Skip to main content

Modeling with Stochastic Differential Equations

  • Chapter
  • First Online:
Stochastic Processes and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 60))

  • 10k Accesses

Abstract

When the white noise in a stochastic differential equation is approximated by a smoother process, then in the limit as we remove the regularization, we obtain the Stratonovich stochastic equation. This is usually called the Wong–Zakai theorem. In this section, we derive the limiting Stratonovich SDE for a particular class of regularization of the white noise process using singular perturbation theory for Markov processes. In particular, we consider colored noise, which we model as a Gaussian stationary diffusion process, i.e., the Ornstein–Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At least in one dimension; in higher dimensions, there might be an additional drift term to the Stratonovich stochastic equation; see (5.15) and (5.16).

  2. 2.

    We should also add a function ψ 1(x, t), which belongs to the null space of \(\mathcal{L}_{0}\). However, as for the one-dimensional problem, we can check that this function does not affect the limiting backward Kolmogorov equation.

  3. 3.

    For example, the Taylor expansion, which is the main tool for obtaining higher-order numerical methods for ODEs, has to be replaced by the stochastic Taylor expansion, which is based on Itô’s formula.

  4. 4.

    Maximizing the likelihood function is, of course, equivalent to maximizing the log likelihood function.

  5. 5.

    Note, however, that this trajectory is not stationary, since the initial conditions are not distributed according to the invariant distribution \(\frac{1} {Z}e^{-\beta V (x)}\). We could, in principle, sample from this distribution using the MCMC methodology that was mentioned in Sect. 4.10.

  6. 6.

    We have that in law,

    $$\displaystyle{ \int _{0}^{T}f(s)\,dW(s) = W\left (\int _{ 0}^{T}f^{2}(s)\,ds\right ). }$$
    (5.80)

    Generalizations of this formula are discussed in Sect. 5.5.

  7. 7.

    This means, of course, that we are not really looking at the dynamics but only at the dependence of the stationary state on the bifurcation parameter.

  8. 8.

    Alternatively, we can show that U(x) = x 2 is a Lyapunov function; see Exercise 15.

  9. 9.

    Note that the generator of (5.99) is not uniformly elliptic, and consequently, the techniques developed in Sect. 4.6 are not directly applicable.

  10. 10.

    In bounded domains. For evolution PDEs in unbounded domains, the amplitude equation is a also a PDE, the Ginzburg–Landau equation. See [39] for details.

References

  1. A. Athreya, T. Kolba, and J. C. Mattingly. Propagating Lyapunov functions to prove noise-induced stabilization. Electron. J. Probab., 17:no. 96, 38, 2012.

    Google Scholar 

  2. I.V. Basawa and B.L.S. Prakasa Rao. Statistical inference for stochastic processes. Academic Press Inc., London, 1980.

    MATH  Google Scholar 

  3. R. F. Bass, B. M. Hambly, and T. J. Lyons. Extending the Wong-Zakai theorem to reversible Markov processes. J. Eur. Math. Soc. (JEMS), 4(3): 237–269, 2002.

    Google Scholar 

  4. J. P. N. Bishwal. Parameter estimation in stochastic differential equations, volume 1923 of Lecture Notes in Mathematics. Springer, Berlin, 2008.

    Google Scholar 

  5. G. Blankenship and G.C. Papanicolaou. Stability and control of stochastic systems with wide-band noise disturbances. I. SIAM J. Appl. Math., 34(3):437–476, 1978.

    Google Scholar 

  6. D. Blömker, M. Hairer, and G. A. Pavliotis. Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities. Nonlinearity, 20(7):1721–1744, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Blömker, S. Maier-Paape, and G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete Contin. Dyn. Syst. Ser. B, 1(4):527–541, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Boďová and C. R. Doering. Noise-induced statistically stable oscillations in a deterministically divergent nonlinear dynamical system. Commun. Math. Sci., 10(1):137–157, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Brettschneider, G. Volpe, L. Helden, J. Wehr, and C. Bechinger. Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method. Phys. Rev. E, 83(4, Part 1), APR 15 2011.

    Google Scholar 

  10. M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65:851–1112, Jul 1993.

    Article  Google Scholar 

  11. P. Hanggi and P. Jung. Colored noise in dynamical systems. In I. Prigogine and S. A. Rice, editors, Advances in Chemical Physics, volume 89, 239–326. 1995.

    Google Scholar 

  12. D. J. Higham. Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal., 38(3):753–769 (electronic), 2000.

    Google Scholar 

  13. D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43(3):525–546 (electronic), 2001.

    Google Scholar 

  14. W. Horsthemke and R. Lefever. Noise-induced transitions, volume 15 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984. Theory and applications in physics, chemistry, and biology.

    Google Scholar 

  15. S. Hottovy, G. Volpe, and J. Wehr. Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit. J. Stat. Phys., 146(4):762–773, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, second edition, 1989.

    MATH  Google Scholar 

  17. H. M. Ito. Ergodicity of randomly perturbed Lorenz model. J. Statist. Phys., 35(1–2):151–158, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. L. Klimontovich. Ito, Stratonovich and kinetic forms of stochastic-equations. Physica A, 163(2):515–532, FEB 15 1990.

    Google Scholar 

  19. P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

    Google Scholar 

  20. R. Kupferman, G. A. Pavliotis, and A. M. Stuart. Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E (3), 70(3):036120, 9, 2004.

    Google Scholar 

  21. Y. Kuramoto. Chemical oscillations, waves, and turbulence, volume 19 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  22. Y. A. Kutoyants. Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London Ltd., London, 2004.

    Book  MATH  Google Scholar 

  23. A. Lasota and M. C. Mackey. Chaos, fractals, and noise, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1994.

    Google Scholar 

  24. T. J. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215–310, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. C. Mackey. Time’s arrow. Dover Publications Inc., Mineola, NY, 2003. The origins of thermodynamic behavior, Reprint of the 1992 original [Springer, New York; MR1140408].

    Google Scholar 

  26. M. C. Mackey, A. Longtin, and A. Lasota. Noise-induced global asymptotic stability. J. Statist. Phys., 60(5–6):735–751, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. A. Pavliotis and A. M. Stuart. White noise limits for inertial particles in a random field. Multiscale Model. Simul., 1(4):527–533 (electronic), 2003.

    Google Scholar 

  28. G. A. Pavliotis and A. M. Stuart. Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul., 4(1):1–35 (electronic), 2005.

    Google Scholar 

  29. G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization.

    Google Scholar 

  30. M. Pradas, D. Tseluiko, S. Kalliadasis, D. T. Papageorgiou, and G. A. Pavliotis. Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation. Phys. Rev. Lett., 106(6):060602, Feb 2011.

    Google Scholar 

  31. Y. Saito and T. Mitsui. Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal., 33(6):2254–2267, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Sørensen. Estimating functions for diffusion-type processes. In Statistical methods for stochastic differential equations, volume 124 of Monogr. Statist. Appl. Probab., pages 1–107. CRC Press, Boca Raton, FL, 2012.

    Google Scholar 

  33. R. L. Stratonovich. A new representation for stochastic integrals and equations. SIAM J. Control, 4:362–371, 1966.

    Article  MathSciNet  Google Scholar 

  34. H. J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. Ann. Probability, 6(1):19–41, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  35. H. J. Sussmann. Limits of the Wong-Zakai type with a modified drift term. In Stochastic analysis, pages 475–493. Academic Press, Boston, MA, 1991.

    Google Scholar 

  36. N. G. van Kampen. Itô versus Stratonovich. J. Statist. Phys., 24(1):175–187, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  37. G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger. Influence of Noise on Force Measurements. Physical Review Letters, 104(17), APR 30 2010.

    Google Scholar 

  38. E. Wong and M. Zakai. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist., 36:1560–1564, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  39. E. Wong and M. Zakai. Riemann-Stieltjes approximations of stochastic integrals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12:87–97, 1969.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pavliotis, G.A. (2014). Modeling with Stochastic Differential Equations. In: Stochastic Processes and Applications. Texts in Applied Mathematics, vol 60. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1323-7_5

Download citation

Publish with us

Policies and ethics