article  CAS  Google Scholar 

  • Northcutt JK, Berrang ME, Smith DP, Jones DR (2003b) Effect of commercial bird washers on broiler carcass microbiological characteristics. J Appl Poult Res 12:435–438

    Article  Google Scholar 

  • Northcutt JK, Smith DP, Musgrove MT, Ingram KD, Hinton A (2005) Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures. Poult Sci 84(10):1648–1652

    Article  CAS  Google Scholar 

  • Northcutt J, Smith D, Ingram KD, Hinton A, Musgrove M (2007) Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions. Poult Sci 86(10):2239–2244

    Article  CAS  Google Scholar 

  • Nunez de Gonzalez MTN, Keeton JT, Acuff GR, Ringer LJ, Lucia LM (2004) Effectiveness of acidic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5 °C. J Food Prot 67(5):915–921

    Google Scholar 

  • Nutsch AL, Phebus RK, Riemann MJ, Schafer DE, Boyer JE, Wilson RC, Leising JD, Kastner CL (1997) Evaluation of a steam pasteurization process in a commercial beef processing facility. J Food Prot 60(5):485–492

    Google Scholar 

  • Nutsch AL, Phebus RK, Riemann MJ, Kotrola JS, Wilson RC, Boyer JE, Brown TL (1998) Steam pasteurization of commercially slaughtered beef carcasses: evaluation of bacterial populations at five anatomical locations. J Food Prot 61(5):571–577

    CAS  Google Scholar 

  • Park H, Hung YC, Brackett RE (2002) Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol 72(1–2):77–83. doi:10.1016/S0168-1605(01)00622-5

    Article  CAS  Google Scholar 

  • Phebus RK, Nutsch AL, Schafer DE, Wilson RC, Riemann MJ, Leising JD, Kastner CL, Wolf JR, Prasai RK (1997) Comparison of steam pasteurization and other methods for reduction of pathogens on surfaces of freshly slaughtered beef. J Food Prot 60(5):476–484

    Google Scholar 

  • Pillai SD (2004) Food irradiation. In: Beier RC, Pillai SD, Phillips TD, Ziprin RL (eds) Preharvest and postharvest food safety - contemporary issues and future directions. Blackwell, Ames, IA, pp 375–387

    Chapter  Google Scholar 

  • Pohlman FW, Stivarius MR, McElyea KS, Waldroup AL (2002) Reduction of E.coli, Salmonella Typhimurium, coliforms, aerobic bacteria, and improvement of ground beef color using trisodium phosphate or cetylpyridinium chloride before grinding. Meat Sci 60(4):349–356

    Article  CAS  Google Scholar 

  • Ramirez AJ, Acuff GR, Lucia LM, Savell JW (2001) Lactic acid and trisodium phosphate treatment of lamb breast to reduce bacterial contamination. J Food Prot 64(9):1439–1441

    CAS  Google Scholar 

  • Reagan JO, Acuff GR, Buege DR, Buyck MJ, Dickson JS, Kastner CL, Marsden JL, Morgan JB, Nickelson R, Smith GC, Sofos JN (1996) Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat. J Food Prot 59(7):751–756

    Google Scholar 

  • Rodriguez E, Seguer J, Rocabayera X, Manresa A (2004) Cellular effects of monohydrochloride of L-arginine, Na-lauroyl ethylester (LAE) on exposure to Salmonella Typhimurium and Staphylococcus aureus. J Appl Microbiol 96(5):903–912

    Article  CAS  Google Scholar 

  • Ruckman SA, Rocabayera X, Borzelleca JF, Sandusky CB (2004) Toxicological and metabolic investigations of the safety of N-alpha-lauroyl-L-arginine ethyl ester monohydrochloride (LAE). Food Chem Toxicol 42(2):245–259. doi:10.1016/j.fct.2003.08.022

    Article  CAS  Google Scholar 

  • Sakhare PZ, Sachindra NM, Yashoda KP, Rao DN (1999) Efficacy of intermittent decontamination treatments during processing in reducing the microbial load on broiler chicken carcass. Food Control 10(3):189–194

    Article  Google Scholar 

  • Sanchez MX, Fluckey WM, Brashears MM, McKee SR (2002) Microbial profile and antibiotic susceptibility of Campylobacter spp. and Salmonella spp. in broilers processed in air-chilled and immersion-chilled environments. J Food Prot 65(6):948–956

    CAS  Google Scholar 

  • Sarjeant KC, Williams SK, Hinton A Jr (2005) The effect of electron beam irradiation on the survival of Salmonella enterica serovar Typhimurium and psychrotrophic bacteria on raw chicken breasts stored at four degrees celsius for fourteen days. Poult Sci 84(6):955–958

    Article  CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17(1):7–15. doi:10.3201/eid1701.P11101

    Article  Google Scholar 

  • Simpson RK, Gilmour A (1997a) The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate-buffered saline and model food systems. J Appl Microbiol 83(2):181–188. doi:10.1046/j.1365-2672.1997.00215.x

    Article  CAS  Google Scholar 

  • Simpson RK, Gilmour A (1997b) The resistance of Listeria monocytogenes to high hydrostatic pressure in foods. Food Microbiol 14(6):567–573. doi:10.1006/fmic.1997.0117

    Article  Google Scholar 

  • Sinhamahapatra M, Biswas S, Das AK, Bhattacharyya D (2004) Comparative study of different surface decontaminants on chicken quality. Br Poult Sci 45(5):624–630

    Article  CAS  Google Scholar 

  • Smith DP, Northcutt JK, Musgrove MT (2005) Microbiology of contaminated or visibly clean broiler carcasses processed with an inside-outside bird washer. Int J Poult Sci 4(12): 955–958

    Article  CAS  Google Scholar 

  • Smith DP, Northcutt JK, Cason JA, Hinton A, Buhr RJ, Ingram KD (2007) Effect of external or internal fecal contamination on numbers of bacteria on prechilled broiler carcasses. Poult Sci 86(6):1241–1244

    Article  CAS  Google Scholar 

  • Stivarius MR, Pohlman FW, McElyea KS, Apple JK (2002) Microbial, instrumental color and sensory color and odor characteristics of ground beef produced from beef trimmings treated with ozone or chlorine dioxide. Meat Sci 60(3):299–305

    Article  CAS  Google Scholar 

  • Tamblyn KC, Conner DE (1997) Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skin. J Food Prot 60(6):629–633

    CAS  Google Scholar 

  • U.S. Department of Agriculture Food Safety and Inspection Service (2013) Safe and suitable ingredients used in the production of meat and poultry, and egg products. http://www.fsis.usda.gov/wps/wcm/connect/bab10e09-aefa-483b-8be8-809a1f051d4c/7120.1.pdf?MOD=AJPERES. Accessed Sept 2013

  • U.S. Department of Agriculture, Food Safety and Inspection Service (1996) Pathogen reduction: hazard analysis and critical control point (HACCP) systems; final rule. Fed Regist 61(144):38806–38989

    Google Scholar 

  • U.S. Department of Agriculture, Food Safety and Inspection Service (2008a) Public health risk-based inspection system for processing and slaughter - Appendix C - literature reviews. http://www.fsis.usda.gov/OPPDE/NACMPI/Feb2008/Processing_Appendix_C_041808.pdf. Accessed 19 May 2008

  • U.S. Department of Agriculture, Food Safety and Inspec♦tion Service (2008b) Public health risk-based inspection system for processing and slaughter - technical report. http://origin-www.fsis.usda.gov/OPPDE/NACMPI/Feb2008/Processing_Slaughter_Tech_Rpt_041808.pdf. Accessed Oct 2009

  • Whyte P, McGill K, Collins JD (2003) An assessment of steam pasteurization and hot water immersion treatments for the microbiological decontamination of broiler carcasses. Food Microbiol 20(1):111–117. doi:10.1016/S0740-0020(02)00084-9

    Article  Google Scholar 

  • Yoder SF, Henning WR, Mills EW, Doores S, Ostiguy N, Cutter CN (2012) Investigation of chemical rinses suitable for very small meat plants to reduce pathogens on beef surfaces. J Food Prot 75(1):14–21. doi:10.4315/0362-028X.JFP-11-084

    Article  CAS  Google Scholar 

  • Yoshida T, Nagasawa T (2003) ε-poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62(1):21–26

    Article  CAS  Google Scholar 

  • Yoshida T, Hiraki J, Nagasawa T (2002) ε-poly-l-lysine. In: Fahnestock S, Steinbüchel A (eds) Biopolymers, vol 7. Wiley, Weinheim, pp 107–121

    Google Scholar 

  • Zhao T, Doyle MP, Kemp MC, Howell RS, Zhao P (2004) Influence of freezing and freezing plus acidic calcium sulfate and lactic acid addition on thermal inactivation of Escherichia coli O157:H7 in ground beef. J Food Prot 67(8):1760–1764

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Benli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benli, H. (2014). Surface Decontamination Treatments for Improving the Safety of Meat and Poultry. In: Malik, A., Erginkaya, Z., Ahmad, S., Erten, H. (eds) Food Processing: Strategies for Quality Assessment. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1378-7_6

Download citation

Publish with us

Policies and ethics